
Eur. Phys. J. C (2018) 78:716
https://doi.org/10.1140/epjc/s10052-018-6191-4

Regular Article - Theoretical Physics

On the viability of Planck scale cosmology with quartessence

Mohsen Khodadi1,a, Kourosh Nozari1,2,b, Fazlollah Hajkarim3,c

1 Department of Physics, Faculty of Basic Sciences, University of Mazandaran, P.O. Box 47416-95447, Babolsar, Iran
2 Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), P.O. Box 55134-441, Maragha, Iran
3 Bethe Center for Theoretical Physics and Physikalisches Institut, Universität Bonn, Nussallee 12, 53115 Bonn, Germany

Received: 30 May 2018 / Accepted: 21 August 2018 / Published online: 5 September 2018
© The Author(s) 2018

Abstract Growing evidence as the observations of the
CMB (cosmic microwave background), galaxy clustering
and high-redshift supernovae address a stable dynamically
universe dominated by the dark components. In this paper,
using a qualitative theory of dynamical systems, we study
the stability of a unified dark matter-dark energy framework
known as quartessence Chaplygin model (QCM) with three
different equation-of-states within ultraviolet (UV) deformed
Friedmann–Robertson–Walker (FRW) cosmologies without
Big-Bang singularity. The UV deformation is inspired by the
non-commutative (NC) Snyder spacetime approach in which
by keeping the transformation groups and rotational sym-
metry there is a dimensionless, Planck scale characteristic
parameter μ0 with dual implications dependent on its sign
that addresses the required invariant cutoffs for length and
momentum in nature, in a separate manner. Our stability anal-
ysis is done in the (H, ρ) phase space at a finite domain con-
cerning the hyperbolic critical points. According to our anal-
ysis, due to constraints imposed on the signs of μ0 from the
phenomenological parameters involved in quartessence mod-
els (�∗

m, c2
s , ρ∗), for an expanding and accelerating late uni-

verse, all three QCMs can be stable in the vicinity of the criti-
cal points. The requirement of stability for these quartessence
models in case of admission of a minimum invariant length,
can yield a flat as well as non-flat expanding and accelerat-
ing universe in which Big-Bang singularity is absent. This
feedback also phenomenologically credits to braneworld-like
framework versus loop quantum cosmology-like one as two
possible scenarios which can be NC Snyder spacetime gen-
erators (correspond to μ0 < 0 and μ0 > 0, respectively). As
a result, our analysis show that between quartessence models
with Chaplygin gas equation-of-states and accelerating FRW
backgrounds occupied by a minimum invariant length, there
is a possibility of viability.

a e-mail: m.khodadi@stu.umz.ac.ir
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1 Introduction

For decades particle physicists and cosmologists have foc-
used on beyond standard model physics and modified gravity
theories to achieve a clear understanding of the character of
two mysteries and challenges of standard cosmology in our
age i.e “dark matter” (DM henceforth) and “dark energy”
(DE henceforth). Despite the fact that none of them has any
explicit evidence in laboratory physics, these two theories
can separately provide a consistent explanation of surprising
results indicated by the current astronomical observations
[1–8]. Specifically, DM initially was suggested to explain
the rotation curves of galaxies and cluster dynamics which
it was not justifiable by standard baryonic matter. Later, the
proposal of DM extended to cosmology concerning on the
issue of structure formation at large scales. Also, to illus-
trate the accelerated expansion of our universe, the dominated
existence of an unknown component called DE is essential.
In continuing this path, unlike the original assumption that
these two theories are different from each other, an interesting
idea proposed that DM and DE can be two manifestations of
a single physical entity. From the perspective of unification,
it would be interesting to verify the possibility of a single
unknown component (or field) rather than two ones which
can explain the role of both. Such a unified framework of
DM–DE (with a density ratio of approximately 0.3–0.7), in
literatures was coined to name “quartessence”, see [9–16]
for instance. The most interesting quartessence models stud-
ied so far are based on the Chaplygin gas model as well
as its upgraded versions as an exotic background fluid with
equation-of-state different from standard perfect fluid [17–
19]. There are also other relevant equation-of-states which
some authors [20,21] have offered them as ansatzes which in
asymptotic limit cases show the same behaviors for the back-
ground fluid. Chaplygin gas models are constrained by cos-
mic microwave background (CMB) and other astrophysical
experiments [22–25]. However, there are some valid regions
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of parameter space which motivates us to consider them as
consistent models with the current experimental data. These
regions for an equation of state like p ∝ − 1/ρn with some
spacial values of n are not excluded, so that it can still behave
like a matter component at early eras and a cosmological con-
stant at late times [24–26]. Additionally, these models as can-
didates for dark energy are free of fine-tuning problem that
appears in the standard cosmology and quintessence models
[22]. Also, they can elevate the cosmic coincidence problem
that appears in the relatively constant ratio of relic density
of cosmological constant and matter content of the universe
[27]. These models can explain the formation of large struc-
tures in the universe and the halo of DM in galaxies [28,29].
Even if the origin of DM and DE are different, such models
can be used as a simplified model to study all matter con-
tent of the universe as a single fluid illustrating the cosmic
evolution [30].

However, in theoretical physics community this paradigm
is ruling to get a complete and coherent view from the
early moments until late universe, a quantum description
of early moments of cosmology in the absence of micro-
level singularity, is required. This is despite the fact that
quartessence models as �CDM (cosmological constant and
cold dark matter) are based on standard cosmology which
suffers from initial conditions issue in particular past singu-
larity. Clearly, an initial singular state with infinite values
of physical quantities, such as temperature or energy den-
sity, should be excluded from any cosmological model. The
prevailing belief is that quantum gravity (QG) settings as a
framework which explores the universe at the micro-level
spacetime (Planck scale), are natural solutions for solving
this issue. So far, many intellectual efforts done by QG com-
munity has led to the view that at micro-level, spacetime
continuum breaks down into a discrete one. So that even
disjointed foam is very hard to peace with the GR princi-
ples due to the fact that it should endure a later transition
to a spacetime continuum [31]. Despite the fact that most
known proposals related to QG such as loop quantum grav-
ity [32,33], string theory [34,35], deformed special relativity
[36,37], are currently at a development stage, they predict
qualitatively a different spacetime beyond some character-
istic scales such as Planck length (energy) and momentum.
Therefore, in these models, Planck scale through separation
of full quantum spacetime from classical one, acts as a natural
border line or cutoffs which leads to the appearance of some
corrections in the high energy physics. Indeed, the above
mentioned invariant scales induce some extensions of the
standard uncertainty relation (Heisenberg uncertainty prin-
ciple) so called “generalized uncertainty principle” (GUP)
[38,39] which governs the motion of particles in micro-level
spacetime. Also, need for existence of GUP proposals at
some concrete scales of distances and energies is highly con-
firmed via gedanken experiments [40]. However, as a more

advanced alternative to GUP(s), there is a non-commutative
(NC) spacetime [41,42] idea arising from the results of string
theory in which moreover discarding the point like concept
of the structure of spacetime can also be viewed as NC by
changing the nature of the spacetime coordinates. Given that
for each of the existing QG proposals, there is a relevant ver-
sion of GUP. So it is important to mention that some GUPs,
particularly generalized algebras designed by Kempf et al.
[43,44] via offering the possibility of space quantization, are
compatible with NC spaces. One of the outstanding achieve-
ments of NC spacetime idea which is required to get a con-
sistent framework of QG is that it leads to the removal of
the paradox appeared due to the creation of a black hole
for an event that is sufficiently localized in spactime, [45]
see also discussions displayed in [46–50]. Also, by attach-
ing the NC space idea to standard quantum field theory some
positive feedbacks have been extracted. For instance, the sin-
gular behavior of the Einstein equations in very micro-level
distances has cured within the NC space based on quantum
field theory.

With this preface, in the present paper, through employ-
ing the methods of qualitative theory of dynamical sys-
tems [51,52] we want to study the stability of a cosmol-
ogy with GUP relevant to Snyder NC deformed Heisenberg
algebra [53]. Moreover, we assume the background fluid is
supported by quartessence Chaplygin models (QCMs). We
have selected the Snyder NC space approach since it can
be connected to some “deformed special relativity” models
released in [54,55] as well as it has some incentives from
loop quantum gravity [56]. Another advantage of the under-
lying QG proposal for extending it into cosmology setup is
that it respects rotational symmetry, unlike some of its other
counterparts. Also within extended framework at hand the
Big-Bang singularity can be absent due to bouncing mech-
anism induced by quantum correction terms in Friedmann
dynamic equations [57]. The aforementioned positive feature
concerning the resolving of initial condition problem from
one side and valuable phenomenology functionality of the
QCMs at large scales along with this fact that they are stable
into standard cosmology [58,59], from other side, motivates
us to explore the response of this question: “Whether the
quartessence Chaplygin cosmologies (QCCs) are still sta-
ble in a free initial singularity cosmological framework sug-
gested by Snyder NC space approach to QG?”. The result
would be desirable in case of “yes”. Since it means that
the QCCs are also able to justify the current observations
of a universe which has not been raised from a Big-Bang
singularity. Of course in light of study done in [60,61] we
know that a fundamental cutoff as minimal length can play
the role of dark energy (especially cosmological constant) at
late time cosmology. Also recently, people shown that in the
context of loop quantum cosmology, by taking an infrared
natural cutoff within standard FRW cosmology, there is a
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possibility to explain the current acceleration of our universe
too1 [62]. However, in what follows by admitting the exis-
tence of dark components in universe as the most common
and challenging paradigm in modern cosmology which has
been able to provide successful justifications of the the sta-
bility of galaxies and also observational data, then it turns out
that the background fluid quartessence models can be consis-
tent within a QG extended cosmological framework which
is free of micro-level singularity. This consistency can have
a dual function. First, it can be interpreted as a step towards
providing a coherent theoretical picture from the beginning
to the present day. Second, it will be seen that the condi-
tions of H > 0 and c2

s > 0 which refer to expanding and
accelerating universe lead us to admission and subsequently
rejection of some theoretically possibilities for the Snyder
dimensionless characteristic parameter μ0 via its connection
with phenomenological parameters involved in underlying
QCMs. More exactly, the present paper qualitatively suggests
the possibility of control of the behavior of Planck scale char-
acteristic parameter via the current astronomical signatures
which indicates a down to up phenomenological view.

2 Deformed FRW cosmologies from Snyder-deformed
Heisenberg algebras

Until the end of this section, we will derive Snyder deformed
dynamics equations of the FRW cosmologies. More exactly,
we will regard the corrections appeared from the NC Sny-
der background within the standard HUP, on the classical
trajectory of the universe. Therefore, let us first start with a
quick overview of the Snyder-deformed Heisenberg algebras
by taking into account some details required.

2.1 Snyder-deformed Heisenberg algebras

By concerning on an n-dimensional NC deformed Euclidean
space, the structure of the commutator between the coordi-
nates can no longer be trivial rather it is deformed as follows

[q̃i , q̃ j ] = μMi j {i, j, . . .} ∈ {1, . . . , n}, (1)

so that q̃i ’s denote the NC coordinates. Here, μ points to the
NC Snyder deformation (or characteristic) parameter which
its dimension and value is a squared length and a real num-
ber, respectively. By demanding two conjectures, we will
deal with the (Euclidean) Snyder space [53]. First, the rota-
tion generators Mi j = − Mji = i(qi p j − q j pi ) fulfill the

1 It should be noted that some people try to remove the need for a
mysterious matter and energy in nature through modified gravitational
theories. However, the recent measurement of the speed of gravity with
the gravitational wave ruled out many modified gravity theories as alter-
native explanation to dark energy [63].

usual SO(n) algebra as well as the translation group remains
undeformed (i.e. [pi , p j ] = 0). Secondly, under SO(n) rota-
tions the NC coordinates transform as vectors which results
in keeping the rotational symmetry. In the language of alge-
bra the second assumption translates as follows

[Mi j , q̃k] = q̃iδ jk − q̃ jδik,

[Mi j , pk] = piδ jk − p jδik . (2)

However, it is very important to stress that there are countless
number of commutator relations between q̃i and p j which
all of them are unanimously adapted to the relations (2). By
rescaling of the NC coordinates q̃i in terms of variables used
in common phase space i.e. (qi , p j ), one gets a deeper under-
standing of the subject. By referring to works released in [64–
66], we offer the most general SO(n) covariant realization
for q̃i as follows

q̃i = qiϕ1(μp2) + μ(q j p j )piϕ2(μp2), (3)

so that ϕ1 and ϕ2 represent two finite functions and also
the convention aibi = ∑

i ai bi is compatible. It is trivial
that to restore the standard Heisenberg algebra (i.e. μ = 0)
the boundary condition ϕ1(0) = 1, should be administered.
Note here the two functions ϕ1 and ϕ2 are not unique, at
all. Indeed, for any given function ϕ1 which satisfies the
boundary condition ϕ1(0) = 1, there is a relevant func-
tion as ϕ2 which is characterized via the relation ϕ2 =
(1 + 2ϕ̇1ϕ1)/(ϕ1 − 2μp2ϕ̇1) so that ϕ̇1 = dϕ1/d(αp2), see
Ref. [67]. So the aforementioned realization of q̃i (i.e (3))
addresses the following commutator relation between q̃i and
p j

[q̃i , p j ] = i
(
δi jϕ1 + μpi p jϕ2

)
, (4)

where results in such a GUP model for the Snyder NC space
at hand

�q̃i�p j ≥ 1

2
|δi j 〈ϕ1〉 + μ〈pi p jϕ2〉|. (5)

The above commutator relation along with inequality, obvi-
ously imposes that the standard framework can be recover-
able by setting μ → 0. Interestingly, unlike three dimen-
sional systems which we deal with countless realizations of
the algebra and subsequently different GUPs (5), for one-
dimensional systems, there is no such an issue. By concerning
on the one-dimensional systems the symmetry group is trivial
i.e SO(1) = Id and the most general realization can be writ-
ten as q̃ = qϕ(μp2) = q

√
1 − μp2 which makes the com-

mutation relation (4) and inequality (5) to be re-expressed
as

[q̃, p] = i
√

1 − μp2, (6)

and

�q̃�p ≥ 1

2

∣
∣
∣
∣

〈√

1 − μp2

〉∣
∣
∣
∣ , (7)
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respectively. It should be noted that to fix the sign of the Sny-
der deformation parameter μ, there is a freedom. Precisely,
in case of μ > 0 a natural cut-off as |p| <

√
1/μ appears on

the momentum while μ < 0 derives an observable minimal
length for q̃ from the uncertainty relation (7). As a noticable
result, in case of negative sign for μ at the first order, one
gets the inequality �q � (1/�p + l2s �p) which is the same
thing predicted by string theory (here ls refers to string length
which can be detected with

√−μ/2) [68,69]. In conclusion,
the Snyder-deformed commutator relation (6) addresses the
existence of a fundamental cut-off as maximum momentum
or minimal length if μ > 0 or μ < 0, respectively.

2.2 Snyder-deformed dynamical equations

By turning to above review of the Snyder NC algebra, we are
going to extract the relevant deformed dynamics of the FRW
cosmological models. Indeed, we want to derive classical
dynamical equations ruling the universe which is affected
by one of the possible initial corrections such as Snyder
NC geometry (the corrections come from the algebra (6)).
The classical Poisson bracket representation of the quantum-
mechanical commutator (6) is

{q̃, p} =
√

1 − μp2. (8)

According to the above classical representation for any two-
dimensional phase space function the Snyder deformed Pois-
son bracket can be re-expressed as2

{F,G} =
(

∂F

∂q̃

∂G

∂p
− ∂F

∂p

∂G

∂q̃

)√

1 − μp2. (9)

It is thus expected that the time evolution of the coordinate
and momentum with respect to Hamiltonian H(q̃, p) can be
deformed as

˙̃q = {q̃,H} = ∂H
∂p

√

1 − μp2, ṗ = {p,H}

= −∂H
∂q̃

√

1 − μp2. (10)

Now, we expand the underlying framework to the cosmolog-
ical context in particular FRW cosmological models with the
following spatially isotropic metric

ds2 = − N 2dt2+a2
(

dr2

1 − kr2 + r2dθ2+r2 sin2 θdφ2
)

,

(11)

2 Deformed Poisson bracket should meet some natural conditions
which the quantum mechanical commutator possesses as anti-
symmetricity, bilinearity and satisfies the Jacobi identity as well as the
Leibniz rules.

where the lapse function N = N (t) and scale factor a =
a(t). Also, its matter section obeys fluid energy conservation
equation

ρ̇ + 3H(ρ + p) = 0, (12)

with a generic matter energy density ρ and pressure p. In
line element (11), depending on the symmetry group, the
curvature constant k can be fixed to 0, + 1 and − 1 by pointing
to the spatially flat, closed and open universe, respectively. In
order to compute the dynamic of the underlying FRW models
the following scalar constraint should be satisfied

H = − p2
a

12a
− 3ak + a3ρ = 0, 8πG ≡ 1, (13)

where its extended representation takes the following form

HE = N

12

p2
a

a
+ 3Nak − Na3ρ + λπ. (14)

Here, λ and π denote a Lagrange multiplier and the momenta
conjugate attributable to N . By turning to the Poisson bracket
(8), we can assume that the commutator relation between the
isotropic scale factor a and relevant conjugate momentum pa
in the underlying Snyder-deformed minisuperspace obeys the
following from

{a, pa} =
√

1 − μp2
a, (15)

where if shutdowns the Snyder NC space deformation (i.e
μ = 0), it comes back to standard form {a, pa} = 1, as
expected from GR based mini superspace. Now by having
the extended Hamiltonian HE and Poisson bracket (15), one
can obtain relevant deformed dynamics equations in two-
dimensional phase space (a, pa), as follows

ȧ = {a,HE } = Npa
6a

√
1 − μp2

a,

ṗa = {pa,HE } = N

(
p2
a

12a2 − 3k + 3a2ρ

+a3 dρ

da

) √
1 − μp2

a . (16)

Eventually, by solving the constraint (13) with respect to pa
as well as considering the first case in Eq. (16) and also fixing
N = 1, the first Friedmann equation modified by leading
order Snyder NC space correction, reveals as

H2 = ρ

3
− k

a2 − 4μρ2a4 + 24μka2ρ − 36μk2. (17)

Subsequently by taking time derivation of the expansion rate
equation (17), we arrive at

Ḣ = − ρ + p

2
+ k

a2 − 8μa4ρ2

+12μa4ρ(ρ + p) + 24μka2ρ − 36μka2(ρ + p),

(18)
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as second order deformed Friedmann equation. In above
equations, the correction terms arisen from the Snyder NC
geometry, are addressed withμparameter which is connected

with Planck length �pl via μ ≡ μ0
�2
pl

h̄2 . To the end of this
paper, to facilitate our calculations the natural unit is adopted
i.e. �pl ,h̄ and c are fixed to unity (as before 8πG ≡ 1).
Therefore, in the following we will work with dimension-
less parameter μ0. In the QG literatures it is thought that
the value of this parameter as well as other counterparts sug-
gested by other GUP models, must be constant of order unity.
Notably, by attaching the QG effects arisen from some com-
mon semi-classical approaches within different branches of
physics (both theoretically and experimentally) so far for rel-
evant dimensionless QG parameters released some explicit
upper bounds (e.g. can be mentioned to works as [70–75]).
As mentioned before, the above deformed dynamical equa-
tions explicitly show us that vanishing the μ-terms leads to
the restoration of Friedmann equations in their standard form.
At the end, by plugging the Eqs. (17) and (18), we obtain

Ḣ = −H2 − ρ + 3p

6
+ 12μ0ρpa

4

+ 12μ0ka
2(ρ − 3p) − 36μ0k

2, (19)

where along with the continuity equation (12) are two out
of three equations which forms a closed system for doing
the Jacobian stability analysis of three different versions of
Chaplygin quartessence models, within the quantum cosmo-
logical framework.

3 Stability of quartessence models in dynamical systems
with natural UV cutoff

3.1 Analysis procedure

We begin the discussion of this section with a succinct and
useful preview of our analysis method. Overall, there are
two paths to provide a dynamical analysis of a differential
equation as ẏ = f (y): first, finding the relevant straight solu-
tions. Second, reducing the analysis into a phase plane for
all defined initial conditions. The latter is the basis of “qual-
itative dynamic analysis” in which all possible solutions are
considered rather than analyzing an individual solution. More
precisely, in this way one reduces dynamics into a two-
dimensional (2D) phase space in which singular solutions
ẏ = 0 and also nonsingular ones are displayed via critical
points (CP) and phase curves, respectively. Using the phase
diagrams in a phase plane (2D space) we can clearly inves-
tigate some important issues such as “dynamical stability”.
Generally, we are able to reduce every conventional cosmo-
logical dynamics to the 2D phase plane with an autonomous
system of equations similar to ẋ = Q1(x, y), ẏ = Q2(x, y),

in which dot represents the differentiation with respect to
cosmic time. Through linearization of the Jacobian matrix at
a given CP and extracting relevant eigenvalues3 λ1,2, will be
provided the possibility of categorizing the non-degenerated
(or hyperbolic) CPs (xc, yc). As a reminder, in case of the real
part of both eigenvalues λ1,2 be nonvanishing at (xc, yc), the
relevant CP is non-degenerated. With a good approximation
the dynamical behaviour of the above mentioned autonomous
system in the vicinity of the CP (xc, yc) is qualitatively trace-
able via the behaviour of its linear part

(
ẋ
ẏ

)

= M2×2|(xc,yc) ·
(
x − xc
y − yc

)

, M=
( ´Q1,x ´Q1,y

´Q2,x ´Q2,y

)

,

(20)

where after integration, the above system gives the following
solution

x − xc = Re
(
A1 exp(λ1t) + A2 exp(λ2t)

)
,

y − yc = Re
(
A1k1 exp(λ1t) + A2k2 exp(λ2t)

)
, (21)

with k1 = λ1
´Q1,y(xc,yc)

− ´Q1,x (xc,yc)
´Q1,y(xc,yc)

and k2 = λ2
´Q1,y(xc,yc)

−
´Q1,x (xc,yc)
´Q1,y(xc,yc)

. Here, the prime sign refers to the derivative in

terms of variables x and y.
By specifying the sign of the trace and the discriminant

within the 2D flows dynamical systems then the possibility
of a solution for stability analysis, will be available [76].

• In case of Det M > 0 and the discriminant: D =
(Tr M)2 − 4 Det M > 0, the eigenvalues are real with
the same sign which addresses the critical point as a node.
If Tr M > 0, the critical point is an unstable node i.e. a
repeller or source, while if Tr M < 0 it is a stable node
i.e. an attractor or sink.

• In case of Det M > 0 and the discriminant: D =
(Tr M)2 − 4 Det M < 0, the eigenvalues are complex
conjugates which address the critical point as a focus. If
Tr M > 0 it is an unstable focus while if Tr M < 0 it is
a stable focus. Also, note that if eigenvalues are purely
imaginary then the critical point is a stable neutral center.

• In case of Det M < 0, the eigenvalues are real with
opposite signs which address the critical point as a saddle
point.

• In case of Tr M = 0 and Det M > 0, the eigenvalues
of the critical points have complex values which address
the stable neutrally center type. Otherwise, if Det M < 0
then the critical point represents a saddle point.

3 Note that the mentioned eigenvalues are invariant creatures attributed
to critical points since by changing the coordinates x, y they remain
unchanged [58].
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3.2 Model I: Generalized Chaplygin gas quartessence
(GCGQ)

Historically, the so called Chaplygin gas fluid model origi-
nally studied by Chaplygin [77] in the early twentieth century
within the framework of aerodynamics via offering an exotic
equation-of-state as p = − A

ρ
. However, in recent years, this

model with its upgraded versions, have been at the cosmol-
ogy center of attention from phenomenological sense so that
now we see them as one of the most popular candidates to
DE-DM unified framework, [19,78–81]. In the first updated
model of Chaplygin gas, the relevant negative pressure of
underlying background fluid is connected to energy density
via the following more general equation-of-state4

p = −Aρ−n, A > 0 and 0 < n ≤ 1, (22)

In most literatures the above equation-of-state, describes a
“generalized Chaplygin gas quartessence” (GCGQ) model
and is intended as a starting point for investigations on the
cosmological implication of Chaplygin gas models. Putting
above equation-of-state into the energy conservation fluid
equation (12), one arrives at

ρ =
(

A + Ba−3(n+1)

) 1
n+1

, (23)

for the evolution of GCGQ energy density. Here a(t) repre-
sents the cosmic scale factor which for case of today universe
can be fixed to unity. By offering the new variables

�∗
m ≡ B

A + B
and ρ∗ ≡ (A + B)

1
n+1 , (24)

then the Eq. (23) can be written as

ρ(a) = ρ∗
(

(1 − �∗
m) + �∗

ma
−3(n+1)

) 1
n+1

. (25)

Here ρ∗ can be interpreted as “today critical density” of uni-
verse since by fixing a = 1 then ρ(1) = ρ∗. To provide a
physical interpretation of variable �∗

m it is necessary to com-
pare the above equation with the following �CDM density
energy

ρ(a) = ρ∗
(

(1 − �m)a−3(ω∗+1) + �ma
−3

) 1
n+1

, (26)

where �m and (1 − �m) denote the current CDM density
parameter and dark energy density, respectively. It is clear
that for spacial cases n = 0 and ω∗ = −1, these two models
will meet each other which means that �∗

m can be interpreted

4 This equation-of-state and its original version (i.e. n = 1) can be
thought as a perfect fluid which at high energy phase of universe behaves
similar to a pressureless fluid while at low energy it indicates a cosmo-
logical constant.

as “effective matter density parameter” in relevant Chaply-
gin gas model. Now let us follow our main aim i.e. the sta-
bility analysis of GCGQ model within the context of Snyder
NC deformed quantum cosmology. By re-expressing the Eqs.
(19) and (12) as follows

Ḣ ≡ dH

dt
= −H2 − ρ + 3p

6
+ 12μ0ρpa

4

+ 12μ0ka
2(ρ − 3p) − 36μ0k

2 = Q1(H, ρ),

(27)

and

ρ̇ ≡ dρ

dt
= −3H(ρ + p) = Q2(H, ρ), (28)

we define our 2D dynamical system in which the quantities
(H, ρ) play the role of the phase space variables. More pre-
cisely, the evolution of the underlying system is traceable
via trajectories into (H, ρ)-space uniquely specified by the
initial conditions (Hcp, ρcp). Therefore, in this phase space
the linearization matrix M of the system at the around of CP
(Hcp, ρcp), reads off as

M =
( ´Q1,H ´Q1,ρ

´Q2,H ´Q2,ρ

)

(Hcp,ρcp)

, (29)

where for non-static CPs (Hcp, ρcp), the trace and the deter-
minant are obtained as

Tr M = ( ´Q1,H + ´Q2,ρ

)
(Hcp,ρcp)

,

Det M = ( ´Q1,H . ´Q2,ρ − ´Q1,ρ . ´Q2,H
)
(Hcp,ρcp)

. (30)

Now by setting Eqs. (27) and (28) to zero, non-static CPs are
derived as

Hcp =
[
ρ∗
3

(1 − �∗
m)

ω

ω−c2
s − 12μ0ρ

2∗(1 − �∗
m)

2
n+1

×
( (

ω + 1

ω

) (
�∗

m − 1

�∗
m

) )− 4ω

3(ω−c2
s )

+ 48μ0kρ∗(1 − �∗
m)

ω

ω−c2
s

×
( (

ω + 1

ω

) (
�∗

m − 1

�∗
m

) )− 2ω

3(ω−c2
s ) − 36μ0k

2
] 1

2

,

ρcp = ρ∗(1 − �∗
m)

ω

ω−c2
s with n = −c2

s

ω
, (31)

respectively. Note that, expressions relevant to scale factor
terms in (27) obtained from mixing the equation-of-state
index ω ≡ p

ρ
and the squared sound speed c2

s ≡ dp
dρ with

(25). Finally for the above non static CP, we have

TrM = −Hcp(3n + 5), Det M = 6H2
cp(n + 1),

D = H2
cp(9n

2 + 6n + 1), (32)

At first look, one may think this is exactly what has already
been achieved within standard cosmology. Therefore, Planck
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Fig. 1 Regions of existence Hcp > 0 (Eq. (31)) within (μ0, ρ∗, c2
s ) parameter space, for flat, open (left panel) and closed (right panel) Snyder

deformed quantum cosmology with equation-of-state parameter close to −1 (here ω = −0.98) and any arbitrary value �∗
m ∈ (0.2, 0.5)

scale corrections induced by Snyder NC space into FRW
cosmologies does not affect standard results. However, with
a closer look one will find that the effect of UV natural
cutoffs embeds into Hcp term. Expressions listed in (32)
explicitly reflect this fact that determinant and discriminant
are always positive so that to have a stable node CP there
should be Tr M > 0 i.e Hcp > 0. In another words, in an
expanding universe, the CP (31) behaves as an asymptoti-
cally stable node. Despite that in the absence of underly-
ing corrections, Hcp is trivially positive, here it should be
checked carefully. Our consideration shows that concerning
late time phase of the universe i.e. fixing values close to −1
for equation-of-state parameter ω and respect to standard
constraints �∗

m ∈ (0.2, 0.4) into flat as well as open spatial
geometry model universe at hand, the condition of Hcp > 0
holds only if μ0 < 0 (i.e. adoption of a minimum invariant
length in fundamental level of nature), as displayed in Fig. 1
(left panel). However, for case of closed universe (k = +1),
we find that depending on the fixed values for present crit-
ical density of universe ρ∗, also there is the possibility of
admitting the positive value (moreover negative values) for
the dimensionless Snyder characteristic parameter μ0 > 0,
as revealed in Fig. 1 (right panel).

Note that although in language of perfect fluid, the
equation-of-state (22) covers −1 ≤ ω ≤ 0, here for all three
possible modes of spatial curvatures (i.e. k = 0, ± 1), the
condition of Hcp > 0 does not support exactly ω = −1. It is
not hard to prove that the Snyder NC space correction terms
include scale factora into (19) are the main reason of the issue
so that by rejecting them this issue could be disappeared.
It is also worthy to refer that the above parameter volume
addresses interestingly the possibility of connection between
two seemingly unrelated phases of the universe. To say more

exactly, the Snyder characteristic parameter μ0 deals with
the earliest phase of the universe linked to the two valuable
quantities in current cosmology i.e. today critical density of
universe ρ∗ and the squared sound speed5 c2

s . As a conse-
quence, based on the conventional approaches to cosmology
which highly support this belief that the spatial geometry of
the universe is exactly flat, the stability of the GCGQ model
within the underlying QG extended cosmological framework
will be possible only in case of admitting a lower bound for
length in nature, μ0 < 0. However, observational data (pri-
marily the CMB) tells us that the curvature constant must
be close to flat but not exactly flat. Concerning the non-flat
geometries, we see from Fig. 1 that the behavior of μ0 for
open universe is quite similar to flat one while the sign of μ0

in closed universe is dependent on fixed values of ρ∗. Also
in Fig. 2, it is displayed that the phase portraits in physical
domain (ρ > 0) are equivalent to terms dictated by Fig. 1.
As it is seen in the left panel, for each three curvature modes
of the Snyder deformed-FRW model including a minimum
length, there are two de Sitter nodes. de Sitter node in the
region H > 0 is attractor and stable, while its counterpart in
the region H < 0 is repeller and represents an unstable CP.
Concerning closed curvature mode which includes the max-
imum momentum, the right panel shows circular trajectories
around the static CP (0, ρ) which is affiliated to a center
equilibrium CP and represents a static universe. Note that in
the left panel also one can see some static CPs associated to
unstable saddle points which are located on the trajectories

5 As a reminder to highlight the role of this quantity in current cosmol-
ogy, note that there is a close connection between the sign of c2

s with
background dynamics of the universe. The current accelerating phase
of the universe strongly addresses a positive sign for c2

s .
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Fig. 2 The vector field portrait in phase space (H, ρ) corresponding
to Fig. 1. Left panel corresponds to any three curvature modes of Sny-
der deformed-FRW model with numerical values: μ0 = −1, ρ∗ =

5, ω = −0.98, �∗
m ∈ (0.2, 0.5), c2

s ∈ (0, 0.5]. Right panel only corre-
sponds to closed curvature mode with the same numerical values except
μ0 = 1, 0 < ρ∗ < 2

moving from the unstable de Sitter node (H < 0) towards
the stable de Sitter node (H > 0).

3.3 Model II: Modified Chaplygin gas quartessence
(MCGQ)

Over the years, for GCGQ models several modifications have
been proposed. If one regards the modified Chaplygin gas
quartessence (MCGQ) in which pressure p and energy den-
sity ρ are connected together via the following ansatz6 [82–
84]

p = Cρ − Dρ−n, C, D > 0, 0 < n ≤ 1, (33)

then it results in

ρ =
(

D

C + 1
+ Ea−3(n+1)(C+1)

) 1
n+1

. (34)

By assuming the following new variables

�∗
m ≡ E(C + 1)

D + E(C + 1)
, ρ∗ ≡

(
D + E(C + 1)

C + 1

) 1
n+1

,

(35)

then Eq. (34) can be expressed as follows

ρ = ρ∗
(

(1 − �∗
m) + �∗

ma
−3(n+1)(C+1)

) 1
n+1

, (36)

6 It is interesting to note that, equation-of-state (33) is wider than GCGQ
model since it covers from radiation dominated era for small values
of the scale factor in the early universe to large values of the scale
factor in the late universe which cosmological constant prevails as the
inducement of accelerated expansion of our universe.

where by merging it with Eq. (33) in addition to equation-
of-state index ω ≡ p

ρ
and the squared sound speed c2

s ≡ dp
dρ ,

we get the following expression

a =
(

�∗
m − 1

�∗
m

− Dρ−n−1∗
�∗

m(ω + 1 + Dρ−n−1∗
�∗
m−1 )

) (�∗
m−1)ρ

n+1∗
3D(n+1)

,

n = c2
s − C

C − ω
, (37)

for the scale factor a appeared in (19). With a simple calcula-
tion one can show that in the limit C → 0, the above expres-
sion reduces to its counterpart in GCGQ model. Note that,
with the same argument mentioned in details previously, here
also we can interpret variables �∗ and ρ∗ as effective mat-
ter density of MCGQ model and today energy density of the
universe, respectively. Finally, in the context of quartessence
model at hand, the relevant expressions for non-static CPs,
take the following form

Hcp =

⎡

⎢
⎢
⎣

ρ∗
3

(1 − �∗
m)

1
n+1 − 12μ0ρ

2∗(1 − �∗
m)

2
n+1

×
⎛

⎝�∗
m − 1

�∗
m

− Dρ−n−1∗
�∗

m(ω + 1 + Dρ−n−1∗
�∗
m−1 )

⎞

⎠

4(�∗
m−1)ρ

n+1∗
3D(n+1)

+4 8μ0kρ∗(1 − �∗
m)

1
n+1

×
⎛

⎝�∗
m − 1

�∗
m

− Dρ−n−1∗
�∗

m(ω + 1 + Dρ−n−1∗
�∗
m−1 )

⎞

⎠

2(�∗
m−1)ρ

n+1∗
3D(n+1)

− 36μ0k
2

⎤

⎥
⎥
⎦

1
2

,

ρcp = ρ∗(1 − �∗
m)

1
n+1 . (38)
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Fig. 3 Regions of existence Hcp > 0 (Eq. (38)) within (μ0, ρ∗, c2
s )

parameter volume, for closed Snyder NC quantum cosmology with
equation-of-state indexes close to −1 (here ω = −0.95) and any arbi-
trary values n ∈ (0, 1], �∗

m ∈ (0.2, 0.5) and C, D > 0

Now, it is clear to show that, the result of (32) once again
repeats. Namely, in the presence of UV invariant cutoff raised
within Snyder NC space road to QG, the underlying MCGQ
cosmological model in case of Hcp > 0 (expanding universe)
is stable. However, due to existence of some correction terms,
the condition Hcp > 0 is not trivial rather should be checked.
As before, concerning the flat as well as open universe in late
time phase, for equation-of-state indices close to ω ≈ −1
(except -1) with �∗

m ∈ (0.2, 0.4), we find that independent
of any arbitrary values C, D > 0, the condition Hcp > 0
holds only in case of μ0 < 0, as Fig. 1 (left panel). How-
ever, by taking k = +1 into quantum cosmological model at
hand then (μ0, ρ∗,�∗) parameter space addresses both pos-
sibilities i.e. positive and negative signs for μ0, dependent
on relevant values for ρ∗, as can be seen clearly in Fig. 3. In
similar to the former quartessence cosmology model which
Hcp has been divergent at ω = −1, here also this issue can be
seen. Once again we mention that the root of this restriction is
thanks to the Snyder NC correction terms include scale factor
a into (19). In Fig. 4 we show the phase portraits equivalent to
terms dictated by Fig. (3) in the physical domain, ρ > 0. As
before, we see that in the presence of maximum momentum
there are circular trajectories around static universe (0, ρ)
which is affiliated to a stable center equilibrium CP. How-
ever, in the presence of minimum length there are two de
Sitter nodes which in the case of an expanding universe, it
is stable attractor while for its contracting counterpart, it is
unstable repeller. Here there is also the possibility of static
universe which behaves as an unstable saddle CP.

3.4 Model III: Modified generalized Chaplygin gas
quartessence (MGCGQ)

The third proposed model for quartessence cosmology that
we are interested in here to introduce is known as modified
generalized Chaplygin gas (MGCG) with the following form
of equation-of-state [85,86]

p = βρ − (β + 1)Aρ−n, (39)

where β is an optional real constant so that in the absence
of it (i.e β = 0) the GCGQ model will be recovered. It is
obvious that in the hot early universe the above equation-
of-state reduces to p = βρ which by fixing β = 1/3 it
addresses the radiation dominated epoch. While in case of
β = −1 then p = −ρ, corresponding to the equation-of-
state of a cosmological constant. Here, the MGCG density
evolves as

ρ =
(

(β + 1)A + Fa−3(β+1)(n+1)

) 1
n+1

, (40)

where using the following new variables

�∗
m ≡ F

A + F
, ρ∗ ≡

(

A + F

) 1
n+1

, (41)

then the above MGCG density takes the following form

ρ = ρ∗
(

(1 − �∗
m) + �∗

ma
−3(β+1)(n+1)

) 1
n+1

, (42)

In line with previous routes, here we arrive at the following
expressions

Hcp =
[

ρ∗
3

(1 − �∗
m)

β−ω

c2
s −ω − 12μ0ρ

2∗(1 − �∗
m)

2(β−ω)

c2
s −ω

×
((

ω + 1

β − ω

)(
1 − �∗

m

�∗
m

))− 4(β−ω)

3(β+1)(c2
s −ω)

+ 48μ0ρ∗k(1 − �∗
m)

β−ω

c2
s −ω

×
((

ω + 1

β − ω

)(
1 − �∗

m

�∗
m

))− 2(β−ω)

3(β+1)(c2
s −ω) − 36μ0k

2
] 1

2

,

ρcp = ρ∗(1 − �∗
m)

β−ω

c2
s −ω . (43)

for the relevant non-static CPs, so that in the limit β → 0 its
counterpart in (31) can also be recovered, as expected.

Like the two previous models, we should follow the valid-
ity of the condition Hcp > 0 which guarantees an expand-
ing universe. Our analysis interestingly shows that if the free
parameter β is in range of β > −1, and �∗

m ∈ (0.2, 0.4) then
by fixing values close to −1 for ω, we deal with (μ0, ρ∗,�∗)
parameter volumes similar to Fig. 1. Namely, for cases of flat
and open spatial geometry modes the condition of Hcp > 0
holds only in case of adoption of a minimum invariant length
in fundamental level of nature, i.e. μ0 < 0. While for case of
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Fig. 4 The vector field portrait in phase space (H, ρ) corresponding
to Fig. 3. Left panel corresponds to closed curvature mode of Snyder
deformed-FRW model in the presence of maximum momentum with

numerical values: μ0 = 1, ρ∗ = 3, ω = −0.95, �∗
m ∈ (0.2, 0.5), c2

s ∈
(0, 0.5] andC, D > 0. Right panel is in the presence of minimum length
with the same numerical values except μ0 = −1, ρ∗ = 6
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Fig. 5 The vector field portrait in phase space (H, ρ) correspond-
ing to MGCGQ model. Left panel corresponds to any three curva-
ture modes of Snyder deformed-FRW model with numerical values:

μ0 = −1, ρ∗ = 5, ω = −0.98, �∗
m ∈ (0.2, 0.5), c2

s ∈ (0, 0.5] and
β > −1. Right panel only corresponds to closed curvature mode with
the same numerical values except μ0 = 1, 0 < ρ∗ < 2

closed mode, depending on fixed values for present critical
density of universe ρ∗ there is the possibility of admitting the
maximum momentum and minimal length. The remarkable
thing in above results is that for all three modes k = 0,±1, the
condition Hcp > 0, will not be satisfied for values of β ≤ −1.
In Fig. 5 we draw the vector field portraits of dynamical sys-
tem relevant to MGCGQ model. Here also interpretation of
the behavior of the trajectories in the neighborhood of the
CPs is similar to the two previous models.

4 Concluding discussions

Quartessence as one of prevalent alternatives to �CDM, with
a phenomenologically unified dark matter-energy frame-

work, is based on past singular Friedmann–Robertson–
Walker (FRW) cosmology. However, in order to provide
a complete picture from the beginning of the universe to
today, some ingredients should be attached to the stan-
dard theory. In this paper, we have focused on the stabil-
ity of three quartessence models with generalized Chaplygin
gas (GCG), modified Chaplygin gas (MCG) and general-
ized modified Chaplygin gas (GMCG) equation-of-state into
a cosmology with generalized uncertainty principle arisen
from non-commutative (NC) Snyder space leading to the
absence of past singularity issue. The relevant dynamical
equations have been derived within a FRW minisuperspace
in the presence of some invariant UV cutoffs given by Sny-
der NC geometry which address a road to quantum gravity.
The UV deformed Friedman equation governing our model
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includes an interesting feature. Due to freedom in the sign of
the Snyder characteristic parameter μ (by setting the natural
unites (�pl = h̄ = c = 1) it becomes equal to its dimen-
sionless counterpart, i.e, μ0), then the mentioned deformed
Friedman equation can be linked to the cosmological dynam-
ics of loop quantum gravity (LQG) by applying a cutoff on
the momentum i.e μ0 > 0 from one side and Randall–
Sundrum braneworld in case of a cutoff on the length i.e.
μ0 < 0, from the other side. Using the method of quali-
tative theory of dynamical systems, our stability analysis is
performed within (H, ρ) phase plane at a finite domain by
concerning the hyperbolic critical points. Generally speak-
ing, for all three GCG, MCG and GMCG cases, within
expanding (H > 0) and accelerating universe (c2

s > 0),
the quartessence models are stable in the neighborhood of
the critical points (Hcp, ρcp), in the case of admitting one of
theoretically possible signs for μ0. The outstanding feature
of our stability analysis is that it restricts freedom to accept
the expected invariant UV cutoffs via the connection between
QG free parameter μ0 and the phenomenological parameters
involved in quartessence models (�∗

m, c2
s , ρ∗). In particular,

our analysis explicitly shows that the requirement of stabil-
ity for above mentioned quartessence models unanimously
within a flat accelerating universe free of Big-Bang singular-
ity, will be possible only in case of acceptance of a minimum
invariant length in fundamental level (i.e. μ0 < 0). Also,
we have noticed that for all three of the above-mentioned
background fluids within the underlying Snyder deformed
cosmology with open spatial geometry, the possibility of
stability in present time only exists in case of admitting a
minimum length at the fundamental level. While for closed
one, depending on the fixed values for today critical density
of universe ρ∗, one can accept one of possible cases for μ0.
For any three Chaplygin gas quartessence models, we have
constructed the phase portraits in a 2D phase space (H, ρ)
separately and discussed on the behavior of trajectories in
the neighborhood of the CPs. As a result, it is common in
all three quartessence models that in the presence of min-
imum length (μ0 < 0), there is the possibility of a stable
expanding and accelerating universe with all three possible
curvature modes. While, regarding the maximum momentum
(μ0 > 0) within the FRW background, only shows a stable
static universe with closed spatially geometry. As a conse-
quence, our results are essentially independent of the free
parameters of equation-of-states of Chaplygin gas models,
which are constrained by experiments [22–26].

Briefly, this work contains the following important con-
sequences. First, the requirement of stability for three
quartessence models can yield an expanding and acceler-
ating universe compatible with current observational evi-
dences in which Big-Bang singularity is absent. To be more
detailed, in case of setting the flat and open geometries
for curvature constant modes within NC Snyder spacetime

approach, it will be realized the braneword-like framework
along with the relevant uncertainty relation of string theory.
While for the case of closed universe depending on ρ∗, also
there is a chance to emerge of the LQG-like framework.7 Sec-
ondly, by admitting a down to up phenomenological view, our
analysis gives qualitatively a hint on the possibility of search-
ing the micro-level spacetime via the control of the Planck
scale characteristic parameter using the current astronomi-
cal observational signatures.

At the end, to emphasize on the importance of the latter as
an incentive for proposing an upcoming project, we would
like to refer to [87] in which via probing the effects of NC
geometry using the latest CMB observations, authors have
presented some positive feedbacks.
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