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Abstract We analyze the isothermal property in static fluid
spheres within the framework of the modified f (R, T ) theory
of gravitation. The equation of pressure isotropy of the stan-
dard Einstein theory is preserved however, the energy den-
sity and pressure are expressed in terms of both gravitational
potentials. Invoking the isothermal prescription requires that
the isotropy condition assumes the role of a consistency con-
dition and an exact model generalizing that of general rela-
tivity is found. Moreover it is found that the Einstein model
is unstable and acausal while the f (R, T ) counterpart is
well behaved on account of the freedom available through
an additional coupling constant. The case of a constant spa-
tial gravitational potential is considered and the complete
model is determined. This model is markedly different from
its Einstein counterpart which is known to be isothermal.
Dropping the restriction on the density and imposing a lin-
ear barotropic equation of state generates an exact solution
and consequently a stellar distribution as the vanishing of
the pressure is possible and a boundary hypersurface exists.
Finally we comment on the case of relaxing the equation of
state but demanding an inverse square fall-off of the density
– this case proves intractable.

1 Introduction

Phenomenological theories of gravity have been on the
increase in recent times. Such ideas purport to resolve the
problems which are shortcomings of the standard Einstein’s
general theory of relativity. Specifically explaining the late
time accelerated expansion of the universe remains an open
question despite the successes of general relativity in satisfy-
ing fundamental experiments such as solar system tests. The
seminal review article by Debono and Smoot [1] considers
these anomalies and examines the question ‘why consider
alternative theories’. The accelerated expansion of the uni-
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verse has been confirmed by a number of programmes such as
supernovae Type 1a data [2–4], Baryon Acoustic Oscillations
[5] and the WMAP survey involving the cosmic microwave
background [6]. In order to resolve the difficulty, proposals of
exotic matter fields have emerged. These include dark energy,
dark matter, quintessence, phantom fields and the like. These
latter fields do not as yet enjoy any experimental support even
though their motivations may be sound.

An alternative approach is to reconsider the fundamen-
tal geometry prescripts. A modification of the action prin-
ciple may have the potential to resolve the anomalies with
the standard theory. For example, in f (R) theories [7] the
action involves a polynomial in the Ricci scalar. It has been
demonstrated that such an approach may indeed explain the
accelerated expansion of the universe. It has been shown by
Goswami et al. [8] that the Buchdahl upperbound [9,10] for
the mass-radius ratio of general relativity may be improved
in f (R) theory with more matter per unit mass being admit-
ted. The results also have implications for our understand-
ing of the dark matter problem. The serious drawback of
f (R) theory is the appearance of higher derivative terms
which correspond to ghosts. It is usual in gravity theory to
have at most second order equations of motion. Moreover
it has been demonstrated [11] that f (R) theory is confor-
mally related to the scalar–tensor field theory of Brans and
Dicke.

The most general tensor theory of gravity admitting at
most second order derivatives is the Lovelock theory [12,13].
The action consists of polynomials in the scalar invariants
constructed from the Riemann tensor, Ricci tensor and the
Ricci scalar. The drawback in this formalism is that the higher
curvature terms are only active in dimensions higher than 4
provided that the field equations are generated from the met-
ric tensor only. If the Lagrangian includes coupling with a
scalar field such as a dilatonic field then the dynamics and
geometry in 4 dimensions are influenced by the higher curva-
ture effects [14]. Lovelock theory reduces to standard general
relativity in dimensions 3 and 4 if no scalar fields are involved
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in the action and makes an active contribution to the dynamics
from dimension 5 upwards. A special case of the Lovelock
polynomial is the second order term known as the Gauss–
Bonnet term that appears in the effective action of heterotic
string theory [15]. The exterior field for a spherically sym-
metric star has been established by Boulware and Deser [16]
for the neutral sphere and by Wiltshire [17] for the charged
case in the mid 1980s. However, only recently were interior
metrics found for perfect fluid astrophysical objects [18–20]
in Einstein–Gauss–Bonnet gravity that could be matched to
the Boulware–Deser [16] exterior metric.

If a scalar tensor action is sought then the most general
such theory yielding second order equations of motion is
due to Horndeski [21] and consists of the so called Fab Four
components of the effective lagrangian. Several studies into
its cosmological implications have been undertaken [22] and
of late compact objects such as black holes and neutron stars
were investigated by Silva et al. [23]. Tensor multi-scalar
theory of gravity has also recently come into vogue [24].

Harko et al. [25] have proposed an action that is a function
of the Ricci scalar R and the trace of the energy momentum
tensor T which goes by the name f (R, T ) gravity. The equa-
tions of motion are indeed second order however the conser-
vation of energy is sacrificed. This is ostensibly a drawback
of the theory. However, it was argued by Rastall [26] that
spacetime curvature could account for non-compliance with
the Newtonian view of energy conservation [26–28]. Exten-
sive investigations into the f (R, T ) paradigm have been con-
ducted in recent times [29]. The effect of the f (R, T ) modi-
fication on radiating stars was discussed by Yousaf et al. [30].
Moreover Yousaf and other collaborators [31–37] have con-
sidered compact structures within this framework but with
anisotropic pressures.

We examine the physically important case of perfect fluids
displaying the isothermal property that is an inverse square
law fall-off of density as well as a linear equation of state.
In such universes galaxies are considered as pointlike struc-
tures. By design such models can only describe cosmological
fluids as no hypersurface of vanishing pressure indicating a
boundary is present.

The paper is structured as follows: Firstly we review the
essential ingredients of the f (R, T ) framework. We then
derive the isothermal model in f (R, T ) theory and com-
pare with the solution for Einstein gravity. In the next sec-
tion we probe the consequences of a constant gravitational
potential since it is known in Einstein gravity that a nec-
essary and sufficient condition for isothermal behavior is a
constant spatial gravitational potential. Finally we impose a
linear barotropic equation of state on our model but without
any restriction on the density profile. Before we conclude
with a discussion, we comment on the case of an inverse
square fall-off of the density but without imposing an equa-
tion of state.

2 Elements of f (R, T ) theory

The f (R, T ) gravity action is given by

S = 1

16π

∫
d4x f (R, T )

√−g +
∫

d4xLm
√−g, (1)

where f (R, T ) is an arbitrary function of the Ricci scalar R,
and T is the trace of the energy momentum tensor Tμν . The
Lagrangian density Lm for the matter field is defined as

Tμν = − 2√−g

δ
(√−gLm

)
δgμν

, (2)

and its trace by T = gμνTμν . The Lagrangian density Lm of
matter has the form

Tμν = gμνLm − 2
∂ (Lm)

∂gμν
, (3)

and is dependent only on the metric tensor components. Vari-
ation of the action (1) with respect to the metric gμν generates
the field equations

fR(R, T )Rμν − 1

2
f (R, T )gμν + (gμν� − ∇μ∇ν) fR(R, T )

= 8πTμν − fT (R,T )Tμν − fT (R,T )�μν, (4)

where fR(R, T ) = ∂ f (R, T )/∂R and fT (R, T ) =
∂ f (R, T )/∂T . ∇μ denotes covariant differentiation and the
box operator �, is defined via

� ≡ ∂μ(
√−ggμν∂ν)/

√−g, and �μν = gαβδTαβ/δgμν.

The covariant divergence of Eq. (4) produces the equation

∇μTμν = fT (R, T )

8π − fT (R, T )
[(Tμν + �μν)∇μ

× ln fT (R, T )∇μ�μν − (1/2)gμν∇μT ]. (5)

which clearly shows that energy is not conserved in this sys-
tem. With the help of Eq. (3) the quantity �μν is expressible
as

�μν = −2Tμν + gμνLm − 2gαβ ∂2Lm

∂gμν∂gαβ
. (6)

For the purposes of this investigation we consider a perfect
fluid source with energy–momentum tensor

Tμν = (ρ + p)uμuν − pgμν, (7)

where p is the pressure and ρ the energy density of strange
matter, with uμuμ = 1 and uμ∇νuμ = 0. If we take the
matter Lagrangian density to be Lm = −p, and the Eq. (6)
we obtain the relationship

�μν = −2Tμν − ρgμν. (8)
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Following Harko et al we consider the simplest version of
f (R, T ) namely f (R, T ) = R+2χT where χ is a coupling
constant. The field equations are now given by

Gμν = 8πTμν + χTgμν + 2χ(Tμν + pgμν), (9)

where χ can be positive or negative. Equation (5) can now
be written as

(8π + 2χ)∇μTμν = −2χ

[
∇μ(pgμν) + 1

2
gμν∇μT

]
(10)

and in the case of vanishing χ the law of energy conservation
in Einstein gravity is recovered.

3 Field equations

In coordinates (t, r, θ, φ) the most general spherically sym-
metric line element reads as

ds2 = eν(r)dt2 − eλ(r)dr2 − r2(dθ2 + sin2 θdφ2), (11)

where ν(r) and λ(r) are arbitrary functions of the radial coor-
dinate r only. We consider a comoving fluid 4-velocity field
ua = e−ν/2δa0 and a perfect fluid source with energy momen-
tum tensor given in Eq. (4). Additionally we use geometrized
units such that the gravitational constant G and the speed of
light c are taken as unity. Now Eqs. (9) and (11) generate the
field equations

e−λ

(
λ′

r
− 1

r2

)
+ 1

r2 = (8π + 3χ) ρ − χp, (12)

e−λ

(
ν′

r
+ 1

r2

)
− 1

r2 = (8π + 3χ) p − χρ, (13)

where the prime denotes the derivative with respect to the
radial coordinate, r . Introducing the transformation e−λ =
1 − 2m(r)/r we obtain

m′ = 4πr2ρ + χ(3ρ − p)r2

2
, (14)

where the function m = m(r) represents the gravitational
mass. An additional equation may be written from (10)

dp

dr
+ (ρ + p)

ν′

2
= χ

8π + 2χ
(p′ − ρ′), (15)

that reduces to the energy conservation of general relativity
when χ = 0. It is possible to rewrite Eqs. (12) and (13) in
terms of energy density (ρ) and pressure (p) in the form

ρ = e−λ

((8π + 3χ)2 − χ2)r2

(
2(χ + 4π)(eλ − 1)

+ r((8π + 3χ)λ′ + χν′)
)
, (16)

p = e−λ

((8π + 3χ)2 − χ2)r2

(
2(χ + 4π)(1 − eλ)

+ r(χλ′ + (8π + 3χ)ν′)
)
, (17)

while the equation of pressure isotropy Gr
r = Gθ

θ reduces to

r2(2ν′′ + ν′2 − ν′λ′) − 2r(ν′ + λ′) + 4(eλ − 1) = 0. (18)

Observe that the equation of isotropy is the same for the ordi-
nary Einstein’s equations with a perfect fluid source. There-
fore any of the well known solutions reported over the past
century (for example see Delgaty and Lake [38]) will satisfy
(18).

4 Solution of the field equations with the isothermal
property

A perfect fluid is said to be isothermal if the density and
pressure both obey the inverse square law fall-off and conse-
quently display the equation of state p = γρ for some real
number 0 < γ < 1 [39]. Accordingly let us insert

p = A

r2 and ρ = B

r2 (19)

where A and B are arbitrary parameters (at this stage) into
Eqs. (16) and (17). Observe that the field equations are essen-
tially 3 in number and they contain four unknown functions.
Accordingly, specifying two of the quantities, namely the
density and pressure, appears to be over-determining the
system. This is true, however, we shall utilise the pressure
isotropy equation as a consistency condition and determine
the relationship between A and B for the isothermal prop-
erty to hold. This is a similar route followed by Saslaw et al.
[39] in dealing with isothermal spheres in standard Einstein
gravity.

Introducing (19) into (12) yields the differential equation

e−λ(−1 + eλ + rλ′) = 8πB + χ(3B − A) (20)

which is written only in terms of the potential λ. With the help
of the substitution eλ = β(r), Eq. (20) assumes the form

rβ ′ + (1 − w1)β
2 − β = 0 (21)

where we have set w1 = 8πB + χ(3B − A). Equation (21)
is a Riccati equation and is solvable in the form

β = eλ = C1r

C1r(w1 − 1) − 1
(22)

where C1 is a constant of integration. Putting (19) into (13)
simplifies it to the form
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e−λ(1 − eλ + rν′) = w2 (23)

where we have labelled w2 = 8π A + χ(3A − B).
Now inserting (22) into (23) generates the solution

eν = (1 − C1r(w1 − 1))
w2+1
1−w1

r
. (24)

The isotropy equation (18) becomes

C1r(w
2
1 + 6w1w2 + (w2 − 4)w2) − w1 − 5w2 = 0 (25)

and for consistency it is required that the coefficient of r and
the constant term simultaneously vanish. This is achieved for

{(w1, w2)} = {(0; 0), (5,−1)} (26)

which translates to

A = χ − 4π

4(χ2 + 6πχ + 8π2)
and B = 7χ + 20π

4(χ2 + 6πχ + 8π2)
(27)

expressing A and B in terms of the coupling constant χ .
To ensure a subluminal sound speed requires 0 < γ =

A
B < 1 and this constrains the coupling constant to χ <

−4π or χ > 4π for the stability of the model. A positive
pressure exists for −4π < χ < − 20

7 π or χ > −2π while
the positivity of the energy density is satisfied for −4π <

χ < −2π or χ > 4π . Reconciling all of these boils down to
χ > 4π for a stable causal configuration of perfect fluid with
a linear barotropic equation of state and with the isothermal
property. The mass of the infinite sphere behaves as

m = χ − 4π

4
(
χ2 + 6πχ + 8π2

)r + K (28)

for some constant K . Observe that in the interval of validity
above, the mass profile is a monotonically increasing func-
tion.

5 The Einstein isothermal model

The Saslaw et al. isothermal solution in Einstein gravity is
given by the geometric variables

eν = Hr4α/(1+α) eλ = 1 + 4α

(1 + α)2 (29)

and dynamical quantities

8πρ = 4α

4α + (1 + α)2

1

r2 8πp = 4α2

4α + (1 + α)2

1

r2 (30)

where H is an integration constant and α = p
ρ

is a propor-

tionality constant obeying 0 < α < 1. The positivity of eλ

requires α < −3 − 2
√

2 or α > −3 + 2
√

2. Moreover, a
positive density demands the window −3 − 2

√
2 < α <

−3 + 2
√

2 or α > 0 while the interval α < −3 − 2
√

2 or
−3 + 2

√
2 < α < 0 guarantees a positive pressure. Finally

to ensure a causal stable fluid the constraint 0 < α < 1 must
be enforced. Now routine checks show that there exists no
values of α such that all these constraints may be simultane-
ously satisfied in some interval on the real line. Accordingly
the Saslaw model violates one or more physical requirements
and is therefore not realistic. The modified gravity model we
have presented in the previous section does not suffer this
defect provided that the coupling constant satisfies χ > 4π .

6 Constant gravitational potential

It has been shown that a necessary and sufficient condition
for isothermal behaviour, namely an inverse square fall off
of the density and pressure, is a constant spatial gravitational
potential λ. This is valid in Einstein theory and the more
general Lovelock theory [40]. But what are the consequences
of a constant potential in f (R, T ) theory? We now examine
this question.

Setting Z = k for some constant k in the isotropy equation
(18) gives

eν = c2r
2−2

√
2−k

(
c1 + r2

√
2−k

)
2 (31)

for the remaining temporal potential. Note that k is now
restricted through 0 < k < 2.

Introducing the substitutions a1 = 2(χ + 4π) and a2 =
8π + 3χ the density and pressure are given by

ρ =
2χ

(√
2 − k

(
1 − 2c1

c1+r2
√

2−k

)
+ k

)
+ 8π(k − 1)

8k(χ + 2π)(χ + 4π)
(32)

p =
2a2

(
c1(1 − √

2 − k) + (
1 + √

2 − k
)
r2

√
2−k

)
− (k − 1)a1(c1 + r2

√
2−k )

8k(χ + 2π)(χ + 4π)(c1 + r2
√

2−k )

(33)

respectively while the sound speed has the remarkably sim-
ple constant value

dp

dρ
= 8π

χ
+ 3 (34)

and to ensure causal behaviour 0 <
dp
dρ < 1 it is demanded

that χ obeys −4π < χ < − 8π
3 or approximately −12.566 <

χ < −8.378.
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Fig. 1 Density versus radial value r

The expressions governing the energy conditions have the
form

ρ − p = c1
(
k + √

2 − k − 2
) + (

k − √
2 − k − 2

)
r2

√
2−k

2k(χ + 2π)
(
c1 + r2

√
2−k

) (35)

ρ + p =
(√

2 − k + 1
)
r2

√
2−k − c1

(√
2 − k − 1

)
k(χ + 4π)

(
c1 + r2

√
2−k

) (36)

ρ + 3p =
χ

((−k + 5
√

2 − k + 6
)
r2

√
2−k − c1

(
k + 5

√
2 − k − 6

))

2k(χ + 2π)(χ + 4π)
(
c1 + r2

√
2−k

)

+
4π

((−k + 3
√

2 − k + 4
)
r2

√
2−k − c1

(
k + 3

√
2 − k − 4

))

2k(χ + 2π)(χ + 4π)
(
c1 + r2

√
2−k

) . (37)

The active gravitational mass is calculated as

m =
r3

(
−2

√
2 − kχ 2F1

(
1, 3

2
√

2−k
; 1 + 3

2
√

2−k
;− r2

√
2−k

c1

)
+ (

k + √
2 − k

)
χ + 4π(k − 1)

)

12k(χ + 2π)(χ + 4π)
(38)

where 2F1 is the familiar hypergeometric function.
In view of the complexity of the expressions for the

dynamical quantities we conduct a qualitative study with the
aid of graphical plots. The following parameter values have
been used to generate the plots c1 = 1, c2 = 2 and k = 1.5.
These choices have been made following empirical fine tun-
ing. Additionally we consider three different values for the
coupling χ namely χ = −12 (thick curve), χ = −10 (thin
curve) and χ = 0 (dashed curve). These values of χ are so
chosen to coincide with the interval of validity ensuring a
subluminal sound speed determined by Eq. (34). We provide
two independent choices of χ to indicate that the graphical
profile is generic in the causally valid region. The third plot
χ = 0 corresponds to the model in the standard Einstein
framework.

Fig. 2 Pressure versus radial value r

Fig. 3 Sound speed squared versus radial value r

Analysis of the plots: Figs. 1 and 2 display the density
and pressure profile respectively and it can be observed that
in all cases of χ the curves are positive and increasing. The
absence of a surface of vanishing pressure is evident and
is characteristic of isothermal fluids. However, neither the
density nor pressure appear to obey the inverse square law
fall off from the center. Figure 3 depicts only curves for the
f (R, T ) cases as the Einstein case is meaningless. the sound
speed values are in the acceptable range of 0 to 1 to prevent a
violation of causality. While the weak, strong and dominant
energy conditions (Figs. 4, 5, 6) appear to be well behaved
for the f (R, T ) cases, the weak energy condition is violated
for the Einstein case. Finally the plot of the mass profile
(Fig. 7) is reasonable. The mass increases more rapidly in
the case of the f (R, T ) theory than compared to its Einstein
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Fig. 4 Weak energy condition versus radial value r

Fig. 5 Strong energy versus radial value r

Fig. 6 Dominant energy condition versus radial value r

counterpart. In summary, the f (R, T ) case displays more
pleasing physical behavior than the Einstein case.

7 Equation of state

In the Einstein framework, imposing the equation of state
p = αρ determines a relationship between the metric poten-

Fig. 7 Mass versus radial value r

tials ν and λ. It is possible to isolate ν′ and substitute this into
the equation of pressure isotropy – also an equation connect-
ing ν and λ. The caveat in this approach is that the resulting
nonlinear differential equation is difficult to integrate and
to date no unique general solution is known. An alternative
approach is to specify one of the four variables ν, λ, p or ρ

and then to solve the system to reveal the remaining three.
Finally if the density or pressure equation is solvable for r in
terms of ρ or p then a linear barotropic equation can easily be
determined albeit that the expressions are lengthy. For exam-
ple, if the density profile is prescribed in such a way that the
resulting equation can be arranged as a polynomial equation
up to quartic order in r , then the equation can be solved for
r in terms of ρ. Substituting r in the expression for p gives
the equation of state. This equation of state is clearly not the
most general one for p = αρ but represents a special case.
For example see the seminal work of Tolman [41] wherein
some Tolman models do indeed display equations of state.
Note that in the Einstein case, specifying the density is tanta-
mount to specifying the potential λ as the Gt

t = T t
t equation

only contains λ and ρ and is well known that the left-hand
side may be expressed as an entire derivative. This is not the
case in the f (R, T ) scenario where both ν and λ appear in
the same equation with ρ. For this reason the incompressible
fluid (constant density) solution is still unknown in f (R, T )

gravity. However, there is some extra latitude present through
the constant χ and an equation of state may be determined
as shall be demonstrated below.

Imposing the equation of state p = αρ results in the rela-
tionship

rν′ = (χ − αa2)rλ
′ − (α + 1)a1(e

λ − 1) (39)

expressing ν in terms of λ. Substituting (39) into the isotropy
equation (18) generates the differential equation

(α + 1)2a2
1β4 + β2 ((α + 1)a1(αa1 + a1 − 4)

+ (α + 1)a1r(2αa2 − 2χ − 1)β ′ − 4
)

123



Eur. Phys. J. C (2018) 78 :700 Page 7 of 8 700

+ rβ
(
2r(χ − αa2)β

′′ − β ′((α + 1)a1(2αa2 − 2χ + 1)

− 2αa2 + 2χ + 2))

− 2((α + 1)a1(αa1 + a1 − 2) − 2)β3

+ r2(αa2 − χ)(αa2 − χ + 3)β ′2 = 0 (40)

governing the behaviour of eλ = β. Obtaining the general
solution to (40) has proved elusive in view of the nonlinear-
ity. The method of Lie group analysis was invoked however
no symmetries could be detected immediately. However, on
careful observation it is seen that in some cases (40) may be
solved explicitly.

For the special case α = χ
a2

the isotropy equation becomes

β(β − 1)(c2
1β + c2) − rβ ′(c1(β + 1) + 2) = 0 (41)

where we have redefined c1 = (α + 1)a1 and c2 = −(α +
1)a1(αa1 +a1 −4)+4. Dividing throughout by the first term
on the left we may rearrange Eq. (41) to the form

β ′
(

− (c1 + 2)

c2β
+ 2(c1 + 1)

(c2
1 + c2)(β − 1)

+ c3
1(2c1 + c2

1 − c2)

c2(c2
1 + c2)(c2

1β + c2)

)

= 1

r
(42)

with the help of partial fractions. The solution by quadratures
may now be obtained implicitly as

(β − 1)

2(c1+1)

(c2
1+c2) (c2

1β + c2)

c1(c2
1+2c1−c2)

c2(c2
1+c2)

β
c1+2
c2

= Kr (43)

where K is a constant of integration. Equation (43) is essen-
tially an algebraic equation in β(r). Clearly for judicious
choices of the constants c1 and c2, Eq. (43) may be solved
explicitly to find the gravitational potential function β.

As an example, consider the choice c1 = −2 and conse-
quently c2 = −8 follows. Now from c1

α+1 = 2(χ + 4π) and
the original assumption α = χ

a2
we solve simultaneously and

obtain the pair

{(χ, α)} =
⎧⎨
⎩

⎛
⎝

(
∓√

9 + 16π + 64π2 − 24π − 3
)

8

⎞
⎠ ,

(
±√

9 + 16π + 64π2 − 3

8π

)}
(44)

or given approximately numerically as {(χ, α)} = {(−13.

0854, 0.926495), (−6.51411,−1.16523)}. We must discard
the negative value of α since the causality criterion 0 < α <

1 will be violated. However, note that we are able to obtain
the value α = 0.926 which indeed guarantees a subluminal
sound speed. For this choice of c2 Eq. (43) is solvable and
the metric potential evaluates to

β = eλ = 1 − 4K 2r2

1 − 2K 2r2 (45)

which corresponds to the Vaidya–Tikekar [42] spheroidal
geometry utilised to model superdense relativistic stars. In
order to determine the remaining gravitational potential it is
prudent to introduce the transformations x = 2K 2r2, Z(x) =
e−λ and eν = y2(x) whence the equation of pressure isotropy
assumes the form

4x2Z ÿ + 2x2 Ż ẏ + (Ż x − Z + 1)y = 0 (46)

and is now a second order linear differential equation in y.
Inserting Z = 1−x

1−2x into (46) generates the potential

y = c1
√

1 − x + 2c2

(√
1 − 2x − √

2(1 − x) log

×
(

2
√

1 − x + √
2 − 4x

))
(47)

or in the canonical form

eν = c1v1 + 2c2

(
v2 − √

2v1 log
(

2v1 + √
2v2

))
(48)

where we have put v1=
√

1 − 2K 2r2 and v2 = √
1 − 4K 2r2.

The pressure and density are given by

p = αρ

= 2αK 2r2

8K1K2v
2
2

⎛
⎝ χv1

(
2
√

2c2v2v3 log v3 − c1

)
√

2
(
c1v1 + 2c2

(
v2 − √

2v1 log v3

))

− 2(3χ + 8π)

v2
2

− 2K1

)
(49)

where we have made the further simplifications v3 = (2v1 +√
2v2), K1 = χ + 4π and K2 = χ + 2π . Now we have

a complete model with Vaidya–Tikekar [42] geometry and
linear barotropic equation of state p = αρ. A defect in this
model is that there exists an essential singularity at r = ± 1

2K .
While the presence of the singularity is undesirable, it may
not be a generic feature of this model. Suitable constants c1

andc2 may yet exist that support a well behaved cosmological
model. Interestingly, the vanishing of the pressure for a finite
r is possible allowing for the interpretation of this model as
a bounded astrophysical distribution.

8 Relaxing the equation of state

Finally we consider the case where the density displays an
inverse square-law fall-off but we refrain from imposing an
equation of state. That is the system of field equations is now
completely determined and the resulting solution should be
inspected for an equation of state. It turns out that Eq. (16)
allows us to write ν′ in terms of λ and its derivative. When this
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form is substituted into the isotropy equation (18) the result-
ing differential equation proves intractable to solve. Note that
this situation does not arise in the standard Einstein gravity
since on setting χ = 0 for the Einstein case, (16) can be
solved explicitly for λ in terms of r . This has been amply
demonstrated by Dadhich et al. [40,43] for the Einstein case
and its generalization pure Lovelock theory.

9 Conclusion

We have analysed the isothermal property in the framework
of f (R, T ) theory. Demanding an inverse square fall-off of
the density and the equation of state p = αρ yielded an exact
model where the proportionality constant α is expressed in
terms of the coupling constant χ . For stability and to prevent
super-luminal behavior of the fluid the value of χ was con-
strained to a certain negative window. On setting χ = 0 we
regain the Saslaw et al model for standard Einstein gravity
and we discover that it is not physically reasonable. In con-
trast, the f (R, T ) model displayed the necessary features
corresponding to expectations, namely a positive definite
density and pressure and a sound speed obeying causality.
While it is known that a constant spatial potential guarantees
isothermal behaviour in the Einstein case and its general-
ization Lovelock gravity, such a prescription behaves com-
pletely differently in the ( f (R, T ) gravity framework. Drop-
ping the inverse square law requirement and requiring an
equation of state, the f (R, T ) model is indeed solvable in at
least one special case. We have given a prescription to deter-
mine other models which satisfy the field equations and the
equation of state. The case of an inverse square fall-off of the
density without an equation of state did not yield an exact
solution.
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