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Abstract This article presents cosmological models that
arise in a subclass of f (R, T ) = f (R) + f (T ) grav-
ity models, with different f (R) functions and fixed T -
dependence. That is, the gravitational lagrangian is consid-
ered as f (R, T ) = f (R) + λT , with constant λ. Here R
and T represent the Ricci scalar and trace of the stress-
energy tensor, respectively. The modified gravitational field
equations are obtained through the metric formalism for the
Friedmann–Lemaître–Robertson–Walker metric with signa-

ture (+,−,−,−). We work with f (R) = R + αR2 − μ4

R ,
f (R) = R + k ln(γ R) and f (R) = R + me[−nR], with
α,μ, k, γ,m and n all free parameters, which lead to three
different cosmological models for our Universe. For the
choice of λ = 0, this reduces to widely discussed f (R) grav-
ity models. This manuscript clearly describes the effects of
adding the trace of the energy-momentum tensor in the f (R)

lagrangian. The exact solution of the modified field equations
are obtained under the hybrid expansion law. Also we present
the Om diagnostic analysis for the discussed models.

1 Introduction

The widely accepted theory of gravitation is the General
Relativity (GR) theory, as it passed many experimental
and observational tests. For example, recently, gravitational
waves within the framework of GR were detected by LIGO
and Virgo detectors [1–5].

Despite many attractive features including this great suc-
cess, there are still several theoretical challenges, which moti-
vate us to search for some modifications in GR. For example,

a e-mail: pksahoo@hyderabad.bits-pilani.ac.in
b e-mail: moraes.phrs@gmail.com
c e-mail: sahooparbati1990@gmail.com
d e-mail: binaybc@gmail.com

GR does not provide us sufficient ideas to resolve some short-
comings like initial singularity, flatness issues, fine-tuning,
cosmological constant and cosmic coincidence problems [6–
9].

To overcome these problems, several modified theories are
introduced in the literature. The importance of these theories
for studying the behavior of the accelerating universe was
investigated [10–13], in which modifications were made in
the gravitational part of Einstein–Hilbert action. On the other
hand, the matter part modification of Einstein–Hilbert action
yields dynamical models such as quintessence, k-essence,
Chaplygin gas and holographic dark energy models [14–22].
These modified models can indeed well address the current
accelerated expansion of the universe discovered by various
observational aspects[23–28].

One of the simplest modified theory is the f (R) gravity,
which is considered as most suitable for constructing cos-
mological models with differently ordered curvature invari-
ants as a function of the Ricci scalar R. The unification of
early-time inflation and late-time acceleration can be stud-
ied through f (R) gravity models [29,30]. In the literature,
it has been found that the higher order curvature terms in
f (R) gravity model play a vital role to avoid cosmological
singularities [31–33].

The weak field theory for stellar-like objects in the f (R)

theory of gravity was discussed in Refs. [34–36]. Christian et
al. in Ref. [37] have shown that one can then find the behavior
of ψ(r) and φ(r) outside the star in the metric

ds2 = −(1 − 2ψ(r))dt2 + (1 − 2φ(r))dr2

+r2(dθ2 + sin2 θdϕ2), (1)

under the assumption that f (R) is an analytic function at
a constant curvature for a pressureless fluid, with ψ(r) and
φ(r) being the post Newtonian metric potentials. This anal-
ysis has led to the value of the post-Newtonian parameter
γ = 1

2 , whereas from the solar system observations it is
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known that γ = 1. This results contradicts most of the f (R)-
type gravity models proposed in the literature so far. For
example, models with f (R) = R(1+δ), with δ �= 1 conflict
with the solar system test.

The f (R) = R − β
Rn -type models also suffer in passing

the solar system tests [38] and from gravitational instabilities
[39]. Also these theories are incapable of producing stan-
dard matter dominated era followed by acceleration expan-
sion [40,41]. The f (R) = R + α

Rm − β
Rn -type models have

difficulties in satisfying the set of constraints coming from
early and late-time acceleration, big bang nucleosynthesis
and fifth-force experiments [42].

Due to all these issues corresponding to most of the
f (R) models, we will consider here some f (R, T ) mod-
els, for which T is the trace of the energy-momentum tensor.
Recently, the f (R, T ) gravity was developed by Harko et al.
[43] as a generalization of f (R) gravity. The theory contains
an arbitrary function of the Ricci scalar R along with the
trace of energy-momentum tensor T .

Thereafter, a wide literature was developed in the con-
text of f (R, T ) gravity, such as [44–53]. But, there are still
so many cosmological questions to investigate in f (R, T )

gravity. In herein model we choose the following form for
the f (R, T ) gravity function: f (R, T ) = f (R) + λT , with
constant λ. That is, we fix the T -dependence of the theory
on its simplest case while investigate different cases for the
R-dependence of it. We shall investigate if the T -term is
capable of evading the shortcomings one faces in f (R) cos-
mological models. The accelerated expansion of the universe
can indeed be described through modified gravity, but some-
times it faces a number of instabilities [38,39] which yields
further modifications in cosmological models.

Nojiri and Odinstov discussed a modified gravity with
terms proportional to ln(R) or R−n(ln R)m , which grow at
small curvature [54]. The presence of ln(R) or R−n(ln R)m

terms in f (R) gravity may be responsible for the accel-
eration of the universe. Again, Nojiri and Odinstov dis-
cussed the f (R) gravity cosmology by considering f (R) =
R+γ R−n

(
ln R

μ2

)m
[10]. These forms for the f (R) function

were also used in [10,54,55] to study different aspects of the
theory. In [56], the authors have shown that all these mod-
els exhibit current accelerating phase of the universe and the
duration of the accelerating phase depends on the coupling
constants of the gravitational action.

Moreover, Yousaf et al. have explored the realistic con-
figuration of anisotropic structure of compact stars in f (R)

gravity with three different forms for f (R) [57].
In the present article we will consider three different

choices for the f (R) function as given in Ref. [56]. In
the first model we will consider the mixed form for f (R),
namely a positive and a negative power of the curvature
R, which is normally assumed to study the inflationary

scenario of the early universe and the accelerating phase
of the present universe. Such a functional form reads (A)

f (R, T ) = R + αR2 − μ4

R + λT , where the constants α

and μ have dimension of R−1 (i.e., (t ime)2) and R
1
2 (i.e.,

(t ime)−1) [61,62]. The models (B) and (C) will be fol-
lowed as f (R, T ) = R + k ln(γ R) + λT and f (R, T ) =
R +me[−nR] + λT where k, γ,m and n are constants. Note
that a form that allow a coupling between R and T , such as
f (R, T ) = R + λT , was already investigated in [63].

2 Basic formalism of the f (R, T ) gravity

The modified Einstein–Hilbert action for the f (R, T ) gravity
is given by [43]

S =
∫ √−g

[
1

16πG
f (R, T ) + Lm

]
d4x, (2)

where Lm is the usual matter Lagrangian density of matter,
f (R, T ) is an arbitrary function of R and T , the trace of the
energy-momentum tensor Ti j of matter, and g is the deter-
minant of the metric tensor gi j .

The energy-momentum tensor Ti j from the Lagrangian
matter is defined as

Ti j = gi j Lm − ∂Lm

∂gi j
. (3)

By varying action (2) with respect to the metric compo-
nent, the f (R, T ) gravity field equations are obtained as

fR(R, T )Ri j − 1

2
f (R, T )gi j + (gi j� − ∇i∇ j ) fR(R, T )

= 8πTi j − fT (R, T )Ti j − fT (R, T )
i j , (4)

where


i j = −2Ti j + gi j Lm − 2glm
∂2Lm

∂gi j∂glm
. (5)

Here, fR(R, T ) = ∂ f (R,T )
∂R , fT (R, T ) = ∂ f (R,T )

∂T , � ≡
∇ i∇i , while ∇i is the covariant derivative.

With the choice of Lm = −p, with p being the pressure,
and assuming units such that G = 1, the term 
i j is given
by 
i j = −2Ti j − pgi j and Eq. (4) reduces to

Gi j = T ef f
i j (6)

where

T ef f
i j = 1

fR(R, T )

[
(8π + fT (R, T ))Ti j + p fT (R, T )gi j

+ f (R, T ) − R fR(R, T )

2
gi j
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−(gi j� − ∇i∇ j ) fR(R, T )
]
. (7)

3 Field equations and Solutions

In the present article, we will concentrate on a spatially
flat Friedmann–Lemaître–Robertson–Walker universe with
a time-dependent scale factor a(t) such that the metric reads

ds2 = dt2 − a2
[
dr2 + r2(dθ2 + sin2 θdφ2)

]
. (8)

The energy-momentum tensor for a perfect fluid, which
will be assumed here, is written in the form

Ti j = (ρ + p)uiu j − pgi j , (9)

where p and ρ are, respectively, the pressure and energy
density for the perfect fluid. Note that the trace of (9) reads
T = ρ − 3p.

The general f (R, T ) gravity field equations for f (R, T )

= f (R) + λT and the above metric is given by

3H2 = 1

fR

[(
8π + 3λ

2

)
ρ − λ

2
p

]

+ 1

fR

[
f (R) − R fR

2
− 3H Ṙ fRR

]
, (10)

2Ḣ + 3H2 = 1

fR

[
−

(
8π + 3λ

2

)
p + λ

2
ρ

]

− 1

fR

[
− f (R) − R fR

2
+ Ṙ2 fRRR

+2H Ṙ fRR + R̈ fRR

]
, (11)

with dots representing derivatives with respect to time t and
such that the Ricci scalar R for metric (8) is

R = −6(Ḣ + 2H2). (12)

From Eqs. (10) and (11), the pressure p, the energy density
ρ and the equation of state (EoS) parameter ω = p/ρ can be
analytically expressed as

ρ = fR
2

[
−2Ḣ

8π + λ
+ 2Ḣ + 6H2

8π + 2λ

]
+

[
H Ṙ − R̈

8π + λ
+ 5H Ṙ + R̈

8π + 2λ

]

× fRR
2

+
[

Ṙ2

8π + 2λ
− Ṙ2

8π + λ

]
fRRR

2

− f (R) − R fR
2(8π + 2λ)

, (13)

p = fR
2

[
−2Ḣ

8π + λ
− 2Ḣ + 6H2

8π + 2λ

]
+

[
H Ṙ − R̈

8π + λ
− 5H Ṙ + R̈

8π + 2λ

]

× fRR
2

+
[

−Ṙ2

8π + 2λ
− Ṙ2

8π + λ

]
fRRR

2

+ f (R) − R fR
2(8π + 2λ)

, (14)

ω =
fR
2

[ −2Ḣ
8π+λ

− 2Ḣ+6H2

8π+2λ

]
+

[
H Ṙ−R̈
8π+λ

− 5H Ṙ+R̈
8π+2λ

]
fRR
2 +

[ −Ṙ2

8π+2λ
− Ṙ2

8π+λ

]
fRRR

2 + f (R)−R fR
2(8π+2λ)

fR
2

[ −2Ḣ
8π+λ

+ 2Ḣ+6H2

8π+2λ

]
+

[
H Ṙ−R̈
8π+λ

+ 5H Ṙ+R̈
8π+2λ

]
fRR
2 +

[
Ṙ2

8π+2λ
− Ṙ2

8π+λ

]
fRRR

2 − f (R)−R fR
2(8π+2λ)

. (15)

In order to derive exact solutions we will consider the
hybrid expansion law for the scale factor as following [64]

a = tηeβt , (16)

where η and β are positive constants. Such a scale factor
yields the deceleration parameter and Hubble parameter as

q = −1 + η

(βt + η)2 , (17)

H = η + βt

t
. (18)

From the relation a(t) = 1
1+z , with z being the redshift

and the present scale factor a0 = 1, we obtain the following
time-redshift relation:

t = η

β
W

[
β

(
1

z + 1

)1/η

η

]
, (19)

whereW denotes the Lambert function (also known as “prod-
uct logarithm”).

Plotting q as a redshift function has the advantage of
checking the reliability of the model, through the redshift
value in which the transition from the deceleration stage to
the present acceleration era of the universe occurs. We will
denote the transition redshift by ztr . From Fig. 1, the transi-
tion occurs at ztr = 0.5662, 0.6691, 0.7574, corresponding
to a fixed value for η, namely η = 0.6, and various values
for β, as β = 0.5, 0.55, 0.6. The transition values for our
model are in accordance with the observational data, as one
can check in [58–60].

3.1 The f (R, T ) = R + αR2 − μ4

R + λT Model

In this case, by using Eq. (16) for f (R, T ) = R + αR2 −
μ4

R + λT in Eqs. (13)–(15), the analytical forms for p, ρ and
ω are expressed as follows (Figs. 2, 3, 4, 5):
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Fig. 1 Variation of deceleration parameter q against redshift z

Fig. 2 Variation of energy density against time with α = 0.2, μ = −1,
λ = −8

ρ = 1

2t2

[
2η

λ + 8π
+ 3(η + βt)2 − η

λ + 4π

]
×

{
μ4t4

36
[
η − 2(η + βt)2

]2 − 12α
[
2(η + βt)2 − η

]

t2 + 1

}

+3αG11(t)

t4 + μ4t2G21(t)

36
[
η − 2(η + βt)2

]4 , (20)

p = 1

2t2

[
2η

λ + 8π
− 3(η + βt)2 − η

λ + 4π

]
×

{
μ4t4

36
[
η − 2(η + βt)2

]2 − 12α
[
2(η + βt)2 − η

]

t2 + 1

}

− 36αF11(t)

(λ + 4π)(λ + 8π)t4 + μ4t2F21(t)

36
[
η − 2(η + βt)2

]2 , (21)

ω =
1

2t2

[
2η

λ+8π
− 3(η+βt)2−η

λ+4π

] {
μ4t4

36[η−2(η+βt)2]2 − 12α
(
2(η+βt)2−η

)
t2

+ 1

}
− 36αF11(t)

(λ+4π)(λ+8π)t4
+ μ4t2F21(t)

36[η−2(η+βt)2]2

1
2t2

[
2η

λ+8π
+ 3(η+βt)2−η

λ+4π

] {
μ4t4

36[η−2(η+βt)2]2 − 12α[2(η+βt)2−η]
t2

+ 1

}
+ 3αG11(t)

t4
+ μ4t2G21(t)

36[η−2(η+βt)2]4

, (22)

Fig. 3 Variation of energy density against z with α = 0.2, μ = −1,
λ = −8

Fig. 4 Variation of pressure against time with α = 0.2, μ = −1,
λ = −8

where
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Fig. 5 Variation of pressure against z with α = 0.2, μ = −1, λ = −8

G11(t) = 4η
[
2η2 + 5η + 4βηt + βt (2βt + 3) − 3

]

λ + 8π
+

3
[
η − 2(η + βt)2

]2 + 10η(η + βt)(2η + 2βt − 1)

− 2η(6η + 4βt − 3)

λ + 4π
, (23)

G21(t) = 2η
[
η(η − 3)(1 − 2η)2 + 4β4t4 + 2β3(8η + 3)t3 + 2β2[2η(6η − 1) − 3]t2 + βη(2η − 1)(8η − 9)t

]

λ + 8π

+
6η2(2η + 2βt − 1)2 − 3

[
2(η + βt)2 − η

]3 + ηt (2η + 2βt − 1)
[
2(η + βt)2 − η

]
+ 5η(η + βt)(2η + 2βt − 1)

[
2(η + βt)2 − η

]

λ + 4π
, (24)

F11(t) = η
[
η4(λ + 25.1327) + 8.37758η3 + η2(−3.25λ

−60.7375) + η(1.5λ + 25.1327)]

+β4(1.λ + 25.1327)t4 + β3η(4λ + 100.531)t3

+β2ηt2[η(6λ + 150.796) + 8.37758]
+βηt

[
η2(4λ + 100.531) + 16.7552η − 2.5λ

−50.2655] , (25)

F21(t) = 8ηβ4t4 + 4ηβ3(8η + 3)t3 + 4ηβ2
(
12η2 − 2η − 3

)
t2 + 2η2β

(
16η2 − 26η + 9

)
t + 2η(η2 − 3η)(1 − 2η)2

(λ + 8π)
[
η(2η − 1) + 2β2t2 + 4βηt

]2

−
6η2(2η + 2βt − 1)2 − 3

[
2(η + βt)2 − η

]3 + ηt (2η + 2βt − 1)
[
2(η + βt)2 − η

]
+ 5η(η + βt)(2η + 2βt − 1)

[
2(η + βt)2 − η

]

(λ + 4π)
[
η − 2(η + βt)2

]2 . (26)

3.2 The f (R, T ) = R + k ln(γ R) + λT model

By using f (R, T ) = R + k ln(γ R) + λT with Eq. (16) in
Eqs. (13)–(15), the analytical forms for p, ρ and ω are written
as (Figs. 6, 7)

Fig. 6 Variation of EoS parameter against time with α = 0.2, μ = −1,
λ = −8

ρ = −0.0833333

2(η + βt)2 − η

[
k − 12(η + βt)2 − 6η

t2

]

×
[

2η

λ + 8π
+ 3(η + βt)2 − η

λ + 4π

]

+ ηkG12(t)

12(λ + 4π)(λ + 8π)
[
2(η + βt)2 − η

]3

− k

4λ + 16π

{
log

(
−6γ

[
2(η + βt)2 − η

]

t2

)
− 1

}
,

(27)

p = −0.0833333t2

2(η + βt)2 − η

[
k − 6

[
2(η + βt)2 − η

]

t2

]

×
[

2η

(λ + 8π)t2 − 6(η + βt)2 − 2η

(2λ + 8π)t2

]
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Fig. 7 Variation of EoS parameter against z with α = 0.2, μ = −1,
λ = −8

+ ηkF12(t)

12(λ + 4π)(λ + 8π)
[
2(η + βt)2 − η

]3

+ k

4λ + 16π

{
log

(
−6γ

[
2(η + βt)2 − η

]

t2

)
− 1

}
,

(28)

ω =

−0.0833333t2

2(η+βt)2−η

[
k − 6

[
2(η+βt)2−η

]
t2

] [
2η

(λ+8π)t2
− 6(η+βt)2−2η

(2λ+8π)t2

]
+ ηkF12(t)

12(λ+4π)(λ+8π)[2(η+βt)2−η]3

+ k
4λ+16π

{
log

(
− 6γ

[
2(η+βt)2−η

]
t2

)
− 1

}

−0.0833333
2(η+βt)2−η

[
k − 12(η+βt)2−6η

t2

] [
2η

λ+8π
+ 3(η+βt)2−η

λ+4π

]
+ ηkG12(t)

12(λ+4π)(λ+8π)[2(η+βt)2−η]3

− k
4λ+16π

{
log

(
− 6γ

[
2(η+βt)2−η

]
t2

)
− 1

}
, (29)

where

G12(t) = λ

[
−η(7η − 1)(1 − 2η)2 − 28β4t4 + 2β3

×(3 − 56η)t3 + 2β2
(
−84η2 + 22η + 3

)
t2

−7βη(2η − 1)(8η − 1)t

]

−48π(η + βt)(2η + 2βt − 1)

×
[
2(η + βt)2 − η

]
, (30)

F12(t) = 4β4t4(3λ + 32π) + 2β3t3[3λ(8η − 5)

+32π(8η − 3)] + 2β2t2{6ηλ(6η − 5) + 9λ

+16π [2η(12η − 7) + 3]} + βη(2η − 1)

×(8η − 1)(3λ + 32π)t + (1 − 2η)2[3ηλ(η + 1)

+16ηπ(2η + 1)]. (31)

Fig. 8 Variation of energy density against time with k = 1, γ = −2,
λ = 35

3.3 The f (R, T ) = R + me−nR + λT model

By taking f (R, T ) = R+me−nR +λT and Eq. (16) in Eqs.
(13)–(15), the analytical forms for p, ρ and ω are expressed
as (Figs. 8, 9, 10, 11, 12, 13, 14, 15)

ρ =
⎧
⎨
⎩1 − mne

6n
[
2(η+βt)2−η

]

t2

⎫
⎬
⎭

[
η

t2(λ + 8π)
− 3(η + βt)2 − η

(2λ + 8π)t2

]

+3ηmn2e
6n

[
2(η+βt)2−η

]

t2 G13(t)

t6
− me

6n
[
2(η+βt)2−η

]

t2

4(λ + 4π)

×
⎧⎨
⎩1 −

6n
[
2(η + βt)2 − η

]

t2

⎫⎬
⎭ , (32)

p =
⎧
⎨
⎩1 − mne

6n
[
2(η+βt)2−η

]

t2

⎫
⎬
⎭

[
η

(λ + 8π)t2
− 3(η + βt)2 − η

(2λ + 8π)t2

]

+3ηmn2e
6n

[
2(η+βt)2−η

]

t2 F13(t)

t6
+ me

6n
[
2(η+βt)2−η

]

t2

4(λ + 4π)

×
⎧⎨
⎩1 −

6n
[
2(η + βt)2 − η

]

t2

⎫⎬
⎭ , (33)
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Fig. 9 Variation of energy density against z with k = 1, γ = −2,
λ = 35

Fig. 10 Variation of pressure against time with k = 1, γ = −2, λ = 35

ω =

{
1 − mne

6n
[
2(η+βt)2−η

]

t2

} [
η

(λ+8π)t2
− 3(η+βt)2−η

(2λ+8π)t2

]
+ 3ηmn2e

6n
[
2(η+βt)2−η

]

t2 F13(t)
t6

+ me

6n
[
2(η+βt)2−η

]

t2

4(λ+4π)

{
1 − 6n

[
2(η+βt)2−η

]
t2

}

{
1 − mne

6n[2(η+βt)2−η]
t2

}[
η

t2(λ+8π)
− 3(η+βt)2−η

(2λ+8π)t2

]
+ 3ηmn2e

6n[2(η+βt)2−η]
t2 G13(t)
t6

− me
6n[2(η+βt)2−η]

t2

4(λ+4π)

{
1 − 6n[2(η+βt)2−η]

t2

} ,

(34)

where

G13(t) = 12ηn(2η + 2βt − 1)2 − 5t2(η + βt)(2η + 2βt − 1) + t2(6η + 4βt − 3)

λ + 4π

+2
[
12ηn(2η + 2βt − 1)2 + t2(η + βt)(2η + 2βt − 1) + t2(6η + 4βt − 3)

]

λ + 8π
, (35)

F13(t) = 12ηn(2η + 2βt − 1)2 − 5t2(η + βt)(2η + 2βt − 1) + t2(6η + 4βt − 3)

λ + 4π

+2
[
12ηn(2η + 2βt − 1)2 + t2(η + βt)(2η + 2βt − 1) + t2(6η + 4βt − 3)

]

λ + 8π
. (36)

Fig. 11 Variation of pressure against z with k = 1, γ = −2, λ = 35

Fig. 12 Variation of EoS Parameter against time with k = 1, γ = −2,
λ = 35

123



736 Page 8 of 10 Eur. Phys. J. C (2018) 78 :736

Fig. 13 Variation of EoS Parameter against z with k = 1, γ = −2,
λ = 35

4 Om diagnostic analysis

In the literature, state finder parameters and Om diagnostic
analysis are used to differentiate dark energy models [65].
In order to understand the cosmological models, the Hub-
ble, deceleration and EoS parameters play an important role.
It is known from the literature that dark energy models pro-
duce a positive Hubble parameter and a negative deceleration
parameter. So H and q cannot be used to differentiate effec-
tively between different dark energy models. Thus Om diag-
nostic analysis plays a crucial role for such analysis. The Om
diagnosis has also been applied to Galileons models [66,67].
The Om(z) parameter for spatially flat universe is given by
[65,68]

Om(z) =
[
H(z)
H0

]2 − 1

(1 + z)3 − 1
. (37)

Here, H0 is the present value of the Hubble parameter. One
can observe that the Om(z) parameter involves first deriva-
tives of the scale factor, so Om diagnosis is a simpler diag-
nostic than the state finder diagnosis. The positive, negative
and zero values of Om(z) represent the phantom (ω < −1),
quintessence (ω > −1) and �CDM dark energy models,
respectively [69] (Figs. 16, 17, 18, 19).

In our discussed models, the Om(z) parameter takes the
form

Om(z) =
(β2 − H2

0 )W 2

[
β
(

1
z+1

)1/η

η

]
+ 2β2W

[
β
(

1
z+1

)1/η

η

]
+ β2

W 2

[
β
(

1
z+1

)1/η

η

]
H2

0 z(3 + 3z + z2)

,

(38)

and its behaviour can be seen in the Fig. 20.

Fig. 14 Variation of energy density against time with m = 0.2, n =
0.05, λ = 0.5

Fig. 15 Variation of energy density against z with m = 0.2, n = 0.05,
λ = 0.5

Fig. 16 Variation of pressure against time with m = 0.2, n = 0.05,
λ = 0.5

5 Concluding remarks

In the presented manuscript we have discussed Friedmann–
Lemaître–Robertson–Walker cosmological models in the
context of the f (R, T ) gravity.
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Fig. 17 Variation of pressure against z with m = 0.2, n = 0.05,
λ = 0.5

Fig. 18 Variation of EoS parameter against time with m = 0.2, n =
0.05, λ = 0.5

Fig. 19 Variation of EoS parameter against z with m = 0.2, n = 0.05,
λ = 0.5

Our cosmological solutions show a very healthy behaviour
and yield great cosmological models. Particularly, let us
argue about the EoS parameter evolution. Figures 6, 12 and
18 show a remarkable feature. They present for the evolution
of ω a scenario which is consistent with three different stages

Fig. 20 Variation of Om(z) against z with H0 = 67.77 km s−1M pc−1

of the universe evolution, namely radiation, matter and dark
energy eras, as we argue below.

One can see that for small values of time, ω ∼ 1/3, which
is the EoS parameter value for the primordial stage of the
universe in which its dynamics was dominated by radiation
[70], whose high temperature did not allow, for a period of
time, the formation of the first atoms.

As the universe cool down, it allows the formation of the
atoms and a posteriori the formation of stars, galaxies, clus-
ters of galaxies etc. These objects, namely matter or pressure-
less matter, dominate the dynamics of the universe as a fluid
with EoS ω = 0 [70]. From Figs. 6, 12 and 18, we can see
that after describing a radiation-dominated period, ω indeed
passes through 0, indicating the matter-dominated phase of
the universe expansion.

Finally, for high values of time, ω → −1, in accordance
with recent observational data on fluctuations of temperature
in the cosmic microwave radiation [71]. In standard model,
the cosmological constant is the “mechanism” responsible
for taking the universe to a “dark energy”-dominated phase,
in which a negative pressure fluid accelerates its expansion.
In the present approach, rather, the extra terms in f (R) and
f (T ) are the responsible for such an important feature, which
remarkably evades the cosmological constant problem [72–
74].

It is important to highlight that the description of three dif-
ferent stages of the evolution of the universe in a continuous
and analytical form is not only a novelty in f (R, T ) gravity
but also in the broad literature. Some of the few examples of
complete cosmological models already present in the liter-
ature are those obtained from two scalar field quintessence
models [75] and decaying vacuum models [76].

By comparing our results with present literature we are led
to conclude that our particular forms for f (R) together with
the linear term on T are responsible for the remarkable fea-
tures of the present model. On this regard, one can note that
f (R, T ) functional forms which are linear on both R and T -
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dependences generally do not yield complete cosmological
scenarios as those here obtained [77–79].

Moreover, In Fig. 20, we plotted Om(z) for the redshift
range 0 ≤ z ≤ 2. We observe that when the redshift z is
increasing within the interval 0 ≤ z ≤ 2, the Om(z) is
monotonically increasing, which also indicates the acceler-
ated expansion of the universe.
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