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Abstract We derive the critical temperature in a nonlocal
Nambu–Jona-Lasinio model with the presence of a chiral
chemical potential. The model we consider uses a form factor
derived from recent studies of the gluon propagator in Yang–
Mills theory and has the property to fit in excellent way the
form factor arising from the instanton liquid picture for the
vacuum of the theory. Nambu–Jona-Lasinio model is derived
form quantum chromodynamics providing all the constants
of the theory without any need for fits. We show that the
critical temperature in this case always exists and increases as
the square of the chiral chemical potential. The expression we
obtain for the critical temperature depends on the mass gap
that naturally arises from Yang–Mills theory at low-energy
as also confirmed by lattice computations.

1 Introduction

Recent studies on lattice show that Yang–Mills theories
develop a mass gap in the low energy limit. This is seen both
in the spectrum [1,2] and for the gluon propagator [3–5]. On
the theoretical side, several proposals have been put forward
[6–10] but none of them reached the status of a rigorous proof.
Notwithstanding this difficulty, this fundamental result can
be used to understand quantum chromodynamics (QCD) in
the infrared limit. A very good approximation for the gluon
propagator in the Landau gauge at lower energies is a free
massive propagator as can be deduced from aforementioned
references.

Existence of a mass gap and an analytical equation for the
gluon propagator in a given gauge opens up the possibility to
perform computations at low energies in QCD both at zero
and finite temperature. We were able to prove in this way that
a non-local Nambu–Jona-Lasinio (nNJL) model describes
the low energy phenomenology of hadron physics [11–15]. In
Ref. [15] we obtained the critical temperature at zero chem-
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ical potential for the chiral transition. This turns out in close
agreement with lattice data [16] and with preceding theo-
retical computations [17]. A non-local Nambu–Jona-Lasinio
model is capable of describing both chiral and deconfinement
transitions, but without the cutoff of the local model. The
model appears regularized in such a way to preserve anoma-
lies, charges properly quantized and currents conserved. No
extra cutoffs are needed as the effective interaction is finite
at all orders [18]. Such a model, properly derived from QCD
as we will show, will be used in this paper.

Our aim is to analyze a problem arisen when unbalanced
chiral quark matter is present in a quark condensate. The
question is how critical temperature changes due to the pres-
ence of chiral matter. This question was faced in [19] to iden-
tify the critical end point of QCD. The idea is, at the thermo-
dynamic equilibrium, to couple the chiral chemical poten-
tial, μ5, to a chiral density quark operator, as also happens
for the quark number density ψ̄γ0ψ to the conjugated quark
chemical potential μ (see [19–29] and references therein).
Recent theoretical studies support the idea that the critical
temperature should decrease with chiral chemical potential
[19–24]. Recent lattice data have shown that critical temper-
ature increases with μ5 [25,26]. This behavior of Tc(μ5) was
predicted for the first time by universality arguments in [28]
and it has also been found later by solving Schwinger–Dyson
equations at finite μ5 [29]. Recently, Ruggieri and Peng [30]
draw this conclusion with a quark-meson model. We will
strongly support their conclusions.

With our approach, we will show that a nNJL model pro-
vides a critical temperature increasing with the chiral chem-
ical potential. We will show that, with the results provided
in literature for the gluon propagator, the mass gap equation
yields always a solution both with μ5 = 0 and μ5 �= 0 and,
in the latter case, it will depend on the square of at increasing
temperature.

The paper is so structured. In Sect. 2 we show how NJL
model can be seen as the low-energy limit of increasingly
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extended theories like QCD. In Sect. 3, we complete the proof
of the preceding section by presenting the 1- and 2-point
functions and their agreement with lattice data. In Sect. 4,
we discuss the non-local NJL model obtained from QCD. In
Sect. 5 we derive the critical temperature dependent on the
chiral potential. Finally, in Sect. 6 conclusions are given.

2 Derivation of the NJL model

In this section, we will derive the Nambu–Jona-Lasinio
model showing how increasingly complex bosonic-fermionic
theories have it as effective theory when the bosonic degrees
of freedom are integrated out, producing a quartic fermionic
self-interaction. The result is exact for a Yukawa model but
approximated when the bosonic degrees of freedom are self-
interacting as for φ4 and Yang–Mills theories. We will always
assume an evaluation of the generating functional

W [ j, η̄, η] =
∫

[dμ]ei
∫
d4xL+i

∫
d4xφ j+i

∫
d4x[η̄ψ+ψ̄η] (1)

for generic bosonic φ and fermionic ψ degrees of freedom
and given a generic measure of integration for the path inte-
gral [dμ]. j , η̄, η represents arbitrary currents introduced to
derive the n-point functions.

2.1 Yukawa model

A free bosonic field, when coupled to a set of fermionic fields
by Yukawa couplings, is completely equivalent to a non-local
Nambu–Jona-Lasinio model.

We note that the bosonic field could have whatever spin
but we limit the proof to the case of spin-0 extending to spin-
1 when we analyze the case of QCD. So, let us consider the
following Lagrangian

L = 1

2

[
(∂φ)2 − m2φ2

]
+

∑
f

ψ̄ f
(
i /∂ − gφ − m f

)
ψ f

+ jφ +
∑
f

η̄ f ψ f + ψ̄ f η f . (2)

We can integrate out the bosonic degree of freedom obtaining

L f =
∑
f

ψ̄ f

(
i /∂ − g2

∫
d4x ′�(x − x ′)

∑
f

ψ̄ f (x
′)ψ f (x

′)

−m f

)
ψ f (3)

provided

(∂2 + m2)�(x − x ′) = δ4(x − x ′) (4)

the equation for the free propagator of the scalar field. We
recognize this Lagrangian as that of a non-local Nambu–

Jona-Lasinio model. In fact, the propagator of the scalar field
in momenta space can be written down as

�(p) = 1

p2 − m2 + iε
. (5)

Therefore, in the low-energy limit one gets

�(x − x ′) = − 1

m2 δ4(x − x ′) (6)

that yields the standard local NJL model provided we make
the identification G = g2/m2 for the coupling.

We can see that the NJL model is fundamental wherever
we integrate out bosonic degrees of freedom but this result
is more general than for this simple model as we are going
to show below.

2.2 φ4 model

Now, let us consider aφ4 model extending the Yukawa model.
A self-interacting bosonic field, when coupled to a set of

fermionic fields by Yukawa couplings, has, as an effective
low-energy field theory, a non-local Nambu–Jona-Lasinio
model at the leading order, when higher powers of fermionic
fields can be neglected.

We aim to use a current expansion as already proposed in
the eighties by Cahill and Roberts [31]. This will be also the
track we will follow for QCD.

The Lagrangian has now the aspect

L = 1

2

[
(∂φ)2 − λ

2
φ4

]
+

∑
f

ψ̄ f
(
i /∂ − gφ − m f

)
ψ f

+ jφ. (7)

We insert no mass term in the bosonic sector as this is
obtained by the self-interaction [32,33]. We assume φ =
φ[ j]. We can write [33]

φ[ j] = φ0(x) +
∫

d4x ′ δφ

δ j (x ′)

∣∣∣∣
j=0

j (x ′)

+1

2

∫
d4x ′d4x ′′ δ2φ

δ j (x ′)δ j (x ′′)

∣∣∣∣
j=0

j (x ′) j (x ′′)

+O( j3). (8)

We leave the fermion sector untouched unless for the depen-
dence on φ. We rewrite the above expansion as

φ[ j] = φ0(x) +
∫

d4x ′�(x − x ′) j (x ′) + O( j2) (9)

and we have recovered the previously discussed case. In fact,
by substituting this expression into the Lagrangian, we obtain
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L = L0 + 1

2

∫
d4x ′ j (x)�(x − x ′) j (x ′)

+
∑
f

ψ̄ f

(
/∂ − gφ0 − g2

∫
d4x ′�(x

−x ′)ψ̄ f (x
′)ψ f (x

′) − m f

)
ψ f + O( j3) (10)

being

L0 = 1

2

[
(∂φ0)

2 − λ

2
φ4

0

]
(11)

the zeroth-order contribution arising from the exact solution
of the quartic theory and provided that

∂2� + 3λφ2
0� = δ4(x − x ′). (12)

The result is that, proceeding in this way, we again integrated
out the bosonic degree of freedom. We observe from Eq. (12)
that φ0(x) cannot be taken to be zero. Then, by an ordering
argument due to the structure of the scalar field propagator,
obtained by solving Eq. (12), we can consider the term φ0(x),
coupled to the fermionic sector, as a small perturbation and
we are left again with a non-local NJL model. We will discuss
this extensively for the case of QCD when the 1- and 2-point
functions will be computed. In this case, the model is just a
leading order approximation to the low-energy behavior of
the theory as we are neglecting higher powers of fermion
fields also arising from products of 2-point functions and
higher order correlation functions of the scalar field.

From the above discussion we see that the NJL model
is obtainable only if we have a zeroth-order solution and we
know the 2-point function. In quantum field theory this prob-
lem is completely equivalent to solve the Dyson–Schwinger
hierarchy of equations at least for the 1- and 2-point func-
tions. This has been accomplished for the scalar field (both
with and without spontaneous symmetry breaking) in [33–
35] and for the Yang–Mills field [35]. For these reasons, we
can easily extend the above result to the case of QCD. In
the next section, we will give explicitly the 1- and 2-point
functions for both cases. Here we show that a similar result
holds also for QCD.

2.3 Quantum chromodynamics

A Yang–Mills field, when minimally coupled to a set of
fermionic fields, has as an effective field theory a non-local
Nambu-Jona-Lasinio model at the leading order, when higher
powers of fermionic fields can be neglected.

The argument runs essentially as in the previous computa-
tion and is based again on the idea put forward by Cahill and
Craig [31]. We can write the QCD Lagrangian in the form

L = −1

4
tr

(
F2

)
− 1

2ξ
(∂ · A)2

−
∑
f

ψ̄ f

(
/∂ − ig

λa

2
/Aa

)
ψ f + jaμA

aμ

+
∑
f

(η̄ f ψ f + ψ̄ f η f ) + Lgh (13)

with Lgh the ghost Lagrangian, provided Fa
μν = ∂μAa

ν −
∂ν Aa

μ + g f abc Ab
μA

c
ν , the parameter ξ fixes the gauge choice

and we are summing on all the flavors f . We have added the
current terms like in the quartic scalar field. We are using the
generator of the group λa that satisfy the relation [λa, λb] =
i f abcλc with f abc the structure constants of the group. For
SU(3), one has a, b, c, . . . = 1 . . . 8, for SU(N) the number
of generators is N 2 − 1. Now, we can proceed like in the
previous case using a Taylor series of functional derivatives.
We will have

Aaν [ j] = Aaν [0] +
∫

d4x ′ δAaν
δ jbκ (x ′)

∣∣∣∣
j=0

jbκ (x ′)

+
∫

d4x ′d4x ′′ δ2Aaν
δ jbκ (x ′)δ j cλ(x ′′)

∣∣∣∣∣
j=0

jbκ (x ′) j cλ(x ′′)

+O( j3) (14)

and we recognize the 1- and 2-point function Aa
ν [0] and

Dab
νκ (x − x ′) = δAa

ν/δ j
bκ(x ′)

∣∣
j=0. Now, turning to the

fermion sector of the QCD Lagrangian, one has for j = 0
and substituting the above gluon field

L f =
∑
f

ψ̄ f

⎛
⎝i /∂ − g

λa

2
Aa

ν [0]

−g2 λa

2

∫
d4x ′Dab

νκ (x

−x ′)
∑
f ′

ψ̄ f ′(x ′)γ κ λb

2
ψ f ′(x ′)

⎞
⎠ ψ f + · · · (15)

Dots imply higher order powers of the fermion fields. We get
a quadratic functional for the gluon field given by

Lg = 1

2

∫
d4x ′ jaμ(x)Dab

μν(x − x ′′) jbν(x ′′) + O( j3). (16)

If we choose the Landau gauge, the 2-point function takes
the form

Dab
μν(x − x ′) = δab

(
ημν − ∂μ∂ν

∂2

)
�(x − x ′) (17)

that permits us to simplify the fermion Lagrangian as

L f = −
∑
f

ψ̄ f

(
/∂ − ig

λa

2
Aa

ν [0]
)

ψ f

−g2
∑
f

∑
f ′

∫
d4x ′�(x
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−x ′)ψ̄ f (x)γκ

λa

2
ψ̄ f ′(x ′)γ κ λa

2
ψ f ′(x ′)ψ f (x)

+ . . . . (18)

We again integrated out the bosonic degrees of freedom and
we can see that we have recovered again a non-local NJL
model with a quartic self-interacting fermion field emerging
directly from QCD.

It is not difficult to see that, to quantize the theory, we need
the n-point functions obtained from the Dyson–Schwinger
equations. Therefore, our aim in the following section will
be to give explicitly these 1- and 2-point functions to evaluate
properly this low-energy limit of QCD, choosing the Landau
gauge. Landau gauge grants the knowledge of exact solutions
for the 1-point function and a simple expression for the 2-
point function . We will also see how an ordering argument
dumps down the coupling between the quark fields and 1-
point function of the Yang–Mills field.

3 1- and 2-point functions for Yang–Mills theory

We start by analyzing the case of the self-interacting scalar
field theory with the equation of motion

�φ + λφ3 = j. (19)

The homogeneous equation with j = 0 admits the exact
solution [32]

φ0(x) = μ (2/λ)
1
4 sn(p · x + θ, i) (20)

being sn an elliptic Jacobi function and μ and θ two integra-
tion constants. This holds provided the following dispersion
relation is satisfied

p2 = μ2
√

λ/2. (21)

This represents a free massive solution notwithstanding we
started from a massless theory. Mass arises from the nonlin-
earity in the equation of motion provided λ stays finite rather
than going to zero. Indeed, standard perturbation theory just
fails to recover it. Moving to quantum field theory, we have to
evaluate the n-point functions obtained by Dyson–Schwinger
equations. Limiting our interest to 1- and 2-point functions,
we will write [35]

∂2G1(x) + λ
(
[G1(x)]3 + 3G2(0)G1(x) + G3(0, 0)

)
= 0

∂2G2(x − y) + λ
(

3[G1(x)]2G2(x − y) + 3G2(0)G2(x − y)

+3G3(0, x − y)G1(x) + G4(0, 0, x − y)) = δ4(x − y). (22)

These equations can be solved exactly by noting that we
have a mass correction 3λG2(0), that we assume small after
renormalization so that we can work with Eq. (20) (see [36]).
Then, the contributions from higher-order n-point functions
are taken to be 0 [35]. We make an approximation at this

stage by neglecting mass corrections. This makes the prop-
agator simpler to work with. Anyway, an exact expression
is given in [36] where it is also shown an exceedingly good
agreement with lattice data for the theory spectrum, both in
3 and 4 dimensions. Granted these points, we will work with
the propagator [32]

�(p) =
∞∑
n=0

Bn

p2 − m2
n + iε

(23)

being

Bn = (2n + 1)2 π3

4K 3(−1)

e−(n+ 1
2 )π

1 + e−(2n+1)π
(24)

and

mn = (2n + 1)(π/2K (−1)) (λ/2)
1
4 μ (25)

being K (−1) = 1.3111028777 . . . an elliptic integral. This
holds provided one fixes the phase θ in the exact solution to
θm = (4m + 1)K (−1) to preserve translation invariance in
the propagating degrees of freedom. It identifies an infinite
set of scalar field theories with a trivial infrared fixed point
in quantum field theory. This propagator gives explicitly the
nNJL model obtained from φ4 model in a general form, solv-
ing completely the low-energy limit for this theory. The local
limit is obtained by taking p → 0 in Eq. (23) that provides

�(x − x ′) = −
∞∑
n=0

Bn

m2
n
δ4(x − x ′). (26)

This can be immediately applied to Yang–Mills theories as
we have exact solutions also for this case [35]. We report here
the Dyson–Schwinger equations for 1- and 2-point functions
for the Yang–Mills theory, in the Landau gauge, as computed
in [35]

Ga
1μ(x) = ηaμχ(x)

Gab
2μν(x − y) = δab

(
gμν − pμ pν

p2

)
�(x − y) (27)

Note that the longitudinal part of the propagator is 0 because
is proportional to gauge fixing parameter that is 0 in the Lan-
dau gauge. This is no more true at finite temperature. Here
the ghost field decouples and φ(x) and �(x − y) satisfy the
Dyson–Schwinger equations [35]

∂2χ(x) + 2Ng2δμ2χ(x) + Ng2χ3(x) = 0

∂2�(x − y) + 2Ng2δμ2�(x − y)

+3Ng2φ2(x − y)�(x − y) = δ4(x − y)

∂2Pam
2 (x − y) = δamδ4(x − y). (28)

Pam
2 (x − y) is the ghost propagator that appears completely

decoupled, χ(x) and �(x−y) coincide exactly with Eqs. (20)
and (23), provided we substitute λ → Ng2, and taking into
account that the evaluation of the δμ2 contribution has been

123



Eur. Phys. J. C (2018) 78 :790 Page 5 of 9 790

given in [36]. This, after renormalization, is proven to yield
just a small correction to the spectrum of the theory given
by Eq. (25). Therefore, we can safely work neglecting it and
we will work with the approximate expression given in Eq.
(23). These solutions confirm that also Yang–Mills theories
seem to share a trivial infrared fixed point. This is supported
by lattice studies of the running coupling [37] from lattice at
644 and 804 with β = 5.7 where the running coupling is seen
to go to zero as momenta lower. A similar result was obtained
in [38]. This latter computation shows a perfect consistency
with an instanton liquid model in agreement with our scenario
as we will see below.

Then, the generating functional for the scalar field at the
leading order, is just a Gaussian generating functional with
the propagator given by Eq. (23). Next-to-leading orders
can also be computed [33]. Similarly, turning our attention
to the Yang–Mills generating functional, we realize that it
also takes the simple Gaussian form, at the leading order,

Z0[ j] = N exp

[
i

2

∫
d4x ′d4x ′′ jaμ(x ′)Dab

μν(x
′ − x ′′) jbν(x ′′)

]
,

(29)

being Dab
μν(x − x ′) has been just obtained from the Dyson–

Schwinger equations (28) and, as already stated, is the same
of Eq. (23) provided we exchange λ → Ng2. This propa-
gator represents a sum of propagators of a free theory and
a mass spectrum of glue excitations identical to that of a
harmonic oscillator. Ghost field just decouples yielding a
free massless propagator. All these properties of the quan-
tum Yang–Mills field correspond to the so-called “decou-
pling solution” [9,39,40] (see also [41] for a discussion)
that also implies a decoupled ghost propagator as we get.
This kind of gluon propagator is the one recovered in lat-
tice computations [3–5]. We yield a comparison in Fig. 1
where we consider just a single fitting parameter given

by m0 = (π/2K (−1))
(
Ng2/2

) 1
4 μ that we take to be

0.436172183 GeV , very near the string tension, generally
taken to be 0.44 GeV .

For the sake of completeness, we report here also the dress-
ing function of the gluon propagator, defined as Z(p2) =
p2�(p), for our propagator and the lattice one. At higher
momenta we do not expect a complete agreement as we are
using an approximate solution, neglecting the effects due to
the running coupling. In Fig. 2 we see the peak in the lat-
tice data at around 1 GeV that is very near to the plateau
formation in our approximation.

The agreement is exceedingly good at low energies as
expected. The exact solutions discussed in this section should
grant a completion of the low-energy limit providing a well-
defined non-local NJL model that we will discuss in the next
section.

Fig. 1 Comparison of our propagators with the lattice data for SU(2)
given in [4] for (128)4 points

Fig. 2 Same as in Fig. 1 but for the dressing function of the gluon
propagator

4 Low-energy limit of QCD

The results discussed in the previous sections permit to derive
the low-energy limit of QCD and this, as said, coincides with
a non-local Nambu–Jona-Lasinio model at the leading order
[12–15]. Here, we exploit this derivation step by step to be as
clearer as possible. The contribution coming from the Gaus-
sian contribution of the gluon field can be stated as

Sg =
∫

d4x ′d4x ′′ jaμ(x ′)Dab
μν(x

′ − x ′′) jbν(x ′′)

=
∞∑
n=0

Bn

∫
d4 p

(2π)4 jaμ(p)
1

p2 − m2
n + iε

jaμ(−p). (30)

This action represents the sum of infinite scalar fields and is
weighted by exponentially damped coefficients Bn . So, we
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assume we can neglect all the contributions coming from the
excitations of the gluon filed at n > 0. Then, taking just the
leading contribution at n = 0, we approximate

Sg =
∫

d4x

[
1

2
(∂σ )2 − 1

2
m2

0σ
2
]

+ Sq , (31)

where we named σ this field arising from the gluon propaga-
tor in the Gaussian generating functional of the Yang–Mills
action with all the higher order excited state in the super-
imposed harmonic oscillator spectrum being exponentially
neglected. This is the contribution arising from the mass gap
of the theory, being m0 = (π/2K (i))

√
σ̃ and will add to the

σ field coming out from the fermion action. Here and in the
following we will assume σ̃ for the string tension (normally
estimated to be about (440 MeV )2). So, quark fields yield

Sq =
∑
q

∫
d4xq̄(x)

[
i /∂ − mq

−g

√
B0

3(N 2
c − 1)

ηaμγ μ λa

2
σ(x)

]
q(x)

−g2
∫

d4x ′�(x − x ′)
∑
q

∑
q ′

q̄(x)
λa

2
γ μq̄ ′(x ′)

×λa

2
γμq

′(x ′)q(x) + O

(
1√
Ng

)
+ O

(
j3

)
. (32)

with the scale factor
√

B0
3(N2

c −1)
arising both from the def-

inition of the field σ , yielding the B0 contribution, and
the normalization condition in the Landau gauge ηaμηaμ =
δab(gμν − pμ pν/p2), arising from the 1-point function. This
damps out the coupling between the 1-point solution and
the quark fields by two magnitude orders with respect to
the other terms, relegating this to a very small perturbation.
Then, our non-local Nambu–Jona-Lasinio model coincides
with that presented in [18], directly from QCD, provided the
form factor is

G(p) = −1

2
g2�(p)

= −1

2
g2

∞∑
n=0

Bn

p2 − (2n + 1)2(π/2K (i))2σ̃ + iε

= G

2
C(p) (33)

being Bn obtained from Eq. (23), C(0) = 1 and 2G(0) = G
the standard Nambu–Jona-Lasinio coupling, fixing in this
way the value ofG through the gluon propagator. In Fig. 3, we
compare this form factor both with the one from an instanton
liquid [42] that is

Fig. 3 Comparison of our form factor with that provided in [42] for√
σ̃ = 0.417 GeV and d−1 = 0.58 GeV

CI (p) = p2d2
{
π

d

dξ

[
I0(ξ)K0(ξ)

−I1(ξ)K1(ξ)

]}2

with ξ = |p|d
2

(34)

being In and Kn Bessel functions. In the following we nor-
malize this function to be 1 at zero momenta dividing it by
CI (0).

The result is strikingly good for our form factor showing
how consistently our technique represents Yang–Mills theory
through instantons. In the low-energy limit recovers a non-
local Nambu–Jona-Lasinio model and maintains the defects
of this approximation as a non-confining behavior. Higher
order corrections can grant to recover this property of the
theory. With our approach these can be computed. Anyhow,
it should be noted a slower decay to infinity of the blue curve
in Fig. 3 but, extending the momentum scale, it seen to run
to zero properly as expected. So, there is no problem in the
high-energy limit.

So, finally we write down the NJL action we will use in
the following as was obtained from QCD

Sq =
∑
q

∫
d4xq̄(x)

[
i /∂ − mq

]
q(x)

+
∫

d4x
∫

d4x ′G(x − x ′)
∑
q

∑
q ′

q̄(x)
λa

2
γ μq̄ ′(x ′)

×λa

2
γμq

′(x ′)q(x). (35)

This can be bosonized in a standard way [43,44] giving
the effective field theory. One introduces the field σ(x) =
Gq̄(x)q(x) and π(x) = Gq̄(x)γ 5τq(x) and this will yield,
after a Fierz rearrangement and considering a two flavor
QCD,
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SN J L =
∫

d4x
1

2
(∂σ )2 − 1

2
m2

0σ
2

+
∫

d4x
∑

q={u,d}
q̄(i /∂ − g(σ + iγ 5π · τ )q)

−1

2

∫
d4x

∫
d4x ′C(x − x ′)

(
σ 2(x ′) + π(x ′)

·π(x ′)
)

. (36)

being τ SU(2) Pauli matrices and neglecting quark masses.
This appears as a well-known quark-meson model and so,
we can add the chemical chiral potential as in [19]

SN J Lc = SN J L +
∫

d4x
∑

q={u,d}
μ5q̄γ 0γ 5q. (37)

Finally, we will perform all the computations at finite tem-
perature.

5 Critical temperature

The potential has the form [18]

V (σ, π) = −iTrln
[
1 − (i /∂ − m̂ − γ0γ5μ5)−1(σ + iγ 5π · τ )

]

+
∫

d4x

[
1

2
(G−1 + m2

0)σ 2 + 1

2G
π · π

]
(38)

that yields the gap equation [18]

v = 4NcN f

m2
0 + 1/G

β−1
∞∑

k=−∞

∑
s=±1

∫
d3 p

(2π)3 C(ωk, | p|s + μ5)

M(ωk, | p|s + μ5)

ω2
k + (| p|s + μ5)2 + M2(ωk, | p|s + μ5)

, (39)

having set

M(| p|s + μ5) = C(| p|s + μ5)v, (40)

being v the vacuum expectation value of the σ field. We
have introduce a sum on the Matsubara frequencies ωk =
(2k + 1)T . Here C(p) is given by G

2 C(p) = G(p) using
Eq. (33) but moving to Euclidean. The restoration of chiral
symmetry is given at v = 0 and so, we have to solve

1 = 4NcN f

m2
0 + 1/G

β−1 g4

G2

∞∑
k=−∞

∑
s=±1

∫
d3 p

(2π)3 C
2(ωk , | p|s + μ5)

1

ω2
k + (| p|s + μ5)2

(41)

to obtain the critical temperature as a function of μ5. We
consider just one term in the form factor (33). This is so
because we want to be consistent with the NJL action just

obtained, noting that higher excitations are exponentially
damped. Then, we will have

C(p) = g2

G

B0

p2 + m2
0

(42)

having moved to Euclidean and being m0 = (π/2K (i))
√

σ̃

the mass gap. We take Z = g2B0/G and then

1 = 4NcN f

m2
0 + 1/G

β−1
∞∑

k=−∞

∑
s=±1

∫
d3 p

(2π)3

× Z2

(ω2
k + (| p|s + μ5)2 + m2

0)
2

1

ω2
k + (| p|s + μ5)2

.

(43)

Matsubara sum can be performed analytically giving

Ip,s = β
π

2m4
0|| p|s + μ5|

tanh
(π

2
β|| p|s + μ5|

)

+β2 π2

8((| p|s + μ5)2 + m2
0)m

2
0

−β2 π2

8((| p|s + μ5)2 + m2
0)m

2
0

× tanh2
(

π

2
β

√
(| p|s + μ5)2 + m2

0

)

−β
π

4

2(| p|s + μ5)
2 + 3m2

0

((| p|s + μ5)2 + m2
0)

3
2 m4

0

× tanh

(
π

2
β

√
(| p|s + μ5)2 + m2

0

)
. (44)

In order to get an understanding, we try to solve the gap
equation with μ5 = 0 and then, we restate it into the equation.
We will have

Ip,1 = β
π

2m4
0 p

tanh
(π

2
βp

)

+β2 π2

8(p2 + m2
0)m

2
0

−β2 π2

8(p2 + m2
0)m

2
0

tanh2
(

π

2
β

√
p2 + m2

0

)

−β
π

4

2p2 + 3m2
0

(p2 + m2
0)

3
2 m4

0

tanh

(
π

2
β

√
p2 + m2

0

)
(45)

that yields for β → 0, after integration on momenta,
∫

d3 p

(2π)3 Ip,1
β→0= β2 π2

8m2
0

� (46)

being � a needed cut-off to regularize divergent integrals.
This cut-off must be chosen so that the product β� is kept
constant while � runs to infinity. Then,

Tc = Z2 NcN f

m2
0 + 1/G

g4

G2

π2

2m2
0

�. (47)
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We see that, in this case, the gap equation admits always
a solution whatever is the coupling g and chiral symmetry
is broken. As expected, temperature runs to infinity as the
cut-off itself.

When μ5 is turned on, one has, taking the limit β → 0,

Ip,s = β2 π2

4m4
0

+ β2 π2

8((| p|s + μ5)2 + m2
0)m

2
0

−β2 π2

8

2(| p|s + μ5)
2 + 3m2

0

((| p|s + μ5)2 + m2
0)m

4
0

. (48)

and, after integration on momenta, we get

∑
s=±1

∫
d3 p

(2π)3 Ip,s = β2 1

4m2
0

� + β2 π

8m3
0

(μ2
5 − m2

0). (49)

This yields

Tc = Z2 NcN f

m2
0 + 1/G

g4

G2

(
1

4m2
0

� + π

8m3
0

(μ2
5 − m2

0)

)
. (50)

This is the main result of the paper showing that the crit-
ical temperature increases with the chiral chemical poten-
tial in agreement with Ruggieri and Peng [30], with lat-
tice results [25,26] and solution of Dyson–Schwinger equa-
tions [29].

It is interesting to note the dependence on the mass gap
m0. This equation seems to imply that |μ5| ≥ m0 but for
the all practical purposes, the cut-off � is large enough with
respect to the mass gap to grant always a physical value for
Tc also when |μ5| < m0.

6 Conclusions

Using recent studies on lattice, we were able to derive the
low-energy limit of QCD. The result is given by a nonlocal
NJL model that is amenable to analytical computations. In
this way, we are able to conclude that the critical temperature
for chiral symmetry breaking in QCD increases as the square
of the chiral chemical potential in agreement with recent lat-
tice studies. This result supports the conclusions presented in
a recent work [30] that gets a preferential choice of a renor-
malization scheme.

Acknowledgements I would like to thank Marco Ruggieri for the
insightful discussions about this matter that motivated this paper.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.
Funded by SCOAP3.

References

1. B. Lucini, M. Teper, U. Wenger, JHEP 0406, 012 (2004).
arXiv:hep-lat/0404008

2. Y. Chen et al., Phys. Rev. D 73, 014516 (2006).
arXiv:hep-lat/0510074

3. I.L. Bogolubsky, E.M. Ilgenfritz, M. Muller-Preussker, A. Stern-
beck, PoS LAT2007, 290 (2007). arXiv:0710.1968 [hep-lat]

4. A. Cucchieri, T. Mendes, PoS LAT2007, 297 (2007).
arXiv:0710.0412 [hep-lat]

5. O. Oliveira, P.J. Silva, E.M. Ilgenfritz, A. Sternbeck, PoS LAT2007,
323 (2007). arXiv:0710.1424 [hep-lat]

6. J.M. Cornwall, Phys. Rev. D 26, 1453 (1982)
7. J.M. Cornwall, J. Papavassiliou, D. Binosi, The Pinch Technique

and its Applications to Non-Abelian Gauge Theories (Cambridge
University Press, Cambridge, 2010)

8. D. Dudal, J.A. Gracey, S.P. Sorella, N. Vandersickel, H. Verschelde,
Phys. Rev. D 78, 065047 (2008). arXiv:0806.4348 [hep-th]

9. M. Frasca, Phys. Lett. B 670, 73 (2008). arXiv:0709.2042 [hep-th]
10. M. Frasca, Mod. Phys. Lett. A 24, 2425–2432 (2009).

arXiv:0903.2357 [math-ph]
11. M. Frasca, Int. J. Mod. Phys. E 18, 693 (2009). arXiv:0803.0319

[hep-th]
12. M. Frasca, JHEP 1311, 099 (2013). arXiv:1309.3966 [hep-ph]
13. M. Frasca, Nucl. Phys. Proc. Suppl. 234, 329 (2013).

arXiv:1208.3756 [hep-ph]
14. M. Frasca, AIP Conf. Proc. 1492, 177 (2012). arXiv:1208.0486

[hep-ph]
15. M. Frasca, Phys. Rev. C 84, 055208 (2011). arXiv:1105.5274 [hep-

ph]
16. B. Lucini, M. Panero, Phys. Rept. 526, 93 (2013). arXiv:1210.4997

[hep-th]
17. D. Gomez Dumm, N.N. Scoccola, Phys. Rev. C 72, 014909 (2005).

arXiv:hep-ph/0410262
18. T. Hell, S. Roessner, M. Cristoforetti, W. Weise, Phys. Rev. D 79,

014022 (2009). arXiv:0810.1099 [hep-ph]
19. M. Ruggieri, Phys. Rev. D 84, 014011 (2011). arXiv:1103.6186

[hep-ph]
20. R. Gatto, M. Ruggieri, Phys. Rev. D 85, 054013 (2012).

arXiv:1110.4904 [hep-ph]
21. K. Fukushima, M. Ruggieri, R. Gatto, Phys. Rev. D 81, 114031

(2010). arXiv:1003.0047 [hep-ph]
22. M.N. Chernodub, A.S. Nedelin, Phys. Rev. D 83, 105008 (2011).

arXiv:1102.0188 [hep-ph]
23. L. Yu, H. Liu, M. Huang, Phys. Rev. D 94(1), 014026 (2016).

arXiv:1511.03073 [hep-ph]
24. L. Yu, J. Van Doorsselaere, M. Huang, Phys. Rev. D 91(7), 074011

(2015). arXiv:1411.7552 [hep-ph]
25. V.V. Braguta, E.M. Ilgenfritz, A.Y. Kotov, B. Petersson, S.A.

Skinderev, Phys. Rev. D 93(3), 034509 (2016). arXiv:1512.05873
[hep-lat]

26. V.V. Braguta, V.A. Goy, E.-M. Ilgenfritz, A.Y. Kotov, A.V.
Molochkov, M. Muller-Preussker, B. Petersson, JHEP 1506, 094
(2015). arXiv:1503.06670 [hep-lat]

27. V.V. Braguta, A.Y. Kotov, Phys. Rev. D 93(10), 105025 (2016).
arXiv:1601.04957 [hep-th]

28. M. Hanada, N. Yamamoto, PoS Lattice 2011, 221 (2011).
arXiv:1111.3391 [hep-lat]

29. S.S. Xu, Z.F. Cui, B. Wang, Y.M. Shi, Y.C. Yang, H.S. Zong, Phys.
Rev. D 91(5), 056003 (2015). arXiv:1505.00316 [hep-ph]

30. M. Ruggieri, G. X. Peng. arXiv:1602.03651 [hep-ph]
31. R.T. Cahill, C.D. Roberts, Phys. Rev. D 32, 2419 (1985)
32. M. Frasca, J. Nonlinear Math. Phys. 18, 291 (2011).

arXiv:0907.4053 [math-ph]

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/hep-lat/0404008
http://arxiv.org/abs/hep-lat/0510074
http://arxiv.org/abs/0710.1968
http://arxiv.org/abs/0710.0412
http://arxiv.org/abs/0710.1424
http://arxiv.org/abs/0806.4348
http://arxiv.org/abs/0709.2042
http://arxiv.org/abs/0903.2357
http://arxiv.org/abs/0803.0319
http://arxiv.org/abs/1309.3966
http://arxiv.org/abs/1208.3756
http://arxiv.org/abs/1208.0486
http://arxiv.org/abs/1105.5274
http://arxiv.org/abs/1210.4997
http://arxiv.org/abs/hep-ph/0410262
http://arxiv.org/abs/0810.1099
http://arxiv.org/abs/1103.6186
http://arxiv.org/abs/1110.4904
http://arxiv.org/abs/1003.0047
http://arxiv.org/abs/1102.0188
http://arxiv.org/abs/1511.03073
http://arxiv.org/abs/1411.7552
http://arxiv.org/abs/1512.05873
http://arxiv.org/abs/1503.06670
http://arxiv.org/abs/1601.04957
http://arxiv.org/abs/1111.3391
http://arxiv.org/abs/1505.00316
http://arxiv.org/abs/1602.03651
http://arxiv.org/abs/0907.4053


Eur. Phys. J. C (2018) 78 :790 Page 9 of 9 790

33. M. Frasca, Eur. Phys. J. C 74, 2929 (2014). arXiv:1306.6530 [hep-
ph]

34. M. Frasca, Eur. Phys. J. Plus 131(6), 199 (2016). https://doi.org/
10.1140/epjp/i2016-16199-x. arXiv:1504.02299 [hep-ph]

35. M. Frasca, Eur. Phys. J. Plus 132(1), 38 (2017) Erratum: [Eur. Phys.
J. Plus 132(5), 242 (2017)]. arXiv:1509.05292 [math-ph]

36. M. Frasca, Nucl. Part. Phys. Proc. 294–296, 124 (2018).
arXiv:1708.06184 [hep-ph]

37. I.L. Bogolubsky, E.M. Ilgenfritz, M. Muller-Preussker, A. Stern-
beck, Phys. Lett. B 676, 69 (2009). arXiv:0901.0736 [hep-lat]

38. P. Boucaud, F. De Soto, A. Le Yaouanc, J.P. Leroy, J. Micheli,
H. Moutarde, O. Pene, J. Rodriguez-Quintero, JHEP 0304, 005
(2003). arXiv:hep-ph/0212192

39. A.C. Aguilar, A.A. Natale, JHEP 0408, 057 (2004).
arXiv:hep-ph/0408254

40. P. Boucaud, T. Brüntjen, J.P. Leroy, A. Le Yaouanc, A.Y. Lokhov, J.
Micheli, O. Pène, J. Rodriguez-Quintero, JHEP 0606, 001 (2006).
arXiv:hep-ph/0604056

41. A. Weber, Phys. Rev. D 85, 125005 (2012). arXiv:1112.1157 [hep-
th]

42. T. Schäfer, E.V. Shuryak, Rev. Mod. Phys. 70, 323 (1998).
arXiv:hep-ph/9610451

43. D. Ebert, H. Reinhardt, M.K. Volkov, Prog. Part. Nucl. Phys. 33, 1
(1994)

44. V. Bernard, U.G. Meissner, A.A. Osipov, Phys. Lett. B 324, 201
(1994). arXiv:hep-ph/9312203

123

http://arxiv.org/abs/1306.6530
https://doi.org/10.1140/epjp/i2016-16199-x
https://doi.org/10.1140/epjp/i2016-16199-x
http://arxiv.org/abs/1504.02299
http://arxiv.org/abs/1509.05292
http://arxiv.org/abs/1708.06184
http://arxiv.org/abs/0901.0736
http://arxiv.org/abs/hep-ph/0212192
http://arxiv.org/abs/hep-ph/0408254
http://arxiv.org/abs/hep-ph/0604056
http://arxiv.org/abs/1112.1157
http://arxiv.org/abs/hep-ph/9610451
http://arxiv.org/abs/hep-ph/9312203

	Nonlocal Nambu–Jona-Lasinio model and chiral chemical potential
	Abstract 
	1 Introduction
	2 Derivation of the NJL model
	2.1 Yukawa model
	2.2 φ4 model
	2.3 Quantum chromodynamics

	3 1- and 2-point functions for Yang–Mills theory
	4 Low-energy limit of QCD
	5 Critical temperature
	6 Conclusions
	Acknowledgements
	References




