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Abstract A recent paper on visualizing the sensitivity
of hadronic experiments to nucleon structure (Wang et al.
in arXiv:1803.02777, 2018) introduces the tool PDFSense
which defines measures to allow the user to judge the sen-
sitivity of PDF fits to a given experiment. The sensitivity
is characterized by high-dimensional data residuals that are
visualized in a 3-d subspace of the 10 first principal compo-
nents or using non-linear embeddings. We show how a tour, a
dynamic visualisation of high dimensional data, can extend
this tool beyond 3-d relationships. This approach enables
resolving structure orthogonal to the 2-d viewing plane used
so far, and hence finer tuned assessment of the sensitivity.

1 Introduction

Many problems in physics can be broadly characterized as
a description of a large number of observations with models
that contain multiple parameters. It is common practice to
perform a global fit to the observations to arrive at the set of
parameter values that best fits the data. To understand how
well this fit describes the observations, a series of one or
two-dimensional projections of confidence level regions are
usually provided.

It is desirable to visually inspect the results of such fits to
gain insight into their structure. One possibility is to directly
compare the predictions of different parameter sets in the
vicinity of the best fit. A simple algorithm to organise this
idea that results in a manageable number of such parameter
sets can be constructed using singular value decomposition
(SVD). One first decides the confidence level at which to
make the desired comparison and quantifies it with the cor-
responding �χ2 for the appropriate number of parameters
being fit, n. The region in parameter space within the desired
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confidence level is approximately an n-dimensional ellip-
soid, and SVD provides an ideal set of 2×n points on which
to evaluate the predictions of the model for visual inspection.
These points are given by the intersections of the ellipsoid
with its principal axes and clearly provide a minimal sam-
ple of parameter space that covers all relevant directions at a
desired confidence level.

A tool for the direct visualisation of the high dimensional
model predictions thus constructed has existed in the statis-
tics literature for many years, but has not been applied to high
energy physics problems recently.1 It is called a tour, and is
a dynamic visualization of low-dimensional projections of
high-dimensional spaces. The most recent incarnation of the
tool is available in the R [3] package, called tourr [4].
The goal of this paper is to introduce the use of a tour as
a visualisation tool for sensitivity studies of parton distri-
bution functions (PDFs) building on the formalism that has
been developed over the years by the CTEQ collaboration. It
is beyond the scope of this article to provide a detailed anal-
ysis of the PDF uncertainties. The choice of this example has
two motivations: the PDF fits embody the generic problem
of multidimensional fits to large numbers of observables that
are common in high energy physics; and Ref. [1] has recently
provided the parameter sets for this problem in an initial effort
to visualize the PDF fits. Our starting point will be the PDF-
Sense [1] results but our study differs in an important way:
PDFSense utilizes the Tensorflow Embedding Projector [5],
limiting visualisation to three of the first ten principal com-
ponents, that is, a 3-d subspace, whereas the tour allows us
to explore the full space. As we will see here, this allows
additional insights into the fits.

Our paper is organised as follows. In Sect. 2 we first
describe the problem as formulated in Ref. [1] and we dis-
cuss a toy example to illustrate the concepts involved. We
then introduce the tour algorithm and its implementation in

1 The precursor [2] of this tool was originally developed to tackle prob-
lems in high energy physics.
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Sect. 3. Finally we discuss the results obtained by apply-
ing tour to the PDFSense dataset in Sect. 4 and present our
conclusions in Sect. 5.

2 PDF fits and residuals

The analysis of collider physics results relies on theoretical
calculations of cross-sections and distributions. Factoriza-
tion theorems allow us to bypass non-perturbative physics
that cannot be calculated from first principles and to describe
instead, the initial state of a reaction in terms of parton distri-
bution functions or PDFs. These consist of simple functional
forms describing the probability density for finding a given
quark or gluon in the proton with a given momentum frac-
tion x , at a given momentum transfer scale Q, in the lowest
order approximation. The PDFs used today have been con-
structed by fitting high energy physics data collected over
many years by multiple experiments and are produced by
large collaborations. As such, they constitute an ideal exam-
ple of a multidimensional parameter fit to a large data set to
study with a tour.

For our study we will make use of the framework for treat-
ing uncertainties of the PDF predictions as has been defined
in [6,7]. The best fit PDF, defined by the set of n parame-
ters a0

i , is obtained by finding the global minimum of a χ2

function. To study uncertainties in the fit one considers small
variations of the parameters around the minimum using a
quadratic approximation for the χ2 function written in terms
of the Hessian matrix of second derivatives at the minimum,
H. The eigenvectors of this matrix provide the principal axes
of the confidence level ellipsoids around the global mini-
mum, and one defines a displacement along these directions
to find the n dimensional set of points ai which provide 2n
PDF sets that differ from the best fit by a desired confidence
level.

Reference [1] has introduced the package PDFSense to
study the sensitivity of different experiments to different
aspects of the PDFs. An ingredient of that study are the so-
called shifted residuals which are related to the experimental
error contribution to the χ2 by [8]

χ2
E (�a) =

Nd∑

i=1

r2
i (�a) +

Nλ∑

α=1

λ̄2
α(�a) (1)

where the λ̄α are the best-fit nuisance parameters. The shifted
residuals ri (�a) are calculated as the difference between the
theoretical prediction Ti (�a) and the shifted central data value
Di,sh(�a), normalised by the total uncorrelated uncertainty si ,

ri (�a) = 1

si
(Ti (�a) − Di,sh(�a)). (2)

Note that Di,sh(�a) is the observed central value shifted by a
function of the optimal nuisance parameters λ̄α and therefore
depends on the point in parameter space considered. The so-
called response of a residual to an experimental result i is
then defined as [1]

δ±
i,l ≡ (ri (�a±

l ) − ri (�a0))/〈r0〉E (3)

with 〈r0〉E the root-mean squared residuals characterizing
the quality of fit to experiment E , following from Eq. 1

〈r0〉E ≈
√

χ2
E (�a0)

Nd
. (4)

This residual response parameterizes the change in residuals
with variations along the independent directions �a±

l .2

Large values of δ±
i,l therefore indicate considerable varia-

tion in the theory prediction values within the selected win-
dow of allowed probability variation along the considered
direction. We thus consider a 2N dimensional vector

�δi = {δ+
i,1, δ

−
i,1, . . . , δ

+
i,N , δ−

i,N }. (5)

for each data point (i.e. experimental result). Concretely, here
we consider a 56 dimensional parameter space in which we
want to compare and group the experimental results. These
responses �δi are calculated and provided by Ref. [1] and they
constitute the starting point of our study.

2.1 Simple illustrative example

The procedure described so far has been used for many years,
but it is complicated. For newcomers to the field, we illustrate
it here using a simple example drawn from two early data sets
for the gluon parton distribution function extracted from two
types of ψ production experiments [9]. This example will
allow us to illustrate all the concepts involved. In Fig. 1 we
show these two data sets, labelling the points and their error
bars p(x)±�p(x), for 15 and 16 values of x (in red and blue)
respectively. The points are fit to the two-parameter function

g(a, b, x) = 1

2
(1 + b)(1 − x)bxa, (6)

similar to but simpler than the forms used today. The next
step is to minimise the χ2-function defined by

χ2(a, b) =
∑

xi

(
g(a, b, xi ) − p(xi )

�p(xi )

)2

. (7)

2 Note that the shifted central data value enters the residuals, thus while
the observed central value cancels in the definition of δ±

i,l , differences
in the shift arising from differences of the optimized nuisance parame-
ters at �a±

l are encoded in the results together with difference in theory
predictions.
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Fig. 1 For illustrative
purposes, two data sets of gluon
parton distribution function, in
the form p(x) ± �p(x) for 15
and 16 values of x , respectively
(shown in red and blue). The left
(right) panel shows the low
(high) x region respectively

Fig. 2 Difference between the χ2-function (black), and quadratic
approximation (orange). Their intersection with a 95% confidence level
plane is shown on the right panel. The intersections of the principal axes

with the ellipse (that occurs in the quadratic approximation) are shown
as the black dots in the right panel. The numbers label the eigenvector
of H corresponding to that direction

The parameters a0, b0 that result in the global minimum
χ2(a, b)min define the best fit to the data. They are shown
as the cross in the right panel of Fig. 2, and produce the solid
black curve shown in Fig. 1. At the same time one adopts a
quadratic approximation to the χ2 function in the vicinity of
its minimum

χ2(a, b) ≈ χ2(a0, b0) + 1

2

(
a − a0 b − b0

)

(
∂χ2(a,b)

∂a2
∂χ2(a,b)

∂a∂b
∂χ2(a,b)

∂a∂b
∂χ2(a,b)

∂b2

)

0

(
a − a0

b − b0

)
, (8)

where the matrix of second derivatives evaluated at the global
minimum is the well-known Hessian. This approximation
seems unnecessary for the simple example we are discussing
now but is used for the current global fits offering comple-
mentary features to exact numerical methods [10]. To quan-
tify the error in the fit one then constructs the region in a, b
parameter space corresponding to a given confidence level.
For our example we take χ2(a, b) − χ2(a0, b0) ≤ 5.99
which corresponds to a 95% confidence level in the esti-
mation of two parameters. The intersection of the plane
χ2(a, b) = χ2(a0, b0)+5.99 (green) with the χ2(a, b) func-
tion (shown in black) and its quadratic approximation (in
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Fig. 3 The δ parameter space of the simple illustrative example: δ+
i

form the axes and color indicates the respective value of x . Note that
only δ+

i is shown because for this problem the δ−
i directions contain

the same information. Labelled points are the same as those labelled in
Fig. 1, and illustrate key features of the fits

orange) is shown in the left panel of Fig. 2. The right panel in
the same figure shows the ellipsoid (two-dimensional in this
case) defined by this intersection for the quadratic approxi-
mation (in orange) and the deformed ellipsoid in black for
the exact χ2(a, b) function. The difference between the two
is small indicating that the quadratic approximation is quite
adequate for this confidence level. The eigenvectors of the
Hessian matrix provide the directions of the principal axes
of the ellipsoid and are shown in black in the right panel of
Fig. 2: the dashed (dotted) lines correspond to the direction
associated with the largest (smallest) eigenvalue. The inter-
sections of these axes with the ellipse, shown as black dots,
provide a set of fits to the data that can be compared with the
best fit and used as a means of quantifying the uncertainty in
the fitting procedure. These are also shown in Fig. 1.

The set of responses, δ±
i,l , in this example is shown in

Fig. 3. From inspecting the limiting behaviour of Eq. 6 it is
clear that the description at low x is dependent mainly on
a while large values of x are mostly sensitive to b. This is
reflected in the uncertainty curves in Fig. 1, and also when
looking at the δs. For this simple example the main directions
identified by the Hessian method are in fact well aligned with
the original directions in parameter space. Considering the
values of δ we find that δ±

1 , which corresponds mainly to a
variation of a, takes large values for bins with low values of
x , while δ±

2 takes large values for bins with large values of
x . We conclude that the parameter dependence is captured
by the δs as expected. Going to more complex descriptions
and fits, as we do in the following, this correspondence is
no longer clear from the description and the δ values may be
used to infer the parameter dependence of a given prediction.

In Figs. 1 and 3 we have labelled the following four points:

1. point with highest value in δ1, found at low x and with
small error bar

2. point with parametrized highest value in δ2, also has the
highest value of x

3. point that is not well described by the fits, but has small
values of δ

4. point with intermediate value of x and small errors result
in larger values in both δ directions.

These observations illustrate that large values of δ correlate
with points with errors that are comparable to or smaller
than the uncertainty in the fit as parametrized by the Hessian
method. At the same time, points that are not well described
by the fits do not necessarily result in large δs.

3 Data visualisation

When looking for structure in high dimensional parameter
spaces we rely on tools for dimensional reduction and visu-
alisation. Due to the importance of this task, many methods
have been developed. Here we give a brief overview of the
tools used in the following work. Note that in the follow-
ing we adopt a broader definition of the word “data” gener-
ally used in statistics, which is not restricted to experimental
results.

3.1 Dimension reduction

3.1.1 Principal component analysis

Principal component analysis (PCA) is an orthogonal linear
transformation of elliptical data into a coordinate system,
such that the first basis vector aligns with the direction of
maximum variance. The second basis vector is the direc-
tion of maximum variation orthogonal to the first coordinate,
and the remaining basis vectors are sequentially computed
analogously. It is typically used for dimension reduction. To
choose the number of principal components (PCs) to use,
the proportion of variance explained by each component is
examined,

v
prop
i = vi

/ ∑

j

v j , (9)

with vi the variance in the direction of PC i . Either a pre-
determined proportion of total variance is used, or by plot-
ting the proportions against the number of PCs and choosing
the point where this flattens to zero. PCA is an optimization
problem with a well defined solution. However, the outcome
of the PCA is affected by the preparation of the input data.
The preparation can also be used to highlight specific aspects
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of the data distribution. For example, the input data is gen-
erally centered before performing PCA by setting each vari-
able to have a mean value of zero. In this way, large variation
describing only mean values different from zero are removed
from the results. Another approach would be to normalize
the distribution, to emphasize directional information. Typi-
cally this means “sphering” of the data points, by normalizing
each vector to have length one. This results in comparison
of similar, or different, directions in the parameter space, but
information about the differences in length are lost by this
approach.

In this work we use the standard implementation prcomp
in R for the computation of the principal components.

3.1.2 Nonlinear embeddings

It is also common to examine non-linear mapping of the
data points onto a low dimensional embedding. The aim is
to preserve multidimensional structure by minimizing the
difference in distances in the full parameter space as com-
pared to distances in the low dimensional projection. PCA
is a simple member of this more general type of transfor-
mation. A widely used method in machine learning is the
algorithm called t-distributed stochastic neighbor embedding
(t-SNE) [11]. It has a goal to cluster similar points together
(i.e. points with small Euclidean distance) while separating
the individual clusters from one another. This gives appeal-
ing and often useful pictures but results should be considered
with care as t-SNE is a nonlinear transformation and does not
preserve original distance. Note that while nonlinear embed-
dings may be useful in identifying clusters in the data, their
interpretation is limited by lack of an analytical description
of the transformation. This is not the case for linear transfor-
mations such as the PCA, where the transformation can be
readily reversed to identify the contribution of the original
parameters to a given principal component direction.

3.2 Tour algorithm

3.2.1 Overview

When a data set has more than two parameters, the tour [12]
can be used to plot the multiple dimensions. Currently the
typical approach is to plot two parameters or pairs of combi-
nations of the parameters. The tour extends this idea to plot
all possible combinations. The viewer is provided with a con-
tinuous movie of smooth transitions from one combination to
another, from which it is possible to extrapolate the shape of
the parameter space in high-dimensions. Seeing many com-
binations in quick succession shows the associations between
all the parameters.

There are several types of tours. Here we use a grand tour,
of projections from n-dimensional parameter space to 2-d

projections space. A projection of data is computed by mul-
tiplying an m × n data matrix, X, having m sample points in
n dimensions, by an orthonormal n × d projection matrix,
A, yielding a d-dimensional projection. The grand tour is
a mechanism for choosing which projections to display, and
how the smooth transitions happen. New projections are cho-
sen from all possible projections, and a geodesic interpola-
tion to a target projection provides the smooth transition. The
original algorithm is documented in [13]. The implementa-
tion used in this paper is from the tourr [4] package in
R [3].

The tour shows linear projections of the parameter space.
In contrast, methods like t-SNE [11] produce non-linear map-
pings from high- to low- dimensional space. The difference
is that the shape of the data in high-dimensions is preserved
by linear projections, but not with nonlinear mappings.

3.2.2 Algorithm

A movie of data projections is created by interpolating along
a geodesic path from the current (starting) plane to the new
target plane. In the grand tour, the target plane is chosen by
randomly selecting a plane. The interpolation algorithm (as
described in [14]) follows these steps:

1. Given a starting n×d projection Aa , describing the start-
ing plane, create a new target projection Az , describing
the target plane. It is important to check that Aa and Az

describe different planes, and generate a new Az if nec-
essary. To find the optimal rotation of the starting plane
into the target plane we need to find the frames in each
plane which are the closest.

2. Determine the shortest path between frames using sin-
gular value decomposition. A′

aAz = Va	V′
z, 	 =

diag(λ1 ≥ · · · ≥ λd), and the principal directions in
each plane are Ba = AaVa,Bz = AzVz , a within-
plane rotation of the descriptive bases Aa,Az respec-
tively. The principal directions are the frames describ-
ing the starting and target planes which have the short-
est distance between them. The rotation is defined with
respect to these principal directions. The singular values,
λi , i = 1, . . . , d, define the smallest angles between the
principal directions.

3. Orthonormalize Bz on Ba , giving B∗, to create a rotation
framework.

4. Calculate the principal angles, τi = cos−1 λi , i =
1, . . . , d.

5. Rotate the frames by dividing the angles into increments,
τi (t), for t ∈ (0, 1], and create the i th column of the
new frame, bi , from the i th columns of Ba and B∗, by
bi (t) = cos(τi (t))bai + sin(τi (t))b∗i . When t = 1, the
frame will be Bz .
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Table 1 Summary of key findings, comparing observations made with visualising PDFSense results with the TFEP and with additional insights
that can be made using tour. A complete list of experimental datasets together with their CTEQ labelling IDs is given in Appendix A

PDFSense & TFEP Tour

1 Three clusters can be separated in the visualisation, labelled DIS,
VBP and jet cluster. In the selected view the jet cluster is roughly
orthogonal to the DIS cluster

We observe the differences in distributions between the three
clusters more clearly. Substructure within the clusters is also
observed, and studied in some detail

2 New ATLAS and CMS results will dominate the jet cluster A more detailed comparison of jet cluster results shows that CMS
results are mainly responsible for extending the range, consistent
with sensitivity rankings

3 t t̄ results are characterized by large �δ but there are only a few
points and they are found inside the jet cluster

While the t t̄ results follow similar distributions to the jet cluster,
they do contain outlying points

4 Results from semi-inclusive charm production at HERA (147) are
found to overlap with the DIS and jet clusters

These results do not take significant values in any direction of the �δ
space, directional information is misleading here

5 CCFR/NuTeV dimuon SIDIS results (124–127) are orthogonal, the
direction cannot be resolved in the selected view

The tour resolves the orthogonal direction and further allows to
identify outlying points

6 Reciprocated distance as summary statistic to characterize
“relevance” of results

We can use the ranking as guidance to select results to highlight in
the visualisation to gain understanding of how the summary
statistics relate to raw distributions

6. Project the data into A(t) = B(t)V′
a .

7. Continue the rotation until t = 1. Set the current projec-
tion to be Aa and go back to step 1.

In a grand tour the target plane is drawn randomly from all
possible target planes, which means that any plane is equally
likely to be shown. That is, we are sampling from a uniform
distribution on a sphere. To achieve this, sample n values
from a standard univariate normal distribution, resulting in
a sample from a standard multivariate normal. Standardize
this vector to have length equal to one, gives a random value
from a (n−1)-dimensional sphere, that is, a randomly gener-
ated projection vector. Do this twice to get a 2-dimensional
projection, where the second vector is orthonormalized on
the first.

The data typically needs some standardization or scaling
before computing the tour. This is because we are considering
linear combinations of the different parameter directions and
differences in overall range might otherwise dominate the
resulting display.3 This can be as simple as centering each
variable on 0, and standardizing to a range of − 1 to 1. It could
be as severe as sphering the data which in statistics means
that the data is transformed into principal components (from
elliptical shape to spherical shape). The same term is used
for a different type of transformation in other fields, where
observations are scaled to fall on a high-dimensional sphere,
by scaling each observation to have length 1. (An interesting
diversion: this type of sphering is the same transformation
made on multivariate normal vectors to obtain a point on a
sphere, to choose the target planes in the grand tour.)

3 Such a standardisation is in fact done routinely by selecting an axis
scale appropriate to the relevant range in each parameter direction in a
2-d plot.

The initial description of the tour promised display of all
possible projections. Theoretically this is true, but practically
it would require that the user stay watching forever! However,
the coverage of the space is fairly fast, depending on n, and
within a short time it is possible to guarantee all possible
projections are displayed within an angle of tolerance.

3.2.3 Display

For physics problems, setting d = 2 would be most common.
The projected data is displayed as a scatterplot of points. It
is also possible to overlay confidence regions, or contours.
Groups in the data can be highlighted by color. Displaying
the combination of variables of a particular projection can be
useful to interpret patterns. This can be realized by plotting a
circle with segments indicating the magnitude and direction
of the contribution, and it is called the axes.

The same tour path can be used to display subsets of the
data, in different plots, to compare groups. When we break the
display into subsets, the full data is also shown in each plot,
in light grey. This makes it easier to do group comparison.

4 Results

This section compares the findings made using the tour
relative to those made with PDFSense using the recent
CT14HERA2 fits [15]. The PDFSense results form the basis
on which to expand the knowledge of PDF fits. The results
from both tools are summarized in Table 1, where PDF-
Sense results were obtained using the TensorFlow Embed-
ding Projector (TFEP) software [5] for the visualisation of
high-dimensional data. The summary statistic “reciprocated
distance” referenced in Table 1 is defined as:
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Fig. 4 Projections obtained with TFEP, where principal components
3, 5 and 8 have been selected, and the view was rotated such that the
jet+t t̄ cluster is roughly orthogonal to the DIS cluster. The top left plot

shows grouping into jets+t t̄ (red), DIS (blue) and VBP (orange), the
remaining plots highlight subgroups (indicated by CTEQ labelling IDs
shown in the appendix) of the jets+t t̄ cluster in the same view

Di ≡
⎛

⎝
Nall∑

j �=i

1

|�δ j − �δi |

⎞

⎠
−1

. (10)

This pair-wise distance measure will take larger values
for experimental results with residual responses different
from most other results considered, and small values if the
responses are similar to most other results. For the example
shown in Fig. 3 the largest value of reciprocated distance is
found for point 2, followed by point 4 and point 1. Point 3
on the other hand has a reciprocated distance that is about a
factor 10 below the maximum one since it is found to have
δ values close to the majority of other data points. Di can
therefore be used to quantify similarity, enabling for exam-
ple the identification of systematically different experimen-
tal results. TFEP provides two methods, PCA and t-SNE,
and [1] is exploring both for the visualisation of the data set.
The PCA implementation returns projections onto the 10 first
PCs evaluated from centered and sphered data, and allows the
user to choose two or three of them to view the results.

4.1 Results from PDFSense & TFEP

For comparison we first reproduce results similar to those
found in [1] by using the TFEP software. A selection of four
views is shown in Fig. 4, for a complete set of plots related to
the PDFSense column in Table 1 we refer the reader to [1].
The selected examples show how the view was chosen based
on orthogonality of assigned groups, and how for the exam-
ple of the jet+t t̄ group the various contributions have been
compared.

We can identify several limitations in using the TFEP soft-
ware for the visualisation:

• Relevant information about the distributions is encoded
in more than 3 dimensions. This is clear as PCs 3, 5 and 8
have been selected in the visualisation, thus the majority
of variation in the data is not captured in Fig. 4. Moreover,
the application of t-SNE clustering shown in [1] results in
a large number of clusters, indicating higher dimensional
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structure. It would be preferable to display it as a linear
projection for which interpretations are straightforward.

• The sphering of data points when preparing the PCA
visualisation is removing relevant information about the
length of the vectors �δi .

• In addition while the online tool allows highlighting of
groups it is considerably less flexible in selecting options
compared to scripted tools like the tour, limiting the detail
in which the results can efficiently be studied.

We next explore how these points can be addressed, in
particular in the framework of dynamical projections and the
tour algorithm.

4.2 Expanded findings made using the tour

We first optimize the number of principal components con-
sidered in our study, and then show how the tour results
expand on previous observations, as was summarized in
Table 1. The mapping from the original δ coordinates onto
the PCs for all PCAs considered in this work are listed in
Appendix B.

4.2.1 PCA, normalisation and variance explained

In the following we study two sets of principal components
(PCA1, PCA2), corresponding to the two data preparation
choices described above (i.e. PCA1 = centered, and PCA2 =
centered and sphered). Results from each are compared. Note
that for this problem, the centering has negligible impact on
the results as the mean value in each direction δ±

i,l is close to
zero.

An important consideration is the number of PCs that con-
tain relevant information. To study this we show in Fig. 5
the proportional variance (see Eq. 9) that is explained by
the principal components, for the two choices of the PCA,
with labels “Centered” for PCA performed on centered data
(PCA1) and “Sphered” for the PCA obtained for centered and
sphered data (PCA2) thus reproducing results from Fig. 4.
We find a steep curve for the first few PCs, followed by a
slow decay of the proportional variance, and the curve only
flattens out towards zero around PC30. As a consequence we
expect that looking at a 3 dimensional subset of the first 10
PCs is not sufficient to understand the variation in the con-
sidered parameter space, and that judging similarity based
on the view in Fig. 4 only, is misleading.

In the following we want to study a higher dimensional
subspace where we base the number of dimensions consid-
ered on the results found in Fig. 5.

For simplicity, we illustrate the tour approach using just
the first 6 PCs, which captures about 50% of the overall vari-
ation (Table 2).This is sufficient to provide new insights as
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Fig. 5 Proportional variance explained by the principal components
of the 56 dimensional parameter space. To capture all the variation, one
would need close to 30 principal components, but around 6 captures
about 50% of the variation. Both data preparations produce similar
variance explanation, but the differences are enough to matter in some
interpretations

compared to Fig. 4 (left), and additional PCAs can be added
for detailed studies of subgroups as we do below.

4.2.2 Grand tour result details

A short tour path is generated, of 20 basis planes and asso-
ciated interpolation between them, of 2 dimensional projec-
tions of 6-d. This is used to compare between multiple groups.
The examples considered are guided by findings in [1] and
are summarized in Table 1.

Grouping of data points We first consider a display cor-
responding to Fig. 4 (left), i.e. the data set is grouped into
three main clusters. Selected views from the animation are
shown in Fig. 6, PCA1 (left) and PCA2 (right). The same col-
ors used in Ref. [1] indicate the grouping: the DIS cluster is
shown in blue, VBP in orange and the jets cluster in red. The
first window in the display shows the axes, the other windows
show the projected data, where one group is highlighted in
color, while the remaining points are shown below in grey for
easy comparison. As can be seen from the selected views, in
any particular static view it is only possible to separate two
of them at a time. The static views are not sufficient to con-
vey the full picture obtained by watching the tour animation
which allows to separate all three groups. The tour indicates
that there is higher dimensional structure in the data points
as can be seen in the linked animation.

In addition, it is possible to visually identify substructure
within the clusters (e.g. groups of points aligned along some
direction) as well as outlying points. This is especially true
for PCA1 which is found to provide a much clearer picture
than PCA2. We also find that the DIS and VBP clusters extend
in multiple directions, while the jets cluster seems to be well
described in a single plane.
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Table 2 Cumulative variance as
% explained by the first 15 PCs

PCA 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

PCA1 12 21 30 37 43 48 53 57 61 65 68 72 75 78 80

PCA2 12 24 32 40 47 53 59 63 68 71 74 77 80 82 84

Fig. 6 Selected views from the grand tour results of the full dataset.
The data points are grouped into DIS, VBP and jets cluster, shown in
blue, orange and red respectively. Top left plot shows the projection
of the PCs, and other plots show the three subgroups. Colour indicates
group, and grey shows the entire data set, as a reference in order to make

comparisons between groups. PCA1 (see animation here) is shown on
the top row, PCA2 (see animation here) on the bottom row, the left views
show a separation between DIS and jets clusters, the right views show
the multidimensionality in the DIS cluster
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Fig. 7 Focusing on the jets cluster, showing only the first 4 PCs.
Top left plot shows the projection coordinates, groups (Tevatron,
ATLAS7old, . . .) are focused in black in each plot, and grey shows
all the data enabling direct comparison between subgroups. This view

from the grand tour was selected because it clearly separates the out-
lying point in the ATLAS7new dataset. In addition the view also illus-
trates how the CMS results extend the reach away from the main cluster
(see animation here)

The jet cluster In more detail, we investigate the jet clus-
ter. These results are of special interest since they contain
indeed the largest data sets to be added in the fit, which
were indeed found to be important according to [1]. In addi-
tion, the new experimental data from LHC jet measurements
is of interest because of possible tensions such as the sys-
tematic offsets in opposing directions for different rapidity
bins observed in the ATLAS measurements, see [16] for a
general discussion of the issue. As pointed out in [16] ten-
sions can be reduced when adapting the treatment of sys-
tematic uncertainties, but cannot be fully resolved [17]. As
seen above the jet cluster appears to be described in a lower
dimensional subspace. Indeed performing PCA on the results
in the jet cluster alone we see that the cumulative propor-
tional variance reaches 49/75/91/95 % for PC1/2/3/4 respec-
tively, with the proportional variance dropping to less than
2% for PC5. We therefore study substructure in this 4 dimen-

sional space. While [1] distinguish three types of groups, i.e.
“old” jet results (those included in the CT14HERA2 fit),
“new” jet results (more recent ATLAS and CMS results)
and t t̄ , it makes sense to differentiate the LHC results fur-
ther by experiment and

√
s (motivated also by the differ-

ences in sensitivities observed in [1]). For simplicity we con-
sider only the results from performing PCA on the centered
data shown in Fig. 7 with grouping into: Tevatron (IDs 504,
514), ATLAS7old (535), CMS7old (538), CMS7new (542),
ATLAS7new (544), t t̄-energy (565, 567), t t̄-rap (566, 568)
and CMS8 (545). Indeed we observe that the Tevatron results
as well as the ATLAS results generally fall in the center of
the cluster, with exception of some outlying points. On the
other hand CMS 7 and 8 TeV results extend in (different)
new directions. It is interesting to note that “old” CMS 7
TeV results extend further out than the corresponding “new”
ones. In fact while the new measurement extended to higher
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rapidities and lower values in jet pT , the old measurement
contains higher pT bins no longer present in the updated
result, which turn out to give large values of �δ. Finally for
t t̄ results we distinguish the observations binned in energy
(ptT or mtt̄ ) or rapidity (y〈t/t̄〉 or yt t̄ ). We can identify differ-
ences between the two groups in the visualisation, however
as already noted in [1] the data points are not significantly
different from the main jet cluster.

It is interesting to study which data points are found to
be outlying in the visualisation. These points are highlighted
in Fig. 7 and are best distinguished when watching the tour
animation:

• |y| > 2.5 and μ > 950 GeV – marked with a star symbol:
only one such point is found in the 7 TeV data sets. It
occurs in ATLAS7new, it is the last rapidity bin and is
clearly outlying (large negative values in PCs 1, 2 and 3).
However no particular trend is observed when comparing
with points in nearby bins. There are two more such data
points in the CMS8 data set, but they do not stand out in
δ space.

• |y| > 2 and μ > 1000 GeV – marked with downward
pointing triangle. These points are seen to align in a new
direction, away from the main cluster highlighting their
importance in the fits.
They are also useful for comparing the different CMS
results: in this case there are common points to both
datasets that nevertheless look different, suggesting the
need for further study of these points.

• for CMS8 we also highlight |y| < 1 and μ < 200 –
marked with diamond symbol: they are very different
from the main distribution and give large positive values
in PC1. It is interesting that we can clearly separate these
low μ bins in CMS8 set but not in CMS7.

The DIS cluster We next consider subgroups of the DIS
cluster for which the TFEP visualisation allowed only limited
interpretation. Concretely, while the bulk of the cluster was
clearly spanned by the HERA results (ID 160) as expected,
other results were found to follow quite different distribu-
tions. In particular the Charm SIDIS (ID 147) results are
distributed in a different direction, overlapping partly with
both the DIS and the jet clusters, while the dimuon SIDIS
results (IDs 124–127) were found in the center of the distri-
bution and it was concluded that this cluster extends in an
orthogonal direction, although it was not shown explicitly.

We therefore compare in detail these three groups. In this
case it is useful to consider both PCA1 and PCA2, the latter
more closely related to the TFEP output. First, we observe
that the dimuon SIDIS is poorly separated in the PCA2 pro-
jection, whereas PCA1 clearly shows how it extends consid-
erably away from the main DIS cluster (ID 160). On the other
hand, the charm SIDIS can be separated more easily when

studying the directional information in the PCA2 projection
because the individual values in the space of deltas are all
comparatively small. These results suggest that either predic-
tions for these type of observables are well under control in
the existing fits, or that alternatively the experimental errors
are too large for them to be constraining. We also observe
substructure in the DIS HERA1+2, see Fig. 8 and the cor-
responding animation, indicating that this group combines a
number of qualitatively different types of results.

Comparison with summary statistics We now consider
the experimental results with the highest values in recipro-
cated distances to show they can also be easily distinguished
with our visualisation. We highlight three groups in Fig. 9:
the HERA dataset (ID 160), the W asymmetry measurements
(ID 234, 266 and 281) and the fixed-target Drell-Yan mea-
surements from E605 and E866 (ID 201, 203 and 204).

Indeed we find that the W asymmetry measurements (234,
266 and 281) follow a very distinct distribution, as does the
HERA DIS dataset (160). On the other hand, the fixed-target
Drell-Yan measurements (201, 203 and 204), do not stand
out in our visualisation. We find that this is a consequence of
the dimension reduction,4 and we can easily identify views
separating this group from the other data points when consid-
ering additional dimensions. Here we show this by looking
at projections found by performing PCA on this data sub-
set only and using it to compare it to the other data sets in
the subspace of the first 4 PCs thus defined. Note however
that the tour allows visualisation of the distributions in the
full parameter space which would yield the same informa-
tion. Our choice of procedure is simply to limit the viewing
times required, which grow with the number of dimensions
considered.5

This type of visualisation, together with inverting the map-
ping onto principal components, may be used to identify the
origin (i.e. underlying physics) of the large differences. For
example the first three PCs found for the DY dataset capture
three different distributions, and mapping those back to the
original δ directions together with study of those directions
with respect to uncertainty in individual parton pdfs may
provide additional insight. Such detailed investigations are
however beyond the scope of this study.

4 Recall that the selected first six PCs only capture 48% of overall
variance.
5 When working in the full parameter space one should consider the
definition of projection pursuit indices to guide the tour to interesting
views, one may e.g. define an index that finds views where a selected
group of data points is maximally separated from the cluster of points,
similar to the definition of reciprocated distances.
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Fig. 8 As Fig. 6, but showing only selected results in the DIS clus-
ter, i.e. DIS HERA1+2 (black), Charm SIDIS (red) and dimuon
SIDIS (green). The left view is for PCA1 (see animation here) shows

clear separation of dimuon SIDIS results, the right view for PCA2
(see animation here) shows apparent separation of charm SIDIS results
obtained by focussing on directional information

Fig. 9 Left: Comparison of groups with large reciprocated distance
measures, where now the full dataset is shown below in gray. Right:
Comparison in subspace found by performing PCA on DY data only,
where DY data is shown in red and all other data points are shown
below in gray. Again selected views from the grand tour results are

shown here. The left view (see animation here) roughly shows how the
HERA and WASY data points are far away from the main distribution
of data points, while the DY points are found only in the center. The
right view (see animation here) illustrates the three different types of
distributions found in the DY group
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5 Summary and conclusions

Starting from the set of 56 dimensional vectors in the space of
residual responses calculated in [1], we have demonstrated
how the grand tour may be used for visualizations in par-
ticle physics. The 56 dimensions are reduced to 6 dimen-
sions (for illustration) using principal component analysis,
and the resulting representation is then passed onto the tour.
The findings made about the fits using the tour, even with
only 6 dimensions, are more comprehensive and clearer than
what TFEP allows.

The tour visualisation verified several results from [1],
notably, the separation between DIS, VBP and JET exper-
iments into clusters populating different regions of delta
space. It also allowed us to go into further detail by examining
certain substructures within these groups. We have moreover
demonstrated that the tour can complement and support anal-
yses based on the use of reciprocated distances.

In our examples we have considered performing the PCA
either on centered data (PCA1) or on centered and sphered
data (PCA2), as they highlight different aspects of the struc-
ture, the former retaining length information and the latter
emphasizing directionality. In general we find the results
from PCA1 more useful, in particular for this application
where the length of the individual data point vectors (i.e. for
each experiment) carries important information that is lost
when sphering the input data.

The sensitivity defined in [1], or projection of δs onto a
direction given by the gradient of a QCD variable (e.g. cross
section prediction) can also be inspected visually and the tour
permits this visualisation in multiple dimensions.

We conclude that the above described method is a valu-
able tool for PDF uncertainty and sensitivity studies. In addi-
tion, the visual analysis allows a better understanding of the
method itself and can uncover unexpected features, and even
possibly errors. It can provide experiments with a guide to
the measurements needed to improve PDF fits.
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Appendix

A CTEQ labelling IDs

These are the same numbers used in Ref. [1], we reproduce
them here for convenience. Experimental datasets included

Table 3 Experimental datasets considered as part of CT14HERA2 and
included in the analysis. IDs are following the standard CTEQ labelling
system with 1XX/2XX/5XX representing datasets in the DIS/VBP/JET
group

ID# Experimental dataset Group

101 BCDMS F p
2 [18] DIS

102 BCDMS Fd
2 [19] DIS

104 NMC Fd
2 /F p

2 [20] DIS

108 CDHSW F p
2 [21] DIS

109 CDHSW F p
3 [21] DIS

110 CCFR F p
2 [22] DIS

111 CCFR x F p
3 [23] DIS

124 NuTeV νμμ SIDIS [24] DIS

125 NuTeV ν̄μμ SIDIS [24] DIS

126 CCFR νμμ SIDIS [25] DIS

127 CCFR ν̄μμ SIDIS [25] DIS

145 H1 σ b
r (57.4 pb−1) [26,27] DIS

147 Combined HERA charm
production (1.504 fb−1)

[28] DIS

160 HERA1+2 Combined NC and CC
DIS (1 fb−1)

[29] DIS

169 H1 FL (121.6 pb−1) [30] DIS

201 E605 DY [31] VBP

203 E866 DY, σpd/(2σpp) [32] VBP

204 E866 DY, Q3d2σpp/(dQdxF ) [33] VBP

225 CDF Run-1 Ae(η
e) (110 pb−1) [34] VBP

227 CDF Run-2 Ae(η
e) (170 pb−1) [35] VBP

234 D∅ Run-2 Aμ(ημ) (0.3 fb−1) [36] VBP

240 LHCb 7 TeV W/Z muon
forward-η Xsec (35 pb−1)

[37] VBP

241 LHCb 7 TeV W Aμ(ημ) (35 pb−1) [37] VBP

260 D∅ Run-2 Z dσ/dyZ (0.4 fb−1) [38] VBP

261 CDF Run-2 Z dσ/dyZ (2.1 fb−1) [39] VBP

266 CMS 7 TeV Aμ(η) (4.7 fb−1) [40] VBP

267 CMS 7 TeV Ae(η) (0.840 fb−1) [41] VBP

268 ATLAS 7 TeV W/Z Xsec, Aμ(η)

(35 pb−1)
[42] VBP

281 D∅ Run-2 Ae(η) (9.7 fb−1) [43] VBP

504 CDF Run-2 incl. jet (d2σ/dp j
T dy j )

(1.13 fb−1)
[44] JET

514 D∅ Run-2 incl. jet (d2σ/dp j
T dy j )

(0.7 fb−1)
[45] JET
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Table 3 continued

ID# Experimental dataset Group

535 ATLAS 7 TeV incl. jet
(d2σ/dp j

T dy j ) (35 pb−1)
[46] JET

538 CMS 7 TeV incl. jet
(d2σ/dp j

T dy j ) (5 fb−1)
[47] JET

Table 4 Same as Table 3, but showing experimental datasets not incor-
porated in the CT14HERA2 fit but included in the augmented CTEQ-
TEA set

ID# Experimental dataset Group

245 LHCb 7 TeV Z/W muon forward-η Xsec
(1.0 fb−1)

[48] VBP

246 LHCb 8 TeV Z electron forward-η
dσ/dyZ (2.0 fb−1)

[49] VBP

247 ATLAS 7 TeV dσ/dpZT (4.7 fb−1) [50] VBP

249 CMS 8 TeV W muon, Xsec, Aμ(ημ)

(18.8fb−1)
[51] VBP

250 LHCb 8 TeV W/Z muon, Xsec, Aμ(ημ)

(2.0 fb−1)
[52] VBP

252 ATLAS 8 TeV Z (d2σ/d|y|ll dmll )
(20.3 fb−1)

[53] VBP

253 ATLAS 8 TeV (d2σ/dpZT dmll )
(20.3 fb−1)

[54] VBP

542 CMS 7 TeV incl. jet, R=0.7,
(d2σ/dp j

T dy j ) (5 fb−1)
[55] JET

544 ATLAS 7 TeV incl. jet, R=0.6,
(d2σ/dp j

T dy j ) (4.5 fb−1)
[56] JET

545 CMS 8 TeV incl. jet, R=0.7,
(d2σ/dp j

T dy j ) (19.7 fb−1)
[57] JET

565 ATLAS 8 TeV t t dσ/dptT (20.3 fb−1) [58] JET

566 ATLAS 8 TeV t t dσ/dy<t/t> (20.3 fb−1) [58] JET

567 ATLAS 8 TeV t t dσ/dmtt (20.3 fb−1) [58] JET

568 ATLAS 8 TeV t t dσ/dytt (20.3 fb−1) [58] JET

in the CT14HERA2 fit are listed in Table 3, additional results
included in the study are given in Table 4.

B Projections on the principal components

Here we list the projection matrices used to obtain projections
in the various PC subspaces considered, for PCA1 in Table 5,
for PCA2 in Table 6, for the PCA performed on the jet cluster
in Table 7 and for the PCA performed only on the DY data
in Table 8.

Table 5 Rotation matrix for projection on the first 6 PCs of PCA1
where X1 corresponds to eigenvector set 1 and so on

PC1 PC2 PC3 PC4 PC5 PC6

X1 0.14 − 0.22 0.12 − 0.15 0.07 − 0.09

X2 0.11 − 0.33 0.10 − 0.21 0.14 − 0.02

X3 − 0.10 − 0.14 0.10 0.12 − 0.25 − 0.15

X4 − 0.22 − 0.15 − 0.02 − 0.03 0.16 0.11

X5 − 0.17 − 0.08 0.15 0.11 − 0.12 − 0.08

X6 − 0.18 − 0.09 0.15 0.05 − 0.14 − 0.07

X7 0.03 0.34 0.33 − 0.10 − 0.18 − 0.14

X8 − 0.25 − 0.00 0.15 0.14 0.11 0.11

X9 − 0.13 − 0.02 0.11 − 0.20 − 0.25 0.07

X10 0.03 − 0.06 − 0.01 − 0.03 0.05 − 0.08

X11 − 0.03 − 0.09 0.00 − 0.16 − 0.04 − 0.10

X12 0.02 − 0.01 0.05 0.04 − 0.00 0.05

X13 − 0.16 − 0.08 0.07 0.05 − 0.24 0.09

X14 − 0.05 − 0.13 0.11 − 0.01 0.20 − 0.23

X15 0.01 − 0.01 − 0.08 0.21 0.23 − 0.30

X16 − 0.04 − 0.04 0.10 − 0.20 − 0.21 0.28

X17 − 0.02 − 0.10 − 0.05 − 0.17 − 0.09 0.02

X18 0.00 0.11 0.05 0.15 0.08 − 0.03

X19 0.12 − 0.03 0.23 0.25 0.05 0.21

X20 − 0.15 0.03 − 0.22 − 0.27 − 0.03 − 0.17

X21 − 0.03 0.32 − 0.09 − 0.20 0.12 0.03

X22 − 0.03 − 0.29 0.12 0.15 − 0.12 − 0.04

X23 0.23 − 0.17 − 0.06 0.08 0.00 0.16

X24 − 0.23 0.22 0.15 − 0.07 − 0.04 − 0.15

X25 − 0.06 − 0.03 − 0.31 0.08 − 0.30 − 0.14

X26 − 0.02 0.07 0.37 − 0.08 0.32 0.16

X27 0.10 0.07 − 0.03 − 0.01 − 0.01 0.26

X28 − 0.11 − 0.08 0.02 0.01 0.03 − 0.26

X29 0.01 0.03 − 0.04 0.14 0.11 − 0.11

X30 − 0.01 − 0.01 0.02 − 0.06 − 0.06 0.05

X31 0.02 − 0.00 0.05 − 0.02 0.05 0.06

X32 − 0.03 0.00 − 0.05 0.02 − 0.05 − 0.06

X33 − 0.00 − 0.09 − 0.02 − 0.05 0.04 0.08

X34 − 0.04 0.08 0.04 0.06 − 0.03 − 0.08

X35 − 0.02 − 0.01 − 0.01 0.01 0.03 − 0.09

X36 0.02 0.00 0.00 − 0.01 − 0.02 0.14

X37 − 0.00 − 0.03 0.18 − 0.06 0.03 0.09

X38 0.01 0.04 − 0.10 0.05 − 0.03 − 0.07

X39 − 0.06 0.05 − 0.01 − 0.03 0.06 0.00

X40 − 0.14 0.05 − 0.03 0.03 − 0.13 0.38

X41 − 0.11 0.29 0.24 − 0.03 0.03 0.04

X42 0.07 − 0.09 0.02 0.01 − 0.13 − 0.09

X43 − 0.08 0.02 − 0.04 0.18 − 0.12 0.10

X44 − 0.05 0.06 − 0.04 − 0.19 0.19 0.00

X45 − 0.09 0.02 0.09 − 0.20 0.11 − 0.07

X46 − 0.04 0.18 − 0.10 0.40 − 0.03 0.06
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Table 5 continued

PC1 PC2 PC3 PC4 PC5 PC6

X47 − 0.31 − 0.12 0.02 − 0.00 − 0.04 0.03

X48 − 0.20 − 0.11 0.08 0.01 0.13 0.05

X49 − 0.24 0.02 − 0.13 − 0.12 − 0.04 0.06

X50 − 0.24 − 0.00 − 0.19 − 0.21 − 0.09 0.04

X51 − 0.25 − 0.13 − 0.10 0.14 0.15 0.21

X52 − 0.13 − 0.26 − 0.17 0.02 0.21 0.15

X53 − 0.19 0.20 − 0.15 0.18 0.13 0.03

X54 − 0.21 0.07 − 0.19 − 0.07 0.27 0.00

X55 − 0.19 − 0.07 0.17 0.09 0.00 − 0.10

X56 0.23 0.11 − 0.20 − 0.10 − 0.01 0.14

Table 6 Same but for PCA2

PC1 PC2 PC3 PC4 PC5 PC6

X1 0.23 − 0.05 0.27 0.06 − 0.09 0.09

X2 0.20 0.05 0.25 0.13 − 0.07 0.14

X3 − 0.02 0.09 0.22 − 0.15 0.10 − 0.22

X4 − 0.14 0.17 − 0.01 − 0.02 − 0.25 0.34

X5 − 0.09 − 0.01 0.22 − 0.12 0.03 − 0.20

X6 − 0.15 0.05 0.15 − 0.07 − 0.04 0.01

X7 − 0.15 − 0.48 − 0.00 − 0.02 − 0.10 − 0.16

X8 − 0.30 0.07 0.24 − 0.02 0.16 − 0.00

X9 − 0.06 − 0.14 0.17 − 0.06 − 0.06 − 0.01

X10 0.04 0.03 0.03 0.04 0.00 − 0.05

X11 0.00 0.00 0.05 0.03 − 0.09 − 0.06

X12 0.03 − 0.02 0.06 − 0.02 0.07 0.04

X13 − 0.03 0.06 0.10 − 0.01 − 0.08 − 0.13

X14 − 0.07 0.02 0.12 − 0.09 0.04 0.16

X15 0.02 0.09 − 0.04 0.08 − 0.07 − 0.16

X16 − 0.03 − 0.07 0.05 − 0.09 0.06 0.21

X17 0.04 − 0.02 0.06 − 0.06 0.04 − 0.04

X18 − 0.06 0.01 − 0.05 0.05 − 0.04 0.03

X19 − 0.00 − 0.10 0.07 − 0.34 0.34 0.20

X20 − 0.03 0.10 − 0.05 0.35 − 0.30 − 0.18

X21 − 0.16 − 0.14 − 0.18 0.04 0.14 0.16

X22 0.09 0.11 0.19 − 0.07 − 0.11 − 0.12

X23 0.22 0.11 0.13 0.06 − 0.05 − 0.05

X24 − 0.28 − 0.20 − 0.07 − 0.07 0.05 − 0.01

X25 0.02 0.17 − 0.19 − 0.39 − 0.04 − 0.16

X26 − 0.12 − 0.20 0.21 0.38 0.05 0.18

X27 0.05 − 0.01 − 0.07 0.18 0.18 − 0.06

X28 − 0.07 0.03 0.07 − 0.18 − 0.18 0.06

X29 0.04 0.04 − 0.03 − 0.07 0.03 − 0.00

X30 − 0.03 − 0.02 0.02 0.03 − 0.01 0.00

X31 0.01 − 0.05 0.05 0.08 0.02 0.02

X32 − 0.03 0.06 − 0.06 − 0.10 − 0.02 − 0.03

X33 0.05 0.06 0.04 − 0.07 − 0.04 0.22

Table 6 continued

PC1 PC2 PC3 PC4 PC5 PC6

X34 − 0.09 − 0.05 − 0.00 0.07 0.07 − 0.23

X35 0.00 − 0.00 0.00 − 0.09 − 0.13 0.10

X36 − 0.01 0.03 0.00 0.13 0.18 − 0.12

X37 − 0.07 − 0.11 0.07 0.04 − 0.16 0.04

X38 0.04 0.06 − 0.04 − 0.03 0.10 − 0.04

X39 − 0.08 0.00 − 0.00 0.14 0.09 0.05

X40 − 0.11 0.06 − 0.09 − 0.05 − 0.03 − 0.04

X41 − 0.26 − 0.31 0.03 0.10 0.03 − 0.12

X42 0.09 0.04 0.07 − 0.13 − 0.04 0.01

X43 − 0.12 0.08 − 0.04 0.02 − 0.15 − 0.29

X44 − 0.03 − 0.00 − 0.09 0.08 0.22 0.32

X45 − 0.13 − 0.04 0.10 0.07 − 0.11 0.04

X46 − 0.11 0.09 − 0.25 − 0.07 0.11 − 0.09

X47 − 0.29 0.16 0.12 − 0.05 − 0.18 − 0.02

X48 − 0.15 0.10 0.26 0.11 0.20 − 0.09

X49 − 0.22 0.10 − 0.03 − 0.01 0.04 − 0.06

X50 − 0.15 0.10 − 0.09 0.02 − 0.00 − 0.03

X51 − 0.22 0.33 0.07 0.02 − 0.14 0.20

X52 0.01 0.36 0.11 0.18 0.48 − 0.13

X53 − 0.27 0.14 − 0.28 − 0.01 0.02 0.04

X54 − 0.13 0.21 − 0.12 0.27 − 0.05 0.15

X55 − 0.18 0.02 0.22 − 0.11 0.00 − 0.01

X56 0.19 − 0.05 − 0.27 0.12 0.01 − 0.02

Table 7 Rotation onto first four PCs found for the jet cluster

PC1 PC2 PC3 PC4

X1 − 0.07 0.04 − 0.02 0.02

X2 − 0.10 − 0.03 − 0.04 − 0.12

X3 − 0.18 − 0.13 − 0.12 0.16

X4 0.08 0.22 0.38 − 0.09

X5 − 0.06 − 0.06 − 0.13 0.05

X6 0.04 0.01 0.11 − 0.00

X7 0.40 0.18 − 0.33 0.12

X8 0.04 − 0.25 0.33 0.15

X9 0.12 0.06 0.03 − 0.05

X10 − 0.06 − 0.04 − 0.03 0.01

X11 − 0.03 0.05 − 0.05 − 0.02

X12 0.01 − 0.06 0.03 0.00

X13 − 0.06 0.02 − 0.06 − 0.06

X14 0.05 − 0.01 0.09 0.06

X15 − 0.09 0.01 − 0.07 − 0.03

X16 0.10 0.00 0.07 0.03

X17 − 0.03 − 0.03 0.03 − 0.01

X18 0.05 0.03 − 0.02 0.02

X19 0.09 − 0.10 0.11 0.33

X20 − 0.06 0.07 − 0.08 − 0.34
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Table 7 continued

PC1 PC2 PC3 PC4

X21 0.21 − 0.05 0.00 0.21

X22 − 0.15 0.04 0.01 − 0.17

X23 − 0.21 − 0.04 0.09 − 0.14

X24 0.27 0.03 − 0.10 0.19

X25 − 0.30 0.18 − 0.05 0.13

X26 0.38 − 0.19 0.11 − 0.08

X27 0.05 − 0.21 0.05 − 0.07

X28 − 0.05 0.20 − 0.04 0.08

X29 − 0.08 0.01 0.01 0.03

X30 0.04 − 0.00 − 0.00 − 0.01

X31 0.06 − 0.06 0.03 − 0.06

X32 − 0.07 0.06 − 0.03 0.07

X33 − 0.06 0.09 0.06 0.15

X34 0.08 − 0.12 − 0.06 − 0.14

X35 − 0.02 0.17 − 0.02 0.06

X36 0.03 − 0.24 0.04 − 0.07

X37 0.13 0.14 0.01 − 0.05

X38 − 0.08 − 0.08 − 0.01 0.05

X39 0.11 − 0.14 0.11 − 0.13

X40 − 0.02 0.06 − 0.03 0.06

X41 0.37 − 0.04 − 0.10 0.01

X42 − 0.14 0.07 0.05 0.11

X43 − 0.03 0.05 − 0.11 0.17

X44 0.11 − 0.15 0.19 − 0.27

X45 0.11 0.06 − 0.01 0.03

X46 − 0.02 − 0.05 0.04 − 0.03

X47 − 0.02 0.06 0.26 0.15

X48 0.03 − 0.28 − 0.12 − 0.00

X49 0.04 − 0.06 0.01 0.21

X50 0.01 − 0.03 0.05 − 0.15

X51 − 0.06 0.02 0.55 0.20

X52 − 0.20 − 0.59 − 0.18 0.19

X53 0.07 0.01 0.10 0.09

X54 0.04 − 0.06 0.07 − 0.36

X55 0.02 − 0.02 0.02 0.06

X56 − 0.00 0.01 − 0.01 − 0.02

Table 8 Projection on first four PCs found when performing PCA on
DY results only (IDs 201, 203 and 204)

PC1 PC2 PC3 PC4

X1 − 0.01 0.03 0.05 − 0.06

X2 0.02 − 0.03 − 0.18 0.19

X3 − 0.02 0.01 − 0.04 − 0.01

X4 0.07 0.01 0.08 0.05

X5 0.00 − 0.02 0.05 − 0.03

X6 0.01 0.02 − 0.02 0.02

X7 0.00 0.01 − 0.05 0.09

Table 8 continued

PC1 PC2 PC3 PC4

X8 0.06 − 0.07 0.10 − 0.18

X9 0.02 0.01 − 0.14 − 0.25

X10 − 0.04 − 0.04 0.14 0.17

X11 − 0.05 0.13 − 0.06 − 0.23

X12 0.00 − 0.20 0.08 0.27

X13 − 0.05 0.03 − 0.01 0.08

X14 0.06 − 0.04 0.02 − 0.10

X15 − 0.01 − 0.00 0.03 − 0.04

X16 0.01 0.01 − 0.03 0.04

X17 0.08 0.02 − 0.01 − 0.09

X18 − 0.06 − 0.02 0.01 0.08

X19 0.09 0.03 0.03 − 0.06

X20 − 0.08 − 0.02 − 0.03 0.05

X21 − 0.26 0.05 − 0.09 − 0.23

X22 0.23 − 0.06 0.09 0.20

X23 0.09 0.01 − 0.25 − 0.02

X24 − 0.08 − 0.04 0.22 0.02

X25 − 0.12 − 0.06 0.09 0.06

X26 0.14 0.05 − 0.08 − 0.06

X27 0.06 0.09 − 0.24 − 0.07

X28 − 0.06 − 0.10 0.25 0.08

X29 − 0.04 − 0.02 − 0.05 − 0.19

X30 0.02 0.01 0.02 0.09

X31 0.06 0.21 0.31 − 0.02

X32 − 0.07 − 0.28 − 0.42 0.03

X33 − 0.10 0.06 0.06 0.27

X34 0.11 − 0.05 − 0.05 − 0.27

X35 0.08 0.37 − 0.21 0.07

X36 − 0.10 − 0.49 0.26 − 0.07

X37 0.13 − 0.29 − 0.27 0.30

X38 − 0.09 0.21 0.20 − 0.22

X39 0.00 − 0.07 0.03 0.12

X40 0.01 0.06 − 0.02 − 0.10

X41 0.01 0.08 0.04 0.07

X42 0.02 − 0.16 − 0.03 − 0.16

X43 0.49 0.09 0.08 0.04

X44 − 0.50 − 0.11 − 0.04 − 0.06

X45 0.22 − 0.32 − 0.04 − 0.22

X46 − 0.17 0.24 0.05 0.16

X47 0.32 − 0.07 0.19 − 0.06

X48 − 0.03 0.15 − 0.19 0.18

X49 − 0.03 0.07 0.14 0.12

X50 0.08 − 0.04 − 0.07 − 0.13

X51 0.07 0.07 − 0.03 0.03

X52 0.12 0.03 0.00 0.05
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Table 8 continued

PC1 PC2 PC3 PC4

X53 − 0.02 − 0.00 0.03 0.02

X54 0.06 0.03 − 0.01 − 0.00

X55 − 0.00 − 0.00 − 0.00 0.00

X56 0.00 0.00 0.00 − 0.00
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