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Abstract In this paper, we will analyze the connection
between the fidelity susceptibility, the holographic complex-
ity and the thermodynamic volume. We will regularize the
fidelity susceptibility and the holographic complexity by sub-
tracting the contribution of the background AdS spacetime
from the deformation of the AdS spacetime. It will be demon-
strated that this regularized fidelity susceptibility has the
same behavior as the thermodynamic volume and that the
regularized complexity has a very different behavior. As the
information dual to different volumes in the bulk would be
measured by the fidelity susceptibility and the holographic
complexity, this paper will establish a connection between
thermodynamics and information dual to a volume.

1 Introduction

It has been observed from various studies done in different
branches of physics that the laws of physics are related to the
ability of an observer to process relevant information [1,2].
Thus, it seems to indicate that the laws of physics are informa-
tion theoretical processes. As the informational theoretical
process deal with the processing of information, it is impor-
tant to measure the loss of information during such a process.
It is possible to measure this loss of information using the
concept of entropy, and so that the entropy is a very impor-
tant quantity in information theory. However, as the laws of
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physics are also information theoretical processes, entropy
is an important physical quantity. In fact, using the Jacobson
formalism, it is possible to obtain the geometric structure
of spacetime by assuming a certain scaling behavior of the
maximum entropy of a region of space [3,4]. This scaling
behavior of maximum entropy has been motivated from the
holographic principle [5,6]. The holographic principle states
that the number of degrees of freedom in any region of space
is equal to the number of degrees of freedom on the bound-
ary of that region of space. The holographic principle is also
the basis of the the AdS/CFT conjecture [7]. The AdS/CFT
correspondence states that the supergravity/string theory in
the bulk of an AdS spacetime is dual to the superconformal
field theory on its boundary. The AdS/CFT correspondence
has been used to quantify the concept of entanglement in
conformal field theory. This is because the AdS/CFT corre-
spondence can be used to holographically calculate quantum
entanglement entropy of a conformal field theory from the
bulk AdS spacetime [8–10]. This is done by defining γA as
the (d − 1)-minimal surface extended for a subsystem A
with boundary ∂A. The holographic entanglement entropy
for such a subsystem can be expressed in terms of the grav-
itational constant Gd+1 and the area of the minimal surface
Area[A] as [11,12]

EntropyA = Area[A](γA)

4Gd+1
. (1.1)

Since the entropy is related to the loss of information, it can
be calculated holographically from the area of a minimal
surface. However, it is not only important to understand the
loss of information during an information theoretical process,
but it is also important to understand the difficulty to process
that information during such a process. This can be quanti-
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fied using the concept of complexity. As the laws of physics
are informational theoretical processes, it is expected that
complexity will become an important physical quantity, and
the fundamental laws of physics will be expressed in terms of
complexity. It may be noted that complexity has already been
used to understand the behavior of certain condensed matter
systems [13–15]. It has also been used for analyzing molec-
ular physics [16,17]. In fact, even quantum computational
systems have been studied using the concept of complexity
[18]. The studies done on black hole information indicate
that the information might not be lost, but it would be left in
such a state that it would not be effectively possible to recover
it from that state [19]. This indicates that complexity might
be an important quantity that can be used to understand the
black hole information paradox. It has been proposed that the
complexity can also be holographically calculated from the
bulk AdS spacetime [20]. In fact, it has been proposed that
the complexity would be dual to a volume V in the bulk AdS
spacetime and hence it can be defined as follows [21,22]:

Complexity = V

8πRGd+1
, (1.2)

where R is the radius of the curvature. There are various
different ways to define a radius in AdS, and so we have dif-
ferent proposals for complexity. It is possible to use the same
minimal surface which was used to calculate the holographic
entanglement entropy, and define this volume as the volume
enclosed by such a surface V = V (γ ) [23]. However, this
quantify diverges, so we will regularize it by subtracting the
contribution of a background AdS V (γ )AdS from the defor-
mation of AdS V (γ )AdS, and define

�C = V (γ )DAdS − V (γ )AdS

8πRGd+1
. (1.3)

This quantity will be finite, and we shall call this quantity as
the holographic complexity. It is also possible to define the
volume in the bulk as the maximal volume in the AdS which
ends on the time slice at the AdS boundary, V = V (�max)

[24]. This would again leads to divergences, and so we will
again need to regularize it. The latter can be achieved by
subtracting the contribution of a background AdS V (γ )AdS

from the deformation of the AdS V (γ )AdS, and defining

�χF = V (�max)DAdS − V (�max)AdS

8πRGd+1
. (1.4)

This quantity will be finite, and it will correspond to the
fidelity susceptibility of a boundary field theory [25–27]. So,
we shall call this quantity as the fidelity susceptibility even
in the bulk. It has recently been proposed that the fidelity
susceptibility has the same behavior as the thermodynamic

volume in the extended phase space [28]. The cosmolog-
ical constant is treated as the thermodynamics pressure in
extended phase space, and it is possible to define a thermo-
dynamic volume conjugate to this pressure [29–36]. In this
paper, we will analyze the relation between the thermody-
namic volume, fidelity susceptibility and holographic com-
plexity for different black hole solutions. It may be noted that
we will also use higher order corrections for the black hole
solution previously studied, and hence more accurate results
[28]. It will be observed that, for all these different black hole
solutions, the thermodynamic volume has the same behav-
ior as the fidelity susceptibility. Thus, the recently observed
behavior for a specific black hole solution [28] seems to be
a universal behavior of thermodynamic volume and fidelity
susceptibility. Furthermore, it will be observed that the holo-
graphic complexity is different for all these cases. The infor-
mation dual to a volume in the bulk is measured by the regu-
larized fidelity susceptibility and the regularized holographic
complexity [33,37–39], so this paper establishes a connec-
tion between the information dual to a volume and thermo-
dynamics. We would like to point out that the original fidelity
susceptibility and the original holographic complexity were
divergences, and we have regularized them. Therefore, when
we refer to the fidelity susceptibility and the holographic
complexity, we are actually referring to these regularized
fidelity susceptibility and regularized holographic complex-
ity. It may also be noted that there are other proposals to
calculate the holographic complexity of a system, and one
of them relates the complexity to the action of the theory
[40,41]. However, in this paper, we will define holographic
complexity using the volume V = V (γ ) [23], and fidelity
susceptibility using the volume V = V (�max) [24].

2 Schwarzschild–Anti-de Sitter black holes

In this section, we consider black holes in AdS space as
deformations that correspond to excited states on the CFT
boundary. Then we calculate the temperature, entropy, and
heat capacity. After that, we calculate �C and �χF by
first calculating the volume of minimal surface of the AdS
slice, and the maximal volume of that slice. It may be
noted that in these calculations we use higher order correc-
tions as compared to previous calculations done for similar
black holes [28]. However, the real motivation to mention
these improved calculations for Schwarzschild–Anti-de Sit-
ter black holes is to review this case, and then use it for
other black holes. We begin our study with a simple case
where the geometry is a topological Schwarzschild–Anti-de
Sitter (SAdS) black hole, whose metric is represented by the
following line-element:

ds2 = − f (r)dt2 + dr2

f (r)
+ r2d�2, (2.1)

123



Eur. Phys. J. C (2018) 78 :765 Page 3 of 17 765

where d�2 = dθ2 + 1
k sin2(

√
kθ)dφ2 with k = {−1, 0, 1}.

Additionally, the metric function f (r) is given by

f (r) = 1 − 2M

r
+ r2

l2
. (2.2)

By assuming that r+ is the black hole event horizon, i.e.
f (r+) = 0, we can introduce a small parameter ε = Ml2

r3+
�

1 to rewrite the above function, yielding

f = 1 + 1

l2

(
r2 − 2ε r3+

r

)
. (2.3)

The mass and the volume of the sphere enclosed by the black
hole are

M = r+
2

(
1 + r2+

l2

)
, V = 4

3
πr3+. (2.4)

The temperature and specific heat of the black hole are,
respectively,

T = 1

4πr+l2
(
l2 + 3r2+

)
, (2.5)

cp =
(

∂M

∂T

)
p

=
∂M
∂r+
∂T
∂r+

=
∂

∂r+

(
r+
2 + r3+

2l2

)
∂

∂r+

(
1

4πl2r+
(
l2 + 3r2+

))

= 2πr2+

(
3r2+ + l2

3r2+ − l2

)
. (2.6)

Now, let us compute the area of the minimal surface γ , which
is parametrized by r = r(θ) given by a time slice t = 0 in
the line-element,

ds2 |t=0= r2 sin2 θdφ2 +
(
r2 + ( dr

dθ
)2

f (r)

)
dθ2. (2.7)

Hence, the minimal area can be written as follows:

Area =
∫ 2π

0
dφ

∫ θ0

0
L(θ)dθ, (2.8)

where L(θ) = r sin θ

√
r2 + ( dr

dθ
)2

f (r) and θ0 is the upper bound-

ary on the entangled domain. Therefore, the total area will
be given by

A = 2(2π)

∫ θ0

0
L(θ)dθ. (2.9)

Now, we will assume the following boundary conditions
imposed on a minimal surface:

r ′(0) = 0, r(0) = ρ, (2.10)

where ρ is the turning point of the solution r(θ) and
prime denotes differentiation with respect to θ . The corre-
sponding solution of the Euler–Lagrange equation for this
Lagrangian density L and the above boundary condition is
given by

r(θ) = ρ − 1

2

(−ρ3 − ρ l2 + 2 ε r3+
)
θ2

l2
+ 1

48

(
18 ρ6 + 28 ρ4l2 − 45 ε r3+ρ3 + 10 ρ2l4 − 29 ρ l2ε r3+ + 18 ε2r6+

)
θ4

ρ l4
.

(2.11)

Additionally, we obtain L = −3(ρr3+θ3)/ l2 and hence, from
(2.9), the total area can be expressed as

A = −3π
csgn (ρ) ρ r3+θ4

0

l2
. (2.12)

where

csgn(ρ) =
{

1, ρ > 0

−1, ρ < 0
. (2.13)

Consequently, the regularized entanglement entropy (the dif-
ference of entanglement entropy between pure AdS and
SAdS) with ρ > 0 is

�S = − 3

16

ρ3r3+θ4
0

Gl2
, (2.14)

where G is a gravitational constant.
In order to compute the holographic complexity, we need

to evaluate the volume of the bulk enclosed by the same
surface used in entanglement entropy. This volume is defined
as follows:

V = 2π

∫ θ0

0
dθ

∫ r(θ)

r+

r2dr√
f (r)

. (2.15)

In order to solve the integral in the above expression, we can
expand the integrand in Taylor series of the parameter ε as

r2

√
f (r)

= r2√
l2+r2

l2

+ rr3+√
l2+r2

l2
(
l2 + r2

)ε + O(ε2). (2.16)
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Then, by leaving only linear terms in ε and expanding in θ

up to second order we find that the volume is

�V = 1

2

⎛
⎝− r3+l√

l2 + ρ2
+ r3+l√

l2 + r2+

⎞
⎠ θ2

0 . (2.17)

Now, using the above volume, we can finally compute the
holographic complexity, which is

�C = �V

8πl
= 1

16πl

⎛
⎝− r3+l√

l2 + ρ2
+ r3+l√

l2 + r2+

⎞
⎠ θ2

0 ,

(2.18)

where �V = VSAdS −VAdS. Now as we are going to analyze
the P–V relation for this system, we define this regularized
volume as volume associated with holographic complexity
�V = Vc, and define the complexity pressure Pc as the
thermodynamic pressure associated with Vc, as P = − ∂M

∂Vc
,

yielding

Pc = −
∂M

∂r+
∂Vc
∂r+

= −
(
1 + 3r2+

)√
1 + ρ2

(
1 + r2+

)3/2

r2+
(

−3
√

1 + r2+r2+ − 3
√

1 + r2+ + 2r2+
√

1 + ρ2 + 3
√

1 + ρ2

)
θ2

0

,

(2.19)

where the mass of black hole is given in (2.4). Moreover,
from (2.4), we can express the event horizon of the black
hole in terms of the temperature, obtaining

r+ = 2

3
πT ± 1

3

√
4π2T 2 − 3. (2.20)

It is important to remark that we will choose the root with
the minus sign since only this root has a physical meaning
for the case where k > 1. Now, by using the above expres-
sion, we can rewrite the volume and the complexity pressure
given by (2.18) and (2.19) in terms of the temperature. Note
that the explicit expressions are found in Appendix A. Since
both functions P, V are functions of the temperature T and
the parameter θ0, it is illustrative to plot these functions as
contour plots. These figures are displayed in Figs. 1, 2. In
each graph we fixed the temperature T and consequently
each function P, V are defined as a single variable function
of θ0. Since V and P depend on θ0, it is also possible to
rewrite P = P(T, V ) as an equation of state if we eliminate
θ0 among these two expressions for P and V . and rewrite the
complexity volume and pressure in terms of the temperature.
Another volume dual to the thermodynamical volume in the
bulk could be the maximum volume which is proportional to

Fig. 1 Figures show contour plots of T = constant in V as functions
of θ0. Different lines in each graph show a specific temperature

Fig. 2 Figures show contour plots of T = constant in P as functions
of θ0. Different lines in each graph show a specific temperature

the fidelity susceptibility in the dual CFT part. The latter is
defined as follows:

�χF = Vmax

8πlG
. (2.21)

where l is the AdS radius and G the Newtonian constant. To
evaluate Vmax, we should subtract the pure AdS background
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portion. We can expand in series the metric function because
ε = 0 corresponds to the AdS background.

1√
f

= 1√
f0 + εδ f

� 1√
f0

(
1 − εδ f

2 f0

)
. (2.22)

After a simple algebraic manipulation we find

VFid = VAdS + ε�VFid

=
∫ r∞

r+

rdr√
f0

(
1 − εδ f

2 f0

)
� ∞

−ε

2

∫ r∞

r+

rδ f

f03/2 dr. (2.23)

Using the fact that f0 = 1 + r2

l2
(the metric of pure AdS) and

δ f = − 2r3+
r , the corresponding volume is

�VFid = − r3+
8(1 + 2r2+ + r4+)[

10r+ + 6 arctan (r+) + 6 arctan (r+) r4+

+ 6r3+ + 12 arctan (r+) r2+ − 3π − 6πr2+ − 3πr4+
]
,

(2.24)

and the pressure reads

PFid = − ∂M

∂VFid
= −

∂M
∂r+

∂VFid
∂r+

= −
4
3

( 1
3 + r2+

) (
1 + r2+

)3

r2+
(
−2

(
1 + r2+

)3
arctan (r+) + πr6+ − 16

3 r
3+ − 2r5+ + 3πr2+ + 3πr4+ + π − 46

9 r+
) .

(2.25)

Note that r+ is given by Eq. (2.20). The parametric plot of
p = p(V, T ) is depicted in Fig. 3. Here the horizontal line
corresponds to V and the vertical line to p.
Thus, we have calculated the holographic complexity and
fidelity susceptibility from the associated minimal surface,
and maximal volumes, respectively, and obtained a thermo-
dynamic equation of states for SAdS black holes. We were
also able to obtain the P–V graphs for these quantities,
which are displayed in Figs. 1, 2, 3, 4, 5, 6. It was observed
that the P–V relation for the fidelity susceptibility could be
related to the P–V relation for the thermodynamic volume
and pressure in extended phase space, where the cosmologi-
cal constant of the AdS space is viewed as a thermodynamic
pressure [29,32]. It may be noted that the dual theory to
Schwarzschild–AdS has been studied [42]. It would be pos-
sible to study the fidelity susceptibility of such a dual theory,
and thus analyze the behavior of fidelity susceptibility. As
this is the behavior obtained from a well defined field theory,
we expect it to be unitary. Now as the black hole thermody-
namics in extended phase space shows the same behavior, we
expect the black hole thermodynamics to also be a unitary

Fig. 3 This is a parametric plot for fidelity pressure and volume. This
graph shows a fidelity-based equation of state as an attempt to find
holographic version of thermodynamics

process. In the next section, we shall obtain the same calcu-
lation for a different deformation of AdS, with U (1) charged
black holes.

3 Reissner–Nordström–Anti-de Sitter black holes
(RNSAdS)

The aim of this section is to extend the previous section to a
charged AdS black hole background. We will obtain fidelity
susceptibility and holographic complexity and holographic
equations of state.
The metric for RNSAdS is given by Eq. (2.1) with the func-
tion f being

f = 1 + r2

l2
− εr3+

rl2
+ δr4+

r2l2
, (3.1)

where ε and δ are defined as

2Ml2

r3+
= ε,

Q2l2

r4+
= δ. (3.2)

Here, we also have |Q| < l/6 and correspondingly δ <

l2/(6r2+). Let us start to compute extremal surfaces using the
area functional. The area functional for a specific entangled

123
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Fig. 4 P–V diagram for the thermodynamic volume given by V =
4
3 πr3+ and pressure P = 3

8πl2
for SAdS black holes. Here from bottom

to top T = 1
2

√
3

π
(blue), T = 1

2

√
4

π
(red), T = 1

2

√
5

π
(green), T = 1

2

√
6

π
(pink)

Fig. 5 P–V diagram of fidelity versus pressure. We address various
temperatures of SAdS black holes. We indicate that fidelity does indeed

represent thermodynamic volume. Here from bottom to top T = 1
2

√
3

π

(blue), T = 1
2

√
4

π
(red), T = 1

2

√
5

π
(green), T = 1

2

√
6

π
(pink)

region of the boundary in RNSAdS is then given by Eq. (2.8)
where L(θ) now is

L(θ) = r sin θ

√√√√r2 + ( drdθ
)2

1 + r2

l2
− εr3+

rl2
+ δr4+

r2l2

. (3.3)

The Euler–Lagrange equation corresponding to the above
L(θ) is written in the appendix (see B.1). We can solve this
equation by expanding in series of θ . Doing this, up to sixth
order in θ we find (we set here the AdS radius l = 1)

Fig. 6 A P–V diagram between holographic complexity and pressure,
showing a totally different behavior than the thermodynamic P–V dia-
gram

r (θ) = ρ + 1

2

(−ρεr3+ + δr4+ + ρ4 + ρ2
)
θ2

ρ

+ 1

96ρ2

[(
9ρε2r6+ − 9εh7δ − 45ρ4ε r3+ − 29ρ2εr3+

+ 36ρ3δr4+ + 20ρδr4+ + 36ρ7 + 56ρ5 + 20ρ3)θ4
]

+O
(
θ6

)
. (3.4)

Now, by expanding the above expression in θ up to sixth
order, and then again expanding it in δ up to second order,
we find that the finite part of the entanglement entropy. This
part is the difference between the pure background and the
AdS deformation of the metric. Doing that, we find

�S = −1440ρ

4G
×

[
θ2

0

(
675 θ4

0 r
3+ε ρ4 + 540 θ2

0 r
3+ε ρ2

+375 θ4
0 r

7+ε δ + 495 θ4
0 r

3+ε ρ2 − 450 θ4
0 ρ7

−272 θ4
0 ρ3 − 720 θ4

0 ρ5 − 540 ρ5θ2
0

−480 ρ3θ2
0 − 420 θ4

0 ρ δ r4+ − 600 θ4
0 ρ3δ r4+

−720 ρ3 − 540 ρ θ2
0 δ r4+

)]−1
. (3.5)

The complete expressions for L(θ) and the integral related
with the area are displayed in Appendix B.1 (see Eqs. (B.5)
and (B.6)).
Let us now compute the holographic complexity and fidelity
susceptibility dual volumes for a RN black hole. These quan-
tities can be written as follows:

Vc = 2π

∫ θ0

0
sin θdθ

∫ r(θ)

r+

r2dr√
f

, (3.6)

VFid = 2π

∫ 2π

0
sin θdθ

∫ r∞

r+

r2dr√
f

. (3.7)
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Now, by expanding the integrand r2/
√

f in Taylor series up
to linear terms in ε and θ , we obtain

r2√
1 + r2

l2
− εr3+

rl2
+ δr4+

r2l2

= −1

4

lr3+
(
−2r2εl2 − 2r4ε + 2r+δrl2 + 2r+δr3 + 3r4+δε

)
r
(
l2 + r2

)5/2
.

(3.8)

Hence, the volume corresponding to the holographic com-
plexity of the RN black hole becomes (l = 1)

Vc = −
∫ θ0

0
sin θdθ

(
1

2

r3+εr2(
1 + r2

)3/2

+1

2

r3+ε(
1 + r2

)3/2 + 1

2

δr4+r√
1 + r2

+ 1

4

εr7+δ(
1 + r2

)3/2

+3

4

εr7+δ√
1 + r2

− 3

4
εr7+δ ln

[
2 + 2

√
1 + r2

r

]) ∣∣∣∣
r(θ)

r+
.

(3.9)

After computing this integral and expanding up to sixth
order in θ , we find Eq. (B.7). After some mathematical steps
(explained in Appendix B.1), by taking an asymptotic expan-
sion in ρ we find the following compacted expression:

Vc = − 1

48

(−6 θ2
0 ε br2+ − 6 θ2

0 ε b
)
θ2

0 r
3+π ρ

b3

− 1

48b3 ×
[

− 3 θ2
0 r

6+δ bε ln

(
1 + b

r+

)

+2 θ2
0 r

4+δ + 4 θ2
0 r

3+δ b − 48 r4+δ ε − 24 r4+δ

+2 θ2
0 ε r2+ + 4 θ2

0 r+δ b

+24 r+δ b − 3 θ2
0 r

4+δ bε ln

(
1 + b

r+

)

+2 θ2
0 r

2+δ + 4 θ2
0 r

4+δ ε

−24 ε + 2 θ2
0 ε − 24 ε r2+ + 24 r3+δ b − 36 r6+δ ε

+36 r4+δ ε b ln

(
1 + b

r+

)
− 24 r2+δ

+36 r6+δ ε b ln

(
1 + b

r+

)
+ 3 θ2

0 r
6+δ ε

]
θ2

0 r
3+π, (3.10)

where a = √
1 + ρ2 and b =

√
1 + r2+.

The mass, temperature and complexity pressure of the RN
black hole are defined as follows:

M = r+
2

(
1 + r2+

l2
+ Q2

r2+

)
, (3.11)

T = 1

4π

(
3r4+ + r2+ − Q2

r3+

)
, (3.12)

P = − ∂M

∂VFid
= −

∂M
∂r+

∂VFid
∂r+

. (3.13)

The explicit expression for the complexity pressure is very
long for the spacetime studied. The complete and expanded
expressions are displayed in Appendix B.1. Now, we need to
express the complexity pressure and volume in terms of the
temperature. In order to do that, we need to solve (3.12) for
r+. Thus, we need to solve the following equation:

r4+ − 4πT

3
r3+ + r2+

3
− Q2

3
= 0. (3.14)

The roots of this equation are given by

x1,2 = − b̃

4ã
− S ± 1

2

√
−4S2 − 2p + q

S
,

x3,4 = − b̃

4ã
+ S ± 1

2

√
−4S2 − 2p + q

S
, (3.15)

where p, q and S are defined by

p = 8ãc̃ − 3b̃2

8ã2 , q = b̃3 − 4ãb̃ + 8ã2d̃

8ã3 ,

S = 1

6

√
−6 + 3G + 3

�0

G
, G = 3

√
1

2
�1 + 1

2

√
�2

1 − 4�3
0,

�0 = c̃2 − 3b̃d̃ + 12ãẽ,

�1 = 2c̃3 − 9b̃c̃d̃ + 27b̃2ẽ + 27ãd̃2 − 72ãc̃ẽ, (3.16)

and �, determined by

�2
1 − 4�3

0 = −27�, (3.17)

is a determinant of the fourth order polynomial. If � > 0,
then all four roots of the equation are either real or complex.
From (3.14), we have ã = 1, b̃ = −(4πT )/3, c̃ = 1/3,
d̃ = 0 and ẽ = −Q2/3. Therefore, for our case the roots are
given by
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r1,2
+ = 1

3
π T − 1

6

√
−6 + 3 3

√
k + 3

1
9 − 4 Q2

3
√
k

±1

6

√√√√√√−3 3
√
k − 3

1
9 − 4 Q2

3
√
k

+ 12 π2T 2 + 54
(− 8

27 π3T 3 + 2
3π T

)
√

−6 + 3 3
√
k + 3 1/9−4 Q2

3√k

, (3.18)

r3,4
+ = 1

3
π T − 1

6

√
−6 + 3 3

√
k + 3

1
9 − 4 Q2

3
√
k

±1

6

√√√√√√−3 3
√
k − 3

1
9 − 4 Q2

3
√
k

+ 12 π2T 2 + 54
(− 8

27 π3T 3 + 2
3π T

)
√

−6 + 3 3
√
k + 3 1/9−4 Q2

3√k

, (3.19)

where

k = 1

27
− 8 π2T 2Q2 + 4 Q2

+1

2

√(
2

27
− 16 π2T 2Q2 + 8 Q2

)2

− 4

(
1

9
− 4 Q2

)3

.

(3.20)

Since k must be real, the inequality

(
2

27
− 16 π2T 2Q2 + 8 Q2

)2

− 4

(
1

9
− 4 Q2

)3

≥ 0

(3.21)

must hold. Equivalently, the above inequality can be
expressed as

T ≤ 1

4Qπ

√√√√−
(

2

(
1

9
− 4 Q2

)3/2

− 2

27
− 8 Q2

)
. (3.22)

Now, by taking series in Q up to order six in the above equa-
tion, we find

T ≤ 1

2

√
3

π
− 3

4

√
3Q2

π
− 81

16

√
3Q4

π
+ O

(
Q6

)
, (3.23)

or

T ≤ 0.27567−0.41350 Q2 −2.7912 Q4 +O
(
Q6

)
. (3.24)

From this expression (see Fig. 7), we note that the temper-
ature will be maximum when Q = 0. Let us now find the
horizon of the RNSAdS black hole. To do that, we need to
rewrite (3.1) using (3.2), which gives us

f (r) = 1 + r2

l2
− 2M

r
+ Q2

r2 . (3.25)

Now, the horizon condition f (r) = 0 can be written as

ξ4 + ξ2 − 2M

l
ξ +

(
Q

l

)2

= 0, (3.26)

where ξ = r/ l. Here our aim is to find the largest root
of the above equation which will correspond to the outer
horizon of the RN charged black hole. The largest root is
given by

Fig. 7 T as a function of Q. This graph is confined with the condition
|Q| < l

6
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Fig. 8 Location of the roots ξ1 for the RN black hole as a function of
Q, M

Fig. 9 Location of the roots ξ2 for the RN black hole as a function of
Q, M

ξ3 = 1

6

(
−6 + 3k + 3

1 + 12Q2

k

)1/2

+1

6

√√√√−12 − 3m − 3
(
1 + 12Q2

)
m

− 108M√
−6 + 3m + 3 1+12Q2

m

,

(3.27)

where m = (
1 + 54 M2 + 6√

3 M2 + 81 M4 − Q2 − 12 Q4 − 48 Q6
)1/3

. This root can

be seen in Figs. 8, 9 and 10.

Fig. 10 Location of the roots ξ3 for the RN black hole as functions of
Q, M . We show that ξ3 is the largest root

Fig. 11 P–V diagram for the thermodynamic volume V = 4
3 πr3+ and

pressure P = 3
8πl2

for RNSAdS black holes

From Figs. 11 and 12, we again observe that he P–V
behavior of fidelity susceptibility is similar to the P–V rela-
tion of thermodynamic volume and pressure. However, in
Fig. 13, we observe that the P–V relation obtained from holo-
graphic complexity is very different. The dual to a Reissner–
Nordström–AdS black hole has been studied [44,45], and it
is possible to obtain the fidelity susceptibility of this dual
theory. This should correspond to the fidelity susceptibility
calculated from the bulk. Now as the behavior of fidelity
susceptibility from the dual theory cannot break unitarity,
the behavior of fidelity susceptibility in the bulk cannot also
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Fig. 12 P–V diagrams for fidelity versus pressure. We address various
temperatures of RNSAdS black holes. We indicate that fidelity does
indeed represent thermodynamic volume

Fig. 13 A P–V diagram between holographic complexity and pres-
sure, showing a totally different behavior from the thermodynamic P–V
diagram

break unitarity. However, as the behavior of fidelity suscepti-
bility resembles the behavior of thermodynamics in extended
phase space, it can be argued that the thermodynamics of a
Reissner–Nordström–AdS black hole is represented by a uni-
tarity process. This can be used as a proposal to resolve the

black hole information paradox in a Reissner–Nordström–
AdS black hole.

4 SAdS for any dimensions

In this section we will extend our previous result to higher
dimensional AdS spacetimes when there is no electric charge.
The line-element of a Schwarzschild–AdS spacetime for any
dimension n can be written as follows:

ds2 = − f (r)dt2 + dr2

f (r)
+ r2d�(n−2), (4.1)

where d�n−2 denotes the metric of a Sn−2 sphere defined as

d�n−2 = dθ2
1 + 1

k
sin2(

√
kθ1)dθ2

2

+1

k

n−3∏
i=1

sin2(
√
kθi )dθn−2, (4.2)

where k = {−1, 0, 1} and the function f (r) is

f (r) = 1 − 2M

rn−3 + r2

l2
. (4.3)

Clearly, if we set n = 4 we recover the case studied in Sect. 2.
Now, at the horizon rH , the function f (r) = 0 so that the
mass of the black hole and its horizons satisfy the following
equation:

M = rn−3
H

(
1 + r2

H

l2

)
. (4.4)

Let us now use the same approach that we used before to
compute the area of the minimal surface γA. By taking a
time slice at t = 0 in the above line-element, we obtain

ds2|t=0 =
(( dr

dθ

)2

f (r)
+ r2

)
dx2 + r2(x)

n−2∑
a=2

(
dxa

)2

︸ ︷︷ ︸
n−3

(4.5)

where we have parametrized the surface as r = r(θ) and we
have assumed that the xa coordinate lies between −L/2 ≤
xa ≤ L/2 where L is the total entangled length of the sub-
system on boundary. Hence, the area of the minimal surface
can be expressed as follows:

Area ≡ A = Ln−3
∫

rn−3

√
r2 + r ′2

f (r)
dx . (4.6)

Note that in the above equation, the Lagrangian density
L = L(r, r ′) does not have the coordinate x , i.e. ∂L

∂x = 0, so
that this term can be written outside the integral. Explicitly,
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this Lagrangian has a conserved charge. If we think on x as
time coordinate in dynamical system approach, one needs to
satisfy the following constraint:

r ′ ∂L
∂r ′ − L = C ≡ const, (4.7)

and therefore we have

∂L

∂r ′ = rn−3
r ′
f (r)√

r2 + r ′2
f (r)

. (4.8)

The term in the integrand in Eq. (4.6) can be simplified as

Ln−3

⎧⎨
⎩rn−3

r ′2
f (r)√

r2 + r ′2
f (r)

− rn−3

√
r2 + r ′2

f (r)

⎫⎬
⎭

= Ln−3{rn−3}
⎛
⎝− r2√

r2 + r ′2
f (r)

⎞
⎠ = C. (4.9)

The appropriate boundary conditions are given at the turning
point r∗ as r ′|r=r∗ = 0 and using this boundary condition in
(4.7), we obtain

C = Ln−3(r∗)n−3(−r∗) = −Ln−3(r∗)n−2. (4.10)

Using this expression we are able to simplify the integrand
in Eq. (4.6) as follows:

A = 2Ln−3
∫ r∗

0
rn−3xr

( r

r∗
)n−2

dx

= 2x
Ln−3

r∗n−2

∫ r∗

0
r2n−4 dx

dr
dr

= 2x
Ln−3

r∗n−2

∫ r∗

0

(
r(x)

)2n−4
dx . (4.11)

The corresponding maximal volume is given by the following
expression:

Vmax =
∫

dr√
f (r)

rn−1
∫

dxLn−3

= Ln−3
∫ r∗

0

dr√
f (r)

rn−1x(r). (4.12)

Now we consider the case that n = 5. Five dimen-
sional black objects have widely been studied in the liter-
ature because they could have different topologies from the
case that n = 4 [48]. As in the previous sections, we are
able to define the fidelity pressure using Vmax. The complete
expression is written in Appendix C. From Figs. 13, 14, and
15, it may be noted that here again we observe that the behav-
ior of the fidelity susceptibility is similar to the thermody-
namics volume. However, the behavior of the holographic
complexity is very different from the behavior of both the

Fig. 14 P–V diagrams for the thermodynamic volume and pressure
for five dimensional SAdS black holes

Fig. 15 Five dimensional SAdS black holes showing the behavior of
fidelity susceptibility versus pressure. We address the temperatures of
this higher dimensional black hole. We indicate that the association of
fidelity susceptibility to thermodynamic volume is universal for any
number of dimensions

fidelity susceptibility and the thermodynamic volume. This
indicates that the behavior is not a property of the specific
metric but seems to be a universal behavior of fidelity sus-
ceptibility, holographic complexity, and thermodynamic vol-
ume. The dual to a higher dimensional Schwarzschild–AdS
black hole has also been constructed [46,47]. It is possible
to analyze the behavior of fidelity susceptibility of this dual
theory, and it this would be described by a unitarity pro-
cess. As the behavior of a fidelity susceptibility of a higher
dimensional Schwarzschild–AdS black hole is similar to the
behavior of its thermodynamics in extended phase space,
the thermodynamics of a Schwarzschild–AdS black hole is
expected to be described by a unitarity process. Furthermore,
as this property seems to be of universal and not a property
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of a specific metric, this can be used as a proposal for the
black hole information paradox.

5 Conclusions

In this paper, we studied the connection between the informa-
tion dual to different volumes in the bulk of a deformed AdS
spacetime and the thermodynamic volume in extended phase
space. In the extended phase space, the cosmological constant
can be related to the thermodynamic pressure, and a conju-
gate thermodynamic volume for this pressure can be defined.
Furthermore, the information dual to different volumes in
the bulk AdS space was measured by the fidelity suscepti-
bility and the holographic complexity. As these quantities
diverged, we used a regularized definition for these quan-
tities. We regularized them by subtracting the contribution
from the background AdS spacetime from the deformation
of the AdS spacetime. It was possible to use this regular-
ized fidelity susceptibility and regularized holographic com-
plexity to define the pressure for these quantities. Thus, we
analyzed the P–V equation for these quantities and com-
pared it with the P–V form for the thermodynamic volume
and thermodynamic pressure in the extended phase space.
It was observed that the regularized fidelity susceptibility
showed the same behavior as the thermodynamic volume.
The regularized holographic complexity had a very different
behavior. We observed this phenomenon for different black
holes. This indicates that this is a universal behavior of the
fidelity susceptibility, holographic complexity, and thermo-
dynamic volume, and not a property of the specific geometry.
It may be noted that fidelity susceptibility of the bulk has a
well defined boundary dual. Thus, as the fidelity susceptibil-
ity and the thermodynamic volume of the black holes show
similar behaviors, it is expected that they represent the same
physical quantity. Now it is well known that the evolution
of the fidelity susceptibility can be understood in the dual
picture from the evolution of a conformal field theory. As the
evolution of the conformal field theory is a unitary process,
it is expected that the evolution of the fidelity susceptibility
in the bulk will also be a unitary process. Now as the fidelity
susceptibility can be related to the black hole thermodynam-
ics, it can be argued that the black hole thermodynamics in
the extended phase space would be dual to a unitary process.
This might help to resolve black hole information paradox.

It would be interesting to generalize this analysis to time-
dependent geometries. The time-dependent holographic
complexity for such time-dependent geometries has been
recently studied [49]. It is possible to study the fidelity sus-
ceptibility of such time-dependent geometries. It would be
interesting to analyze the behavior of P–V diagrams for
the holographic complexity and the fidelity susceptibility for
such time-dependent geometries. It would also be interest-
ing to analyze the thermodynamics of black holes in such a
time-dependent geometry, and compare the thermodynam-
ics of the black hole in extended phase space to fidelity sus-
ceptibility and holographic complexity. It is expected that
again the fidelity susceptibility and the thermodynamics in
extended phase space will have similar behaviors, and the
holographic complexity will show a very different behavior.

The black hole thermodynamics has been studied in mas-
sive gravity [50]. It would be interesting to obtain the fidelity
susceptibility and the holographic complexity for black hole
geometries in massive gravity. It is again mentioned that these
will diverge, but they can be regularized by subtracting the
contribution of background AdS spacetime from the defor-
mation of the AdS spacetime. It would be interesting to ana-
lyze the behavior of the P–V diagrams for the fidelity suscep-
tibility and the holographic complexity in massive gravity.
This can be compared to the thermodynamics in extended
phase space. It is important to understand the behavior of
such P–V diagrams for massive gravity, to understand if a
similar behavior of fidelity susceptibility and thermodynam-
ics in extended phase space is restricted to Einstein gravity, if
it also exists in massive gravity. The complexity was exten-
sively studied for many interesting physical systems like in
one-dimensional holographic superconductors [51], charged
black holes [52,53], black holes in f (R) gravity [54], sin-
gular surfaces [55], AdS black holes [56,57] and massive
gravity [58]. It would be interesting to extend our work to
these systems.
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Appendix A: SAdS

The expressions of volume and pressure are

V = 1

2

⎛
⎜⎜⎝−

(
2
3π T − 1

3

√
4 π2T 2 − 3

)3

√
1 + ρ2

+
(

2
3π T − 1

3

√
4 π2T 2 − 3

)3

√(
2
3π T − 1

3

√
4 π2T 2 − 3

)2 + 1

⎞
⎟⎟⎠ θ2

0 , (A.1)

P = −
a

(
1 + 3

(
2
3πT − 1

3

√
4π2T 2 − 3

)2
)((

2
3πT − 1

3

√
4π2T 2 − 3

)2 + 1

)3/2

(
2
3πT − 1

3

√
4π2T 2 − 3

)4

× 1⎛
⎝−3

√(
2
3πT − 1

3

√
4π2T 2 − 3

)2 + 1 − 3

√(
2
3 πT− 1

3

√
4π2T 2−3

)2+1(
2
3 πT− 1

3

√
4π2T 2−3

)2 + 2a + 3a(
2
3 πT− 1

3

√
4π2T 2−3

)2

⎞
⎠ θ2

0

, (A.2)

where a = √
1 + ρ2.

Appendix B: RNSAdS

E–L equation:

d2r

dθ2 = 1

−2r2 sin (θ) l2εr3+ + 2r sin (θ) l2δr4+ + 2r5 sin (θ) l2 + 2r3 sin (θ) l4

×[4 sin (θ) r8 + 8 sin (θ) l2r6 − 8r5 sin (θ) εr3+ − 2r5 cos (θ)

(
dr

dθ

)
l2 + 4r4 sin (θ) l4

+8r4 sin (θ)

(
dr

dθ

)2

l2 + 8r4 sin (θ) δr4+ − 2r3 cos (θ)

(
dr

dθ

)
l4 − 8r3 sin (θ) l2εh3

+2r2 cos (θ)

(
dr

dθ

)
l2εr3+ + 4r2 sin (θ) ε2r6+ + 6r2 sin (θ)

(
dr

dθ

)2

l4 + 8r2 sin (θ) l2δr4+

−5r sin (θ)

(
dr

dθ

)2

l2εr3+ − 2r (θ) cos (θ)

(
dr

dθ

)
l2δr4+ − 8r sin (θ) εr7+δ

−2r cos (θ)

(
dr

dθ

)3

l4 + 4 sin (θ) δ2r8+ + 4 sin (θ)

(
dr

dθ

)2

l2δr4+]. (B.1)

The functional L(θ) with the function r(θ) given by (3.4) is

L = − 3

32ρ2

×
[
−4θ4ρ7 − 56

9
θ2

(
6

7
+ θ2

)
ρ5 + 5θ4ρ4εr3+ +

((
−4δr4+ − 20

9

)
θ4 − 16

3
θ2 − 32

3

)
ρ3

+29

9
r3+

(
θ2 + 48

29

)
θ2ερ2 − r4+θ2

((
ε2r2+ + 20

9
δ

)
θ2 + 16

3
δ

)
ρ + θ4εr7+δ

]

× sin (θ)

√√√√√(ρ + c − d)2 + (2c − 4d)2(
1 + (ρ + c − d)2 − εr3+

ρ+c−d + δr4+
(ρ+c−d)2

)
θ2

(B.2)
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where

c = 1

2

(−ρ ε r3+ + δ r4+ + ρ4 + ρ2
)
θ2

ρ
, (B.3)

d = 1

96ρ2

[( − 9ρε2r6+ + 9εr7+δ + 45ρ4εr3+ + 29ρ2εr3+

−36ρ3δr4+ − 20ρδr4+ − 36ρ7 − 56ρ5 − 20ρ3)θ4
]
(B.4)

Hence, L will be

L = 1

240

θ
(
240l4ρ4 + 320l4ρ4θ2 + 450ρ8θ4 + 360θ2ρ6l2 + 272l4ρ4θ4 + 720θ4l2ρ6

)
l4ρ2

+ 1

240

θ
(−360θ2ρ3l2r3+ − 675ρ5θ4r3+ − 495θ4ρ3l2r3+

)
ε

l4ρ2

+
(

1

240

θ
(
420r4+θ4ρ2l2 + 360r4+θ2ρ2l2 + 600θ4ρ4r4+

)
l4ρ2 − 25

16

θ5r7+ε

l4ρ

)
δ. (B.5)

By integrating we find

∫ θ0

0
Ldθ = − 1

1440

θ2
0

(
675θ4

0 ρ4r3+ + 540ρ2θ2
0 r

3+ + 375θ4
0 r

7+δ + 495θ4
0 ρ2r3+

)
ε

ρ

+ 1

1440

θ2
0

(
450θ4

0 ρ7 + 272θ4
0 ρ3l4 + 720θ4

0 ρ5 + 540ρ5θ2
0 + 480ρ3θ2

0 + 420θ4
0 ρδr4+

)
ρ

+ 1

1440

θ2
0

(+600θ4
0 ρ3δr4+ + 720ρ3 + 540ρθ2

0 δr4+
)

ρ
. (B.6)

Solving the definite integral (3.9), and leaving only the terms
in θ up to order six yields

V1 = r3+
4a3b3 ×

[
2aερ2 + 2ar2+δ + 2ar4+δ + 2ar2+εε

− 2bερ2 − 2br2+ + 2aε + 4ar4+δερ2 + 3aεr6+δρ2

+ 2ar2+ερ2 + 2ah2δρ2 + 2aρ2δr4+ + 4ar4+δε

+ 3aεr6+δ − 3br4+δερ2 − 3br6+δερ2 − 2br+δρ

− 2 br3+δρ − 2br+δρ3 − 2br3+δρ3 − 4br4+δε − 4br6+δε

− 2br2+ερ2 + 3br4+δεaρ2 ln

(
1 + a

ρ

)

− 3br4+δεa ln

(
1 + b

r+

)
ρ2 + 3br6+δεaρ2 ln

(
1 + a

ρ

)

−3br6+δεa ln

(
1 + b

r+

)
ρ2 − 2bε

+3bh6δεa ln

(
1 + a

ρ

)
+ 3br4+δεa ln

(
1 + a

ρ

)

−3br4+δεa ln

(
1 + b

r+

)
− 3br6+δεa ln

(
1 + b

h

)]

− 1

8a5ρ2
×

[
−εr4+δρ2 + 2ρ3ε2r3+

+2r+δρ3 + 4r+δρ5 + 2r5+δ2ρ − 2ερ4

−4ερ6 − r4+δρ4ε − 3ε2r7+δρ − 2ερ8 + 2r5+δ2ρ3

+2r+δρ7 + 3εr8+δ2 + 2ρ5ε2r3+
]
r3+θ2

+ 1

384

r3+θ4

ρ4 (1 + a)2 a8
×

[(
−320hδρ7 + 424εr4+δρ10

+108ερ2δ2r8+ − 606ε2r7+δρ5 − 798ε2r7+δρ7

+516εr8+δ2ρ4 + 244r4+δρ4ε + 708εr8+δ2ρ6

+396ε3r10+ δρ4 + 108ρ6ε3r6+ − 36ρ8ε3r6+

−80r+δρ13 − 320r+δρ11 − 212ρ5ε2r3+
+288r9+δ3ρ5 − 80r5+δ2ρ3 − 480r+δρ9

−96r5+δ2ρ5 − 176ρ11ε2r3+ − 624ρ7ε2r3+
+84ρ4ε3r6+ − 600ρ9ε2r3+ + 378ε3r10+ δρ6

−810ε2r11+ δ2ρ5 + 300εr8+δ2ρ8 + 560ερ8

+432r12+ δ3ερ4 + 912εr4+δρ8 + 792εr4+δρ6

−900ε2r11+ δ2ρ3 + 504r12+ δ3ερ2 − 138ρ3ε2r7+δ

−90ε2r11+ δ2ρ + 18ε3r10+ δρ2 + 352r5+δ2ρ9

+192r5+δ2ρ7 − 80r+δρ5 + 72r9+δ3ρ7a − 30ρ10ε3r6+a
+6ρ13ε2r3+a + 72r5+δ2ρ11a

+216r9+δ3ρ5a − 80r5+δ2ρ3a − 56r5+δ2ρ5a − 360r+δρ9a

+72r12+ δ3εa − 40r+δρ13a

−200r+δρ11a − 212ρ5ε2r3+a − 518ρ7ε2r3+a
−394ρ9ε2r3+a + 84ρ4ε3r6+a + 66ρ6ε3r6+a
−48ρ8ε3r6+a − 82ρ11ε2r3+a − 80r+δρ5a

−280r+δρ7a + 200r5+δ2ρ7a + 248r5+δ2ρ9a

+144r9+δ3ρ3a + 144r9+δ3ρ3 + 60εr4+δρ12
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+128ερ6 + 24ερ16a + 536ερ12a + 184ερ14a

+128ερ6a + 496ερ8a + 744ερ10a

+72r1+2δ3ε + 144r9+δ3ρ7 − 60 ρ10ε3r6+ + 12ρ13ε2r3+
+144r5+δ2ρ11 + 242εr4+δρ10a

+108ερ2δ2r8+a − 537ε2r7+δρ5a − 564ε2r7+δρ7a

+462εr8+δ2ρ4a

+504εr8+δ2ρ6a + 387ε3r10+ δρ4a

+468r12+ δ3ερ2a − 138ρ3ε2r7+δa

+670εr4+δρ6a + 244εr4+δρ4a

−855ε2r11+ δ2ρ3a + 638εr4+δρ8a

+18ε3r10+ δ aρ2 − 90ε2r11+ δ2aρ − 165ε2r7+δρ9a

+150εr8+δ2ρ8a + 189ε3r10+ δρ6a + 216r12+ δ3ερ4a

−405ε2r11+ δ2ρ5a + 30εr4+δρ12a + 320 ε ρ14

+960ερ10 + 48ερ16 + 800ερ12 − 330ε2r7+δρ9
)
r3+θ4

]
.

(B.7)

Now, by taking series in θ (up to order four), and leaving
only linear terms in ε and δ, we find

V4 = 1

24a3b3

×
(
−3 θ2r6+δ ε ba ln (1 + a) ρ2 − 3 θ2r4+

× δ ε ba ln (1 + a) ρ2 + 3 θ2r6+δ ε ba ln (1 + b) ρ2

+3 θ2r6+δ ε ba ln (ρ) ρ2

−3 θ2r4+δ ε ba ln (r+) ρ2 + 3 θ2r4+δ ε ba ln (1 + b) ρ2

−3 θ2r6+δ ε ba ln (r+) ρ2 + 3 θ2r4+δ ε ba ln (ρ) ρ2

+12 εa − 12 ε b − 18 r4+δ ε baρ2 ln (1 + b)

+18 r4+δ ε baρ2 ln (r+)

−18 r6+δ ε baρ2 ln (1 + b) + 18 r6+δ ε baρ2 ln (r+)

+18 r6+δ ε baρ2 ln (1 + a) − 3 θ2r6+δ ε ba ln (1 + a)

−3 θ2r4+δ ε ba ln (1 + a)

+3 θ2r6+δ ε ba ln (1 + b)

+3 θ2r6+δ ε ba ln (ρ) − 3 θ2r4+δ ε ba ln (r+)

+3 θ2r4+δ ε ba ln (1 + b) − 3 θ2r6+δ ε ba ln (r+)

+3 θ2r4+δ ε ba ln (ρ) − 18 r6+δ ε baρ2 ln (ρ)

+18 r4+δ ε baρ2 ln (1 + a) − 18 r4+δ ε baρ2 ln (ρ)

+18 r4+δ ε ba ln (r+) − 18 r6+δ ε ba ln (1 + b)

+18 r6+δ ε ba ln (r+) + 18 r4+δ ε ba ln (1 + a)

−18 r4+δ ε ba ln (ρ) + 18 r6+δ ε ba ln (1 + a)

−18 r6+δ ε ba ln (ρ) + 2 θ2r3+δ bρ3 + 4 θ2r6+δ ε b

+3 θ2r6+δ ε bρ2 + 4 θ2r4+δ ε b + 3 θ2r4+δ ε bρ2

−4 θ2r4+δ ε a − 4 θ2r4+δ ε aρ2 − 3 θ2r6+δ ε a

−3 θ2r6+δ ε aρ2 − 2 θ2ε ar2+ρ2 + 2 θ2ε br2+ρ2

−2 θ2r2+δ aρ2 − 2 θ2r4+δ aρ2

+2 θ2r+δ bρ + 2 θ2r3+δ bρ − 18 r4+δ ε ba ln (1 + b)

+6 θ2ρ4ε b + 6 θ2ρ2ε b − 6 θ2r3+δ bρ − 6 θ2r+δ bρ3

−6 θ2r3+δ bρ3 + 6 θ2ρ2ε br2+ + 6 θ2ρ4ε br2+
+3 θ2r4+δ bε + 3 θ2r6+δ bε − 6 θ2r+δ bρ

+2 θ2r+δ bρ3 + 2 θ2ε bρ2 + 2 θ2ε br2+ − 2 θ2ε ar2+
−2 θ2ε aρ2 − 2 θ2r4+δ a − 2 θ2r2+δ a − 18 r4+δ ε bρ2

−18 r6+δ ε bρ2 + 24 r4+δ ε aρ2 + 18 r6+δ ε aρ2

−2 θ2ε a + 2 θ2ε b + 12 ε ar2+ρ2 − 12 ε br2+ρ2

+12 r2+δ aρ2 + 12 r4+δ aρ2 − 12 r+δ bρ − 12 r3+δ bρ

−12 r+δ bρ3 − 12 r3+δ bρ3 − 24 r6+δ ε b − 24 r4+δ ε b

+24 r4+δ ε a + 18 r6+δ ε a − 12 ε bρ2

−12 ε br2+ + 12 ε ar2+
+12 ε aρ2 + 12 r4+δ a + 12 r2+δ a

)
r3+θ, (B.8)

where we have defined V4 = V3 sin(θ). Using these expan-
sions, the complexity volume becomes

Vc = 2π

∫ θ0

0
V 4dθ

= 1

48a3b3 × (6 θ2
0 ρ4ε b + 6 θ2

0 ρ2ε b

+3 θ2
0 r

4+δ ε baρ2 ln (1 + b)

+3 θ2
0 r

4+δ ε baρ2 ln (ρ)

+3 θ2
0 r

6+δ ε baρ2 ln (ρ) − 3 θ2
0 r

4+δ ε baρ2 ln (1 + a)

+3 θ2
0 r

6+δ ε baρ2 ln (1 + b)

−3 θ2
0 r

6+δ ε baρ2 ln (r+) − 3 θ2
0 r

4+δ ε baρ2 ln (r+)

−3 θ2
0 r

6+δ ε baρ2 ln (1 + a)

+6 θ2
0 ρ2ε br2+ + 6 θ2

0 ρ4ε br2+ + 3 θ2
0 r

4+δ bε

+3 θ2
0 r

6+δ bε − 6 θ2
0 r+δ bρ − 6 θ2

0 r
3+δ bρ

−6 θ2
0 r+δ bρ3 − 6 θ2

0 r
3+δ bρ3

−3 θ2
0 r

6+δ ε ba ln (1 + a) + 3 θ2
0 r

4+δ ε ba ln (1 + b)

−3 θ2
0 r

4+δ ε ba ln (r+)

+36 r4+δ ε baρ2 ln (r+) − 36 r6+δ ε baρ2 ln (1 + b)

+36 r6+δ ε baρ2 ln (r+)

+36 r6+δ ε baρ2 ln (1 + a) − 36 r6+δ ε baρ2 ln (ρ)

+36 r4+δ ε baρ2 ln (1 + a)

−36 r4+δ ε baρ2 ln (ρ) − 36 r4+δ ε baρ2 ln (1 + b)

+24 ε ar2+ρ2 − 24 ε br2+ρ2

+24 r2+δ aρ2 + 24 r4+δ aρ2 − 24 r+δ bρ

−24 r3+δ bρ − 24 r+δ bρ3 − 24 r3+δ bρ3

−48 r6+δ ε b

−48 r4+δ ε b + 48 r4+δ ε a + 36 r6+δ ε a

−2 θ2
0 ε a − 2 θ2

0 ε aρ2 + 2 θ2
0 ε b

+2 θ2
0 ε bρ2 − 2 θ2

0 ε ar2+ρ2 + 2 θ2
0 ε br2+ρ2

123
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−2 θ2
0 r

2+δ aρ2 − 2 θ2
0 r

4+δ aρ2

+2 θ2
0 r+δ bρ + 2 θ2

0 r
3+δ bρ + 4 θ2

0 r
6+δ ε b + 4 θ2

0 r
4+δ ε b

−4 θ2
0 r

4+δ ε a − 3 θ2
0 h

6δ ε a

−36 r4+δ ε ba ln (1 + b)

+36 r4+δ ε ba ln (r+) − 36 r6+δ ε ba ln (1 + b)

+36 r6+δ ε ba ln (r+) + 36 r4+δ ε ba ln (1 + a)

−36 r4+δ ε ba ln (ρ)

+36 r6+δ ε ba ln (1 + a) − 36 r6+δ ε ba ln (ρ) − 24 ε bρ2

−24 ε br2+ + 24 ε ar2+
+24 ε aρ2 + 24 r4+δ a + 24 r2+δ a + 24 ε a − 24 ε b

−36 r4+δ ε bρ2 − 36 r6+δ ε bρ2

+48 r4+δ ε aρ2 + 36 r6+δ ε aρ2 + 2 θ2
0 r+δ bρ3

+2 θ2
0 r

3+δ bρ3 + 2 θ2
0 ε br2+ − 2 θ2

0 ε ar2+
−2 θ2

0 r
4+δ a − 2 θ2

0 r
2+δ a + 3 θ2

0 r
4+δ ε bρ2

+3 θ2
0 r

6+δ ε bρ2 − 4 θ2
0 r

4+δ ε aρ2

−3 θ2
0 r

6+δ ε aρ2 − 3 θ2
0 r

6+δ ε ba ln (r+)

+3 θ2
0 r

6+δ ε ba ln (ρ)

+3 θ2
0 r

4+δ ε ba ln (ρ)

−3 θ2
0 r

4+δ ε ba ln (1 + a)

+3 θ2
0 r

6+δ ε ba ln (1 + b) θ2
0 r

3+π). (B.9)

Appendix C: SAdS for any dimension

Pf id = − ∂M

∂VFid
= −

∂M
∂r+

∂VFid
∂r+

= 24
(
−r2+ − 3 r4+ + Q2

)
b5 (1 + b)

×
(
r4+θ2

0 π
(

252 r8+δ ε + 372 δ r4+ε − 8 r6+θ2
0 δ − 48 r5+θ2

0 δ

+18 θ2
0 ε ρ − 16 θ2

0 r+δ − 48 θ2
0 r

3+δ

−16 r7+θ2
0 δ + 18 θ2

0 ε ρ r6+ + 216 δ r4+
−6 θ2

0 ε + 120 ε r2+ + 120 r2+δ + 96 r6+δ − 96 r+δ + 48 r4+ε

−288 r5+δ − 96 δ r7+ − 288 δ r3+ − 21 r8+bθ2
0 δ ε

+21 r10+ θ2
0 δ ε ln

(
1 + b

r+

)

+63 r6+θ2
0 δ ε ln

(
1 + b

r+

)
+ 63 r8+θ2

0 δ ε ln

(
1 + b

r+

)

+21 r4+θ2
0 δ ε ln

(
1 + b

r+

)

−504 r6+δ ε b ln

(
1 + b

r+

)
− 252 δ r4+ε b ln

(
1 + b

r+

)

+18 r4+θ2
0 ε ρ b − 252 r8+δ ε b ln

(
1 + b

r+

)
+36 θ2

0 ε r2+ρ b − 31 r4+θ2
0 δ ε b − 49 r6+θ2

0 δ ε b

−6 θ2
0 ε b + 120 ε br2+ − 96 r+δ b − 192 δ r3+b

−96 r5+bδ + 48 r4+ε b + 96 r6+δ b

+216 δ r4+b + 120 r2+δ b − 756 r6+δ ε ln

(
1 + b

r+

)

−252 δ r4+ε ln

(
1 + b

r+

)
− 756 r8+δ ε ln

(
1 + b

r+

)

−252 r10+ δ ε ln

(
1 + b

r+

)
− 16 θ2

0 hδ b

−32 θ2
0 r

3+δ b − 10 θ2
0 ε br2+ + 252 r8+δ ε b

−8 r6+θ2
0 δ b − 4 r4+θ2

0 ε b − 18 r4+θ2
0 δ b − 16 r5+bθ2

0 δ

−10 θ2
0 r

2+δ b + 18 θ2
0 ε bρ + 588 r6+δ ε b + 372 δ r4+ε b

+72 ε b + 72 ε + 54 r4+θ2
0 ε ρ + 54 θ2

0 ε r2+ρ

−49 r6+θ2
0 δ ε − 21 r8+θ2

0 δ ε

−31 r4+θ2
0 δ ε − 10 θ2

0 ε r2+ − 18 r4+θ2
0 δ − 4 r4+θ2

0 ε − 10 θ2
0 r

2+δ

+588 r6+δ ε + 21 r4+θ2
0 δ ε b ln

(
1 + b

r+

)

+42 r6+θ2
0 δ ε b ln

(
1 + b

r+

)

+21 r8+bθ2
0 δ ε ln

(
1 + b

r+

)))−1

. (C.1)

Because we are interested in small deformations of the AdS
background, taking series in ε and θ , and leaving only linear
terms, we have

P = 12
(
−r2+ − 3 r4+ + Q2

)
b5 (1 + b)

(
72 + 120 r2+

+48 r4+ + 120 br2+ + 48 br4+ − 10 θ2
0 r

2+
+18 θ2

0 r
4+ρ b + 54 θ2

0 ρ r2+ + 54 θ2
0 r

4+ρ

+36 θ2
0 ρ r2+b − 6 θ2

0 − 10 θ2
0 br

2+ − 4 θ2
0 r

4+b + 18 θ2
0 ρ r6+

−6 θ2
0 b + 72 b + 18 θ2

0 bρ + 18 θ2
0 ρ − 4 θ2

0 r
4+
)

ε

×(r5+θ2
0 π (48 + 48 b + 9 θ2

0 h
3 + 5 θ2

0 h + 24 r4+θ2
0

+4 r5+θ2
0 + 8 θ2

0 r
6+ + 24 θ2

0 r
2+ + 8 θ2

0

−48 r5+ + 48 r6+ + 144 r4+ − 108 r3+ + 144 r2+ − 60 r+
+96 br2+ + 48 br4+ + 8 θ2

0 b − 108 r3+b
−48 r5+b − 60 r+b + 16 θ2

0 br
2+ + 8 r4+θ2

0 b + 5 θ2
0 r+b

+9 θ2
0 r

3+b + 4 r5+bθ2
0 )(−48 θ2

0 r
3+ − 16 θ2

0 r+
−18 r4+θ2

0 − 48 r5+θ2
0

−8 θ2
0 r

6+ − 10 θ2
0 r

2+ − 16 r7+θ2
0

−288 r5+ − 96 r7+ + 96 r6+ + 216 r4+
−288 r3+ + 120 r2+ − 96 r+ + 120 br2+ + 216 br4+ − 192 r3+b
−96 r5+b − 96 r+b + 96 br6+
−10 θ2

0 br
2+ − 18 r4+θ2

0 b − 16 θ2
0 r+b

−32 θ2
0 r

3+b − 16 r5+bθ2
0 − 8 θ2

0 r
6+b)δ2)−1

+24
(−r2+ − 3 r4+ + Q2

)
b5 (1 + b)

δ

×(r4+θ2
0 π (−48 θ2

0 r
3+ − 16 θ2

0 r+
−18 r4+θ2

0 − 48 r5+θ2
0 − 8 θ2

0 r
6+ − 10 θ2

0 r
2+ − 16 r7+θ2

0

−288 r5+ − 96 r7+ + 96 r6+ + 216 r4+ − 288 r3+ + 120 r2+ − 96 r+
+120 br2+ + 216 br4+ − 192 r3+b
−96 r5+b − 96 r+b + 96 br6+ − 10 θ2

0 br
2+

−18 r4+θ2
0 b − 16 θ2

0 r+b − 32 θ2
0 r

3+b − 16 r5+bθ2
0

−8 θ2
0 r

6+b))−1

+12
(
−r2+ − 3 r4+ + Q2

)
b5 (1 + b) (−31 r4+θ2

0 − 49 θ2
0 r

6+

−21 r8+θ2
0 + 588 r6+ + 252 r8+

123
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+372 r4+ − 252 r4+ ln

(
1 + b

r+

)

+252 r8+b − 756 r6+ ln

(
1 + b

r+

)
− 756 r8+ ln

(
1 + b

r+

)

−252 r1+0 ln

(
1 + b

r+

)
+ 21 r8+bθ2

0 ln

(
1 + b

r+

)

+21 θ2
0 r

4+b ln

(
1 + b

r+

)
+ 42 θ2

0 r
6+b ln

(
1 + b

r+

)

+63 r6+θ2
0 ln

(
1 + b

r+

)

+63 r8+θ2
0 ln

(
1 + b

r+

)
− 252 r4+b ln

(
1 + b

r+

)

−252 r8+b ln

(
1 + b

r+

)

+21 r1+0θ2
0 ln

(
1 + b

r+

)
− 504 r6+b ln

(
1 + b

r+

)

+21 r4+θ2
0 ln

(
1 + b

r+

)
− 21 r8+bθ2

0 − 31 r4+θ2
0 b

−49 θ2
0 r

6+b + 588 br6+ + 372 br4+)ε

×
(
r5+θ2

0 π
(

48 + 9 θ2
0 r

3+ + 5 θ2
0 r+

+24 r4+θ2
0 + 4 r5+θ2

0 + 8 θ2
0 r

6+ + 24 θ2
0 r

2+ + 48 r6+ + 144 r4+
−108 r3+ + 8 θ2

0 − 48 r5+ − 60 r+ + 144 r2+
+16 θ2

0 br
2+ + 8 r4+θ2

0 b + 9 θ2
0 r

3+b
+5 θ2

0 r+b + 4 r5+bθ2
0 − 108 r3+b − 48 r5+b − 60 r+b + 48 b

+96 br2+ + 48 br4+ + 8 θ2
0 b

) (
−48 θ2

0 r
3+ − 16 θ2

0 r+

−18 r4+θ2
0 − 48 r5+θ2

0 − 8 θ2
0 r

6+
−10 θ2

0 r
2+ − 16 r7+θ2

0 + 96 r6+ + 216 r4+ − 288 r3+ − 288 r5+
−96 r7+ − 96 r+ + 120 r2+ − 10 θ2

0 br
2+

−18 r4+θ2
0 b − 32 θ2

0 r
3+b − 16 θ2

0 r+b
−16 r5+bθ2

0 − 8 θ2
0 r

6+b
−192 r3+b − 96 r5+b − 96 r+b

+96 br6+ + 120 br2+ + 216 br4+
))−1

. (C.2)

The above expression is the equation for the fidelity suscep-
tibility pressure and volume in our model.
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