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Abstract Motivated by the crucial role played by the dis-
crete flavor symmetry groups in explaining the observed neu-
trino oscillation data, we consider the A4 realization of linear
seesaw by extending the standard model (SM) particle con-
tent with two types of right-handed (RH) neutrinos along with
the flavon fields, and the SM symmetry with A4 × Z4 × Z3

and a global symmetry U (1)X , which is broken explicitly by
the Higgs potential. We scrutinize this model to see if it can
explain the recent results from neutrino oscillation experi-
ments, by searching for parameter space that can accommo-
date the observables such as the reactor mixing angle θ13,
the CP violating phase δCP, sum of active neutrino masses
�imi , solar and atmospheric mass-squared differences, and
the lepton number violating parameter called the effective
Majorana mass parameter, in line with recent experimental
results. We also discuss the scope of this model to explain the
baryon asymmetry of the Universe through leptogenesis. We
also investigate the possibility of probing the non-unitarity
effect in this scenario, but it is found to be rather small.

1 Introduction

The Standard Model (SM) of particle physics predicts mass-
less neutrinos, contradicting the experimental results on neu-
trino oscillation, according to which the three neutrino flavors
mix with each other and at least two of the neutrinos have
non-vanishing mass. Due to the absence of RH (RH) neutri-
nos in the SM, neutrinos do not have a Dirac mass like the
other charged fermions and their mass generation in the SM
is generally expected to arise from a dimension-five opera-
tor [1], which violates lepton number. However, very little is
known about the origin of this operator and the underlying
mechanism or its flavor structure. Hence, to generate non-
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zero neutrino mass, one resorts to some beyond the standard
model scenarios. There are many such models where the SM
is extended by including the RH neutrinos to its particle con-
tent. The inclusion of RH neutrinos NRi not only generates
the Dirac mass term but also leads to a Majorana mass for
the RH neutrinos, which is of the form NRi N

c
Ri

and violates
B − L symmetry. The smallness of the active neutrino mass
is ensured by the high value of the Majorana mass of the RH
neutrino [2–6]. In this class of models, if the Dirac masses
of the neutrinos are of the order of lightest charged lepton
mass i.e., electron mass, the Majorana mass has to be in TeV
range to get the observed value of active neutrino mass [4].
But if such models have to be embedded in Grand Unified
Theories (GUTs) where quarks and leptons are treated on the
same footing, the Dirac mass of the neutrinos will be of the
order of that of up-type quark [7] and the observed value of
active neutrino mass requires the Majorana mass to be of the
order of 1015 GeV, which is beyond the reach of present and
future experiments.

Many possibilities were proposed to have not so heavy
Majorana mass and the existence of other types of neutri-
nos called sterile neutrinos (S) is one among them [8]. Now
the neutrino mass can be expressed in the form of a 3 × 3
matrix with each element representing a matrix. Depending
on the position of the zero elements in the mass matrix in the
basis (ν, NR, S), active neutrinos receive masses through two
different mechanisms called inverse seesaw [8,9] and linear
seesaw [10]. If the 11 and 13 elements are zero, then it is
called the inverse seesaw model, and if 11 and 33 elements
are zero with non-zero off-diagonal elements, then we have
the linear seesaw model. The value of the 22 element could
be either negligible or very large compared to all other ele-
ments of the mass matrix. In all those cases the smallness of
the neutrino mass is independent of the ratio of Dirac mass
to heavy neutrino mass and hence allows one to have heavy
neutrinos in the TeV range and the bound on the ratio comes
from the non-unitarity effect and neutrino-less double beta
decay experiments.
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All those seesaw mechanisms require some of the ele-
ments of the mass matrix to be zero or very small but none
of them are prevented by the SM symmetry. All those terms
except the 33 element in the matrix will be prohibited if the
SM symmetry is extended to SU(2)L × SU(2)R × SU(3)C
or U (1)B−L , since in these symmetry groups RH neutrinos
are no longer singlets. But linear seesaw requires the 33 ele-
ment of the mass matrix to be zero or very small, which is
difficult to realize with gauge symmetry, as sterile neutrinos
are singlets in all gauge groups. However, if one considers
the sterile neutrino as complex, such terms can be avoided
by introducing suitable flavor symmetries.

The A4 discrete symmetry group is the group of even
permutations of four elements; it has attracted a lot of
attention since it is the smallest one which admits one
three-dimensional representation and three inequivalent one-
dimensional representations. Then the choice of the A4 sym-
metry is natural, since there are three families of fermions,
i.e., the left-handed (LH) leptons can be unified in a triplet
representation of A4, while the RH leptons can be assigned
to A4 singlets. This set-up was first proposed in Ref. [11] to
study the lepton masses and mixing obtaining nearly degen-
erate neutrino masses and allowing realistic charged leptons
masses after the A4 symmetry had been spontaneously bro-
ken. Later the A4 symmetry was proved to be very successful
in generating a tribimaximal mixing pattern for lepton mix-
ing [12], being well supported by the trends of oscillation
data at that time. The tribimaximal mixing pattern predicts
solar mixing and atmospheric mixing angles consistent with
the experimental data but yields a vanishing reactor mixing
angle [13–15], contradicting the recent experimental results
from various experiments, e.g., Daya Bay [16], T2K [17],
MINOS [18], Double CHOOZ [19] and RENO [20] etc. In
view of this, the tribimaximal mixing pattern has to be mod-
ified.

Here we consider the realization of the linear seesaw with
A4 symmetry. We extend the SM symmetry with A4×Z4×Z3

along with an extra global symmetry U (1)X , as discussed
in Ref. [21]. The SM particle content has been extended
by introducing three RH neutrinos, NRi , and three singlet
fermions, SRi , along with the flavon fields (φS , φT , ξ , ξ ′,
ρ, ρ′), to understand the flavor structure of the lepton mix-
ing. The proposed model gives an almost similar result to
[21] in the context of neutrino oscillation, but it has a dif-
ferent physics aspect in the case of heavy neutrinos. In [21],
the active neutrinos get their mass through an inverse see-
saw mechanism with the prediction of six nearly degenerate
heavy neutrinos, but in our case there are three very different
mass states with each state being nearly doubly degener-
ate. Furthermore, in our model the lightest heavy neutrino
mass is assumed to be around 5 TeV and there will be two
heavy neutrinos around this energy. Thus, these two mod-
els can be distinguished by the structure and implications of

the heavy neutrinos. Such implications include non-unitarity
and a possible CP violation effect, which can be tested at
the currently running long-baseline (NOνA) or upcoming
DUNE experiments. Since all the six heavy neutrinos are
almost degenerate in [21], the non-unitarity effect will be
large there, whereas in our case the effect will be small as
discussed in Sect. 6. Another possibility of distinguishing
the two scenarios is the observation of lepton flavor violating
(LFV) decay processes like μ → eγ , μ → eee, τ → μγ ,
etc. These processes are highly suppressed in the SM as they
occur at one-loop level with the light neutrino flowing in
the loop. Because of the large mixing between light and
heavy neutrinos, the heavy neutrinos would flow in the loop
and, hence, the rates are correspondingly enhanced as they
are no longer suppressed by the light neutrino mass. How-
ever, the present model with the linear seesaw mechanism,
invoked with A4 symmetry, gives suppressed contributions
to lepton flavor violating decay within the allowed model
parameter although these contributions are a few orders of
magnitude larger than the lepton flavor violating predictions
in Ref. [21]. Thus, lepton flavor violation cannot distinguish
between these inverse and linear seesaw scenarios with heavy
sterile neutrinos. Moreover, our proposed scenario is very
well suitable for leptogenesis, as discussed in [22,23], where
the analytic expression for CP asymmetry and correspond-
ing baryon asymmetry for the case of three pairs of nearly
degenerate heavy neutrinos can be found. In Ref. [23], the
contributions of the absorptive part of the Higgs self-energy
to CP violation in heavy particle decays, termed ε-type CP
violation, have been discussed elaborately. Such contribu-
tions are neglected in many cases as they are small compared
to ε′-type, the CP violation in heavy neutrino decays due
to the overlapping of tree-level with one-loop vertex dia-
gram. They have provided the formalism to deal with mixing
of states during the decay of the particles and have shown
that there is resonant enhancement of ε-type CP violation,
if the mixing states are nearly degenerate. The CP asymme-
tries due to both types of CP violations for a model with a
pair of nearly degenerate heavy neutrinos were also calcu-
lated and it was shown that the CP asymmetry due to ε-type
CP violation is 100 times higher than that of due to ε′-type,
which in turn predicts the correct baryon asymmetry of the
Universe.

The outline of the paper is as follows. In Sect. 2, we present
the model framework for the linear seesaw mechanism. The
A4 realization of the linear seesaw mechanism and its impli-
cation for the neutrino oscillation parameters is discussed in
Sect. 3. Section 4 contains a discussion of the neutrino masses
and mixing in the context of A4 symmetry and the results
obtained are presented in Sect. 5. In Sect. 6, we present the
discussion of leptogenesis and Sect. 7 contains a summary
and the conclusions.
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Table 1 The particle content
and their charge assignments for
an A4 realization of the linear
seesaw mechanism

Fields eR μR τR L H NR SR φT φS ξ ξ ′ ρ ρ′

A4 1 1′′ 1′ 3 1 3 3 3 3 1 1′ 1 1

Z4 −i −i −i −i 1 i 1 1 i i i −i −1

Z3 1 1 1 1 1 1 ω 1 ω ω ω ω2 1

X −1 −1 −1 −1 0 −1 1 0 0 0 0 −2 0

2 The model framework for linear seesaw

We consider the minimal extension of the Standard Model
GSM ≡ SU(2)L ×U (1)Y , omitting the SU(3)C structure for
simplicity, with two types of singlet neutrinos which are a
complete singlet under GSM for the implementation of the
linear seesaw mechanism. We denote these neutral fermion
singlets as RH (NRi ) and sterile (SRi ) neutrinos. Both these
neutral fermion species have a Yukawa coupling with the
lepton doublet L . In addition, one can write down a mixing
term connecting these two species of neutrinos. The bare
Majorana mass terms for NRi and SRi are either assumed to
be zero or forbidden by some symmetry arguments (Table 1).
The leptonic Lagrangian for the linear seesaw mechanism is
given by

− L = yL H̃ NR + hL H̃ SR + NRmRSS
c
R + h.c.

= νLmDNR + νLmLSSR + NRmRSS
c
R + h.c.. (1)

The full mass matrix for neutral leptons in the basis N =
(νL, Nc

R, ScR)T is given by

M =

⎛
⎜⎜⎝

0 mD mLS

mT
D 0 mRS

mT
LS mT

RS 0

⎞
⎟⎟⎠ . (2)

The resulting mass formula for light neutrinos is governed
by the linear seesaw mechanism,

mν = mDm
−1
RSm

T
LS + transpose. (3)

3 An A4 realization of linear seesaw

In this section, we wish to present an A4 realization of
the linear seesaw mechanism which has been discussed
in the previous section. The particle content of the model
and their representations under flavor symmetries are pre-
sented in Table 2.1 The scalar potential of the model is pre-
sented in the appendix. We introduce an extra global sym-
metry U (1)X , which is broken explicitly but softly by the
potential Vex(H, φS, φT , ξ, ξ ′, ρ′, ρ) given in (A11) in the
appendix to prevent the Goldstone boson from occurring

1 The implication of a linear seesaw can be found in [22].

Table 2 Vacuum expectation
values of various fields

Fields VEVs of these fields

ρ vρ � 6 × 10−2 GeV

ξ, ξ ′ vξ � vξ ′ � 10 TeV

[24]. These terms not only break U (1)X symmetry but also
give a non-zero vacuum expectation value to ρ, as shown in
the appendix, which is found to be very small.

The Yukawa Lagrangian for the charged lepton sector is
given as

Ll = −
{[

λe

�

(
L̄φT
)
HeR

]
+
[
λμ

�

(
L̄φT
)′
HμR

]

+
[
λτ

�

(
L̄φT
)′′

HτR

]}
.

After giving non-zero vacuum expectation values (VEVs)
to SM Higgs as well as flavon fields, the A4 symmetry in
the charged lepton sector is broken to Z3 with all other flavor
symmetries remaining intact, while in the neutrino sector, the
flavor symmetries are completely broken. Breaking of A4 to
Z3 in the charged lepton sector makes the charged lepton
mass matrix diagonal, which is given by

Ml = v
vT

�
diag
(
λe, λμ, λτ

)
, (4)

where the couplings λe, λμ and λτ are considered to be hier-
archical to give the correct physical charged lepton masses
and the VEVs of the scalar fields are considered as

〈H〉 = (0, v)T , 〈φT 〉 = (vT , 0, 0). (5)

For the linear seesaw mechanism, the Lagrangian involved
in the generation of the mass matrices for an A4 flavor sym-
metric framework can be written as

−Lν =LνN + LNS + LνS , (6)

where

LνN = y1L H̃ NR
ρ′

�
, (7)

LνS = y2L H̃ SR
ρ

�
, (8)

LNS =
(
λ

φ
NSφs + λ

ξ
NSξ + λ

ξ ′
NSξ

′) NRS
c
R . (9)
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It should be noted that the termsLνN ,LνS andLNS represent
the contributions for Dirac neutrino mass connecting νL–NR ,
νL–SR mixing and NR–ScR mixing terms. If one looks at the
mass formula for light neutrinos governed by linear seesaw
mechanism given in Eq. (3), one can use the mass hierarchy
as mRS � mD,mLS . That is the reason why we forbid νN
and νS terms at tree level and generate them by a dimension-
five operator while the heavy mixing term N−S is generated
at tree level.

Using the following VEVs for the scalar and flavon fields:

〈φS〉 = vS(1, 1, 1), 〈ξ 〉 = vξ , 〈ξ ′〉 = vξ ′ ,

〈ρ〉 = vρ, 〈ρ′〉 = vρ′ ,

the various mass matrices are found to be

mD = y1v
vρ′

�

⎛
⎜⎜⎝

1 0 0

0 0 1

0 1 0

⎞
⎟⎟⎠ ,

mLS = y2v
vρ

�

⎛
⎜⎜⎝

1 0 0

0 0 1

0 1 0

⎞
⎟⎟⎠ , (10)

mRS = a

3

⎛
⎜⎜⎝

2 −1 −1

−1 2 −1

−1 −1 2

⎞
⎟⎟⎠+ b

⎛
⎜⎜⎝

1 0 0

0 0 1

0 1 0

⎞
⎟⎟⎠

+d

⎛
⎜⎜⎝

0 0 1

0 1 0

1 0 0

⎞
⎟⎟⎠ , (11)

where a = λ
φ
NSvS , b = λ

ξ
NSvξ and d = λ

ξ ′
NSvξ ′ .

The first term in Eq. (11) comes from λ1φs
(
NRScR

)
3s ,

where
(
NRScR

)
3s is a triplet which is symmetric under

exchange of NR and SR . The product of two triplets
can also form a triplet, which is antisymmetric under the
exchange of the particles. In the linear seesaw mechanism,
the mass of the light neutrino is represented as mν =
mDm

−1
RSm

T
LS+transpose, and as seen from Eq. (10) the mass

matrices mD and mLS are symmetric and are related as

mD ∝ mLS. Hence, in mν = mT
D(m−1

RS + m−1
RS

T
)mLS, the

antisymmetric part cancels out and only the symmetric part
survives.

In a natural scenario we expect the Yukawa couplings y1,2

and the various λ couplings to be just one or two orders of
magnitude below unity, so that the different scales of the mass
matrices should arise mainly through the VEVs of different
scalars (v, vρ′ , vρ, vS, vξ , and vξ ′ ). The VEV of the SM
Higgs is considered to be v = 246 GeV. For the TeV scale
mRS, the VEVs vS, vξ , and vξ ′ should be in the TeV range.
Now considering |y1|2 ≈ |y2|2 ≈ 10−3, and assuming the

Dirac massmD to be in the MeV range (say 70 MeV), one can

obtain
vρ′

�
≈ 9 × 10−3 from the expression mD ≈ y1vvρ′

�
,

which givesvρ′ ≈ 9 TeV for� = 103 TeV. Similarly formLS

in the keV range (5 keV), one obtains vρ ≈ 6 × 10−2 GeV.
Thus, a rather large spectrum of scales in the mass matrix
arises through the VEVs of different scalar and flavon
fields.

4 Neutrino masses and mixing

For calculation convenience one can rewrite the mRS mass
matrix (11) as

mRS =

⎛
⎜⎜⎝

2a/3 + b −a/3 −a/3

−a/3 2a/3 −a/3 + b

−a/3 −a/3 + b 2a/3

⎞
⎟⎟⎠

+

⎛
⎜⎜⎝

0 0 d

0 d 0

d 0 0

⎞
⎟⎟⎠ . (12)

Thus, with Eqs. (3), (10) and (11), one can obtain the light
neutrino mass,

mν = mDm
−1
RSm

T
LS + transpose

= k1k2

⎛
⎜⎜⎝

1 0 0

0 0 1

0 1 0

⎞
⎟⎟⎠m−1

RS

⎛
⎜⎜⎝

1 0 0

0 0 1

0 1 0

⎞
⎟⎟⎠ , (13)

where the parameters k1 and k2 are related to the VEVs
through

k1 = √
2y1v

vρ′

�
, k2 = √

2y2v
vρ

�
.

Hence, the inverse of the light neutrino mass matrix is given
by

m−1
ν = 1

k1k2

⎛
⎜⎜⎝

2a/3 + b −a/3 −a/3

−a/3 2a/3 −a/3 + b

−a/3 −a/3 + b 2a/3

⎞
⎟⎟⎠

+ 1

k1k2

⎛
⎜⎜⎝

0 d 0

d 0 0

0 0 d

⎞
⎟⎟⎠ , (14)

which in the TBM basis will have the form m−1′
ν =

UT
TBMm−1

ν UTBM,

m−1′
ν =

⎛
⎜⎜⎜⎝

a + b − d/2 0 −
√

3
2 d

0 b + d 0

−
√

3
2 d 0 a − b + d/2

⎞
⎟⎟⎟⎠ . (15)
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The inverse mass matrix m−1′
ν can be diagonalized by U∗

13.
Hence, the matrix m−1

ν can be diagonalized by UTBM · U∗
13,

and thus the matrix mν can be diagonalized by UTBM · U13,
and mRS by UTBM · UT

13. The complex unitary matrix U13

has the form

U13 =

⎛
⎜⎜⎝

cos θ 0 sin θe−iψ

0 1 0

− sin θeiψ 0 cos θ

⎞
⎟⎟⎠ , (16)

where the parameters θ and ψ are expressed in terms of the
mass matrix parameters d/b = λ1eφdb , a/b = λ2eφab as

tan 2θ = −
√

3λ1 cos φdb

(λ1 cos φdb − 2) cos ψ + (2λ2 sin φab) sin ψ

(17)

and

tan ψ = sin φdb

λ2 cos(φab − φdb)
. (18)

The eigenvalues of mν and mRS are related by

m̃i = k1k2

M̃i
, (19)

where m̃i and M̃i are i th eigenvalues of mν and mRS , respec-
tively. The eigenvalues of mRS can be expressed as

M̃1 = b

[
λ2e

iφab −
√

1 + λ2
1e

2iφdb − λ1eiφdb
]

,

M̃2 = b
[
1 + λ1e

iφdb
]
,

M̃3 = b

[
λ2e

iφab +
√

1 + λ2
1e

2iφdb − λ1eiφdb
]

, (20)

which give the mass of the heavy neutrinos as Mi = |M̃i |.
Explicitly, one can write the heavy neutrino masses as

M1 = |b|M ′
1

= |b|
[
(λ2 cos φab − C)2 + (λ2 sin φab − D)2

]1/2
,

M2 = |b|M ′
2 = |b|

[
1 + λ2

1 + 2λ1 cos φdb

]1/2
,

M3 = |b|M ′
3

= |b|
[
(λ2 cos φab + C)2 + (λ2 sin φab + D)2

]1/2
,

(21)

where

C =
[
A + √

A2 + B2

2

]1/2

,

D =
[

−A + √
A2 + B2

2

]1/2

,

A = 1 + λ2
1 cos 2φdb − λ1 cos φdb ,

B = λ2
1 sin 2φdb − λ sin φdb , (22)

and the phases φi of M̃i , i.e., M̃i = |M̃i |eiφi , as

φ1 = tan−1
[

λ2 sin φab − D

λ2 cos φab − C

]
,

φ2 = tan−1
[

λ1 sin φdb

1 + λ1 cos φdb

]
,

φ3 = tan−1
[

λ2 sin φab + D

λ2 cos φab + C

]
. (23)

Thus, the active neutrino masses mi = |m̃i | and the matrix
which diagonalizes active neutrino mass matrix, Uν , are
given by

mi = |k1k2|
Mi

,

Uν = UTBM ·U13 · P , (24)

with P = diag(e−iφ1/2, e−iφ2/2, e−iφ3/2).
The lepton mixing matrix, known as the PMNS matrix, is
given by [25–27]

UPMNS = U †
l ·Uν , (25)

whereUl andUν are the matrices which diagonalize charged
lepton and neutrino mass matrices. Here Ul = I and Uν =
UTBM ·U13 · P , hence

UPMNS = UTBM ·U13 · P, (26)

which has been proved to be in good agreement with the
experimental observations [28,29]. The PMNS matrix can
be parametrized in terms of three mixing angles (θ13, θ23

and θ12) and three phases (one Dirac phase, δCP, and two
Majorana phases, ρ and σ ) as

UPMNS

=

⎛
⎜⎜⎜⎝

c12c13 s12c13 s13e
−iδCP

−s12c23 − c12s13s23e
iδCP c12c23 − s12s13s23e

iδCP c13s23

s12s23 − c12s13c23e
iδCP −c12s23 − s12s13c23e

iδCP c13c23

⎞
⎟⎟⎟⎠ Pν ,

(27)
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where ci j = cos θi j and si j = sin θi j and Pν =
diag(1, eiρ/2, eiσ/2). From Eqs. (26) and (27), one can find

sin θ =
√

3

2
sin θ13 ,

sin δCP = − sin ψ√
1 − 3(2 − 3 sin2 θ13)

(1 − sin2 θ13)2
sin2 θ13 cos2 ψ

≈ − sin ψ. (28)

The above expressions relate the parameters of the model,
i.e., θ and ψ , to the mixing observables sin2 θ13 and δCP,
respectively. Since sin2 θ13 is known more precisely than δCP,
in our calculation we fix θ by fixing sin2 θ13 at its best-fit
value while considering all possible value of ψ for which
δCP falls within its 3σ experimental range. Although in this
case the solar mixing angle is slightly on the higher side of

the observed central value, i.e., sin2 θ12 = 1/
(

3 − 2 sin2 θ
)

,

it lies within the 3σ range of the observed data.

5 Numerical results

Using Eqs. (19) and (21), the light neutrino masses are found
to be

mi = |k1k2|
Mi

= |k1k2|
|b|

1

M ′
i

. (29)

Since only the mass-squared differences, �m2
21 (solar mass-

squared difference) and |�m2
32| (atmospheric mass-squared

difference) are measured in neutrino oscillation experiments,
we calculate the mass-squared differences from Eq. (29) as

�m2
21 =

∣∣∣∣
k1k2

b

∣∣∣∣
2
(

1

M ′
2

2 − 1

M ′
1

2

)
,

∣∣∣�m2
31

∣∣∣ =
∣∣∣∣
k1k2

b

∣∣∣∣
2
∣∣∣∣∣

(
1

M ′
3

2 − 1

M ′
1

2

)∣∣∣∣∣ . (30)

Substituting Eq. (21) in the above equations, we find the ratio
of the two mass-squared differences:

r = �m2
21

|�m2
31|

=
[

(λ2 cos φab + C)2 + (λ2 sin φab + D)2

1 + λ2
1 + 2λ1 cos φdb

]

×
[

(λ2 cos φab − C)2 + (λ2 sin φab − D)2 − (1 + λ2
1 + 2λ1 cos φdb

)

4λ2|C cos φab + D sin φab|

]
.

(31)

Now using Eqs. (17), (18), (21), (22) and (31), and by fixing
the parameters φdb, ψ and θ , one can find the numerical

values of the M ′
i . Once the M ′

i are known

∣∣∣∣
k1k2

b

∣∣∣∣ can be

calculated from (30) as

∣∣∣∣
k1k2

b

∣∣∣∣ =
√√√√√√

�m2
21(

1

M ′2
2

− 1

M ′2
1

) =

√√√√√√√

∣∣∣∣∣∣∣∣

�m2
31(

1
M ′2

3
− 1

M ′2
1

)

∣∣∣∣∣∣∣∣
, (32)

which will also give the absolute value of light neutrino
masses as all the quantities on the right hand side of (29)
are now known.

We now rewrite the expression for tan ψ (18) in terms of
φdb as

φdb = 0, π, for tan ψ = 0, (33)

and

φab = φdb + cos−1
(

sin φdb

λ2 tan ψ

)
, for tan ψ = 0, (34)

and consider the following cases to see the implications.

5.1 Correlation between model parameters with tan ψ = 0

In this case φdb will be either 0 or π , and for φdb = 0 one
can obtain from Eq. (17)

λ1 = 2 tan 2θ√
3 + tan 2θ

, (35)

and the ratio of the mass-squared differences r (31), satisfies
the relation

r =
[

λ2
2 + 2λ2C cos φab + C2

(1 + λ1)2

]

×
[

λ2
2 − 2λ2C cos φab + C2 − (1 + λ1)

2

4λ2|C cos φab|

]
, (36)

where C =
√

1−λ1+λ2
1

2 . It should be noted from (36) that r
will be divergent near φab = π/2 and, thus, the values of φab

around π/2 are not allowed. The eigenvalues of mRS in this
case become

M1 = |b|
√

λ2
2 − 2λ2C cos φab + C2 ,

M2 = |b|(1 + λ1),

M3 = |b|
√

λ2
2 + 2λ2C cos φab + C2 . (37)

Now from Eq. (36), using the measured values of r =
0.0291 ± 0.00085 [30], variation of the parameter λ2, the
lightest neutrino mass (ml ) and the sum of active neutrino
masses

∑
mi with φab, consistent with the 3σ range of the

observed neutrino mixing parameters are shown in Fig. 1.
Meanwhile for φdb = π

λ1 = 2 tan 2θ√
3 − tan 2θ

, (38)
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Fig. 1 Variation of λ2, the
lightest neutrino mass (ml ) and
�imi with φab, red lines are for
the inverted hierarchy and green
lines are for the normal
hierarchy

Fig. 2 Variation of λ2, ml and
�imi with φab, red points are
for the inverted hierarchy and
green points are for the normal
hierarchy

and the ratio of the mass-squared differences r satisfies the
relation

r =
[

λ2
2 + 2λ2C cos φab + C2

(1 − λ1)2

]

×
[

λ2
2 − 2λ2C cos φab + C2 − (1 − λ1)

2

4λ2|C cos φab|

]
, (39)

with C =
√

1+λ1+λ2
1

2 , and the eigenvalues of mRS are given
as

M1 = |b|
√

λ2
2 − 2λ2C cos φab + C2 ,

M2 = |b|(1 − λ1) ,

M3 = |b|
√

λ2
2 + 2λ2C cos φab + C2 . (40)
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Fig. 3 Correlation plots
between λ1 and λ2 for the
normal hierarchy (top left
panel), for the inverted hierarchy
(top right panel) and between
�imi (red points), ml (green
points) and δCP in the bottom
left (right) panel for the normal
(inverted) hierarchy. The vertical
and horizontal bands represent
the values of δCP beyond its 3σ

range and �imi > 0.23 eV, the
upper bound on the sum of
active neutrino masses given by
the Planck data, respectively

Analogous to Fig. 2, the variation of various parameters with
φab is shown in Fig. 2. From the plots it can be seen that,
for normal ordering, the allowed parameter space is severely
constrained.

5.2 Correlation between model parameters with tan ψ = 0

With tan ψ = 0, the analytic expression for λ1 is given by

λ1 = 2λ2 tan 2θ cos φab sin ψ

sin φab

[√
3 + tan 2θ cos ψ

] . (41)

We obtain the correlation plots between various parameters
as given in Figs. 3 and 4, by varying φdb between 0 to 2π

and δCP in its 3σ range (0 − 0.17π ⊕ 0.76π − 2π), while
fixing sin2 θ13 at its best-fit value [30].

Comment on neutrino-less double beta decay. The experi-
mental observation of neutrino-less double beta decay would
not only ascertain the Lepton Number Violation (LNV) in
nature but it can also give an absolute scale of the lightest
active neutrino mass. The experimental non-observation of
such an event puts a bound on the half-life of this process
on various isotopes which can be translated as a bound on
the particle physics parameter called the effective Majorana
mass. In the linear seesaw model, the light Majorana neu-
trinos contribute to neutrino-less double beta decay, while
the heavy pseudo-Dirac neutrinos give a suppressed contri-
bution.

The measure of LNV can be understood with the key
parameter called the effective Majorana mass, which is
defined as

|Mee| ≡ ∣∣mν
ee

∣∣ =
∣∣∣∣U 2

e1 m1 +U 2
e2 m2e

iρ +U 2
e3 m3e

iσ
∣∣∣∣.

(42a)

The light neutrino mass eigenvalues m1,m2,m3 depend on
input model parameters. These input model parameters are
constrained to their allowed range in order to satisfy the oscil-
lation data giving correct values of mass-squared differences
and mixings. The Majorana phases ρ and σ are related to φab

and φdb in some way and, thus, they are constrained to take
limited values. A brief discussion on the allowed values of
the Majorana phases is presented below.

Majorana phases: Majorana phases ρ and σ are related
to the rephasing invariants S1 = Im

{
U∗
e1Ue2

}
, S2 =

Im
{
U∗
e1Ue3

}
, and S3 = Im

{
U∗
e2Ue3

}
of the leptonic mixing

matrix [31] as

cos ρ = 1 − 2
S2

1

|Ue1|2 |Ue2|2
,

cos σ ′ = 1 − 2
S2

2

|Ue1|2 |Ue3|2
,

cos
(
σ ′ − ρ

) = 1 − 2
S2

3

|Ue2|2 |Ue3|2
, (43)

where σ ′ = σ − 2δCP. The elements of the PMNS mix-
ing matrix can be derived from the knowledge of the tribi-

123



Eur. Phys. J. C (2018) 78 :719 Page 9 of 15 719

Fig. 4 Correlation plots
between φdb, φab and δCP for
normal (left panel) and inverted
(right panel) hierarchy. The
vertical band represents the
values of δCP beyond its 3σ

range

Fig. 5 Correlation plots
between Majorana phases σ and
ρ for the case of normal (left
pane) and inverted hierarchy
(right panel) for tan ψ = 0

maximal mixing multiplied by a rotation matrix in the 13
plane as shown in Eq. (26). Thus, the values of the vari-
ous PMNS matrix elements in the proposed model are given
as |Ue1| = 2√

6
cos θ , |Ue2| = 1√

3
and |Ue3| = 2√

6
sin θ .

It should be noted that the rephasing invariants associated
with the Majorana phases are not uniquely determined. For

example, instead of S1 defined above, one could have cho-

sen S′
1 = Im

{
U∗

τ1Uτ2
}
, or S1

′′ = Im
{
U∗

μ1Uμ2

}
, and so on.

With Eqs. (16) and (26), we obtain S1, S2 and S3:

S1 =
√

2

3
cos θ sin

(
φ1

2
− φ2

2

)
,
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Fig. 6 Correlation plots
between the Majorana phases σ

and ρ for the case of the normal
(left pane) and inverted
hierarchy (right panel) for
tan ψ = 0

Fig. 7 Variation of the
Majorana mass parameter Mee,
which is an observable in
neutrino-less double beta decay
with lightest neutrino mass for
the case of the normal (left
panel) and inverted hierarchy
(right panel) for tan ψ = 0

Fig. 8 Variation of effective
Majorana parameter Mee, which
is a measure of lepton number
violation with the lightest
neutrino mass for the case of the
normal (left panel) and the
inverted hierarchy (right panel)
for tan ψ = 0

S2 = 1

3
sin 2θ sin

(
φ1

2
− φ3

2
− ψ

)
,

S3 =
√

2

3
sin θ sin

(
φ2

2
− φ3

2
− ψ

)
. (44)

The correlation plots between the Majorana phases ρ and
σ are shown in Figs. 5 and 6 for tan ψ = 0 and tan ψ =
0, respectively. The estimation of the effective Majorana
mass parameter using these already constrained input model
parameters with the variation of lightest neutrino mass is
displayed in Fig. 7, where the left panel is for the NH
and the right panel is for the IH pattern of light neutrino
masses.

The current limit on the half-life, or the translated
bound on the effective Majorana mass parameter (mν

ee) from
GERDA Phase-I [32], is T 0ν

1/2(
76Ge) > 2.3 × 1025 yr and

this implies |mee| ≤ 0.21 eV and from KamLAND-Zen
[33] as T 0ν

1/2(
136Xe) > 1.07 × 1026 yr, and this implies

|mee| ≤ 0.15 eV. There is also a bound from the CUORE
experiment on the effective Majorana mass parameter as
|mee| ≤ 0.073 eV [34]. The expected reach of the future
planned 0νββ experiments including the nEXO experiment
gives T 0ν

1/2(
136Xe) ≈ 6.6 × 1027 yr [35]. The variation of the

effective mass parameter (in green points) with the lightest
neutrino mass is shown in Fig. 7 for tan ψ = 0 and the same
is plotted in Fig. 8 for tan ψ = 0. The left panel is for the NH
pattern and the right panel is for the IH pattern of the light
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neutrino masses. The horizontal lines represent the bounds
on the effective Majorana mass from various neutrino-less
double beta decay experiments, while the vertical shaded
regions are disfavored by the Planck data. The present bound
is �imi < 0.23 eV from the Planck+WP+highL+BAO data
(Planck1) at 95% CL.

As seen from the plots, the current bound on the effective
mass parameters from GERDA Phase-I and KamLAND-Zen
is not sensitive to the NH and IH patterns of the light neutrino
mass ordering. However, the future planned nEXO experi-
ment is sensitive to both patterns of light neutrinos.

6 Leptogenesis

It is well known that leptogenesis is one of the most ele-
gant frameworks for dynamically generating the observed
baryon asymmetry of the Universe. In the resonance lepto-
genesis scenarios, since the mass difference between two or
more heavy neutrinos is much smaller than their individual
masses and comparable to their widths, the CP asymmetry in
their decays occurs primarily through self-energy effects (ε-
type) rather than vertex effects (ε′-type) and gets resonantly
enhanced. In the present A4 realization, since the mass split-
ting between the two heavy neutrinos is rather tiny, it pro-
vides the opportunity for resonant leptogenesis, which will
be discussed in this section.

During the calculation of light neutrino masses and
mixing, we have neglected the higher order terms in the
Lagrangian Lν as displayed in Eq. (6), which are given with
an extra dimension-six operators as follows:

−
{[

λNφφS + λNξ ξ + λNξ ′ξ ′]ρρ′

�2 N RN
c
R

+
[
λSφφS + λSξ ξ + λSξ ′ξ ′]ρ†ρ′

�2 SRS
c
R

}
. (45)

These extra terms do not make much difference in those cal-
culations, but they lead to a tiny mass splitting in doubly
degenerate mass states of heavy neutrinos. Including these
additional terms, the Majorana mass matrix M2 becomes

M2 =
(

mR mRS

mT
RS mS

)
, (46)

where

mR = |vρvρ′ |
�2

⎛
⎜⎜⎜⎝

2
3 λNφvS + λNξ vξ − 1

3 λNφvS − 1
3 λNφvS

− 1
3 λNφvS

2
3 λNφvS − 1

3 λNφvS + λNξ vξ

− 1
3 λNφvS − 1

3 λNφvS + λNξ vξ
2
3 λNφvS

⎞
⎟⎟⎟⎠

+ |vρvρ′ |
�2

⎛
⎜⎜⎜⎝

0 0 λNξ ′ vξ ′

0 λNξ ′ vξ ′ 0

λNξ ′ vξ ′ 0 0

⎞
⎟⎟⎟⎠

and

mS = |vρvρ′ |
�2

⎛
⎜⎜⎜⎝

2
3 λSφvS + λSξ vξ − 1

3 λSφvS − 1
3 λSφvS

− 1
3 λSφvS

2
3 λSφvS − 1

3 λSφvS + λSξ vξ

− 1
3 λSφvS − 1

3 λSφvS + λSξ vξ
2
3 λSφvS

⎞
⎟⎟⎟⎠

+|vρvρ′ |
�2

⎛
⎜⎜⎝

0 0 λSξ ′vξ ′

0 λSξ ′vξ ′ 0

λSξ ′vξ ′ 0 0

⎞
⎟⎟⎠ . (47)

The phase of vρ has been absorbed in the couplings λ. The
mass matrixM2 can be approximately block diagonalized by

the unitary matrix 1√
2

(
I −I

I I

)
(where we have neglected

the small mass difference between SR and MR) and becomes

M
′
2 =
⎛
⎜⎝
mRS + mR + mS

2
mS − mR

mS − mR −mRS + mR + mS

2

⎞
⎟⎠

≈
⎛
⎜⎝
mRS + mR + mS

2
0

0 −mRS + mR + mS

2

⎞
⎟⎠ , (48)

with eigenvalues

M ′
1
± ≈ M1

(
1 ± vρvρ′

�2

m′
1

M1

)
,

M ′
2
± ≈ M2

(
1 ± vρvρ′

�2

m′
2

M2

)
,

M ′
3
± ≈ M3

(
1 ± vρvρ′

�2

m′
3

M3

)
, (49)

where

m′
1 = 2Re

{[
a′ −
(
bb′ − 1

2

(
bd ′ + b′d

)+ dd ′
√
b2 − bd + d2

)]
e−iφ1

}
,

m′
2 = 2Re

[(
b′ + d ′) e−iφ2

]
,

m′
3 = 2Re

{[
a′ +
(
bb′ − 1

2

(
bd ′ + b′d

)+ dd ′
√
b2 − bd + d2

)]
e−iφ3

}
,

a′ = 1

2

(
λNφ + λSφ

)
vS, b′ = 1

2

(
λNξ + λSξ

)
vξ ,

d ′ = 1

2

(
λNξ ′ + λSξ ′

)
vξ ′ , (50)

and φi is the phase associated with M̃i . The above set of
equations show that m′

i can be of the order of Mi since a, a′
are of the order of vS , b, b′ are of the order of vξ and d, d ′
are of the order of vξ ′ .
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The decay of nearly degenerate heavy neutrinos creates
lepton asymmetry, and it is given as [22]

εN±
i

= − 1

4π AN±
i

[(
m̃D

v

)† ( m̃D

v

)
−
(
m̃LS

v

)† ( m̃LS

v

)]

i i

×Im

[
m̃†

Dm̃LS

v2

]

i i

× rNi

rNi
2 + 1

64π2 AN±
i

2
, (51)

where

AN±
i

= 1

2

[(
m̃†

D

v
± m̃†

LS

v

)(
m̃D

v
± m̃LS

v

)]

i i

(52)

rNi = M ′
i
+2 − M ′

i
−2

M ′
i
+M ′

i
− ≈ 4

(
vρvρ′

�2

m′
i

Mi

)
,

m̃D = mDUTBMUT
13, m̃LS = mLSUTBMUT

13 . (53)

It should be noted that vρ is very small in comparison to
other VEVs and mLS ≈ y2vvρ/�, while mD ≈ y1vvρ′/�,
where y1 and y2 are dimensionless coupling constants with
y1 ≈ y2, implying m̃LS � m̃D . We use rNi � AN±

i
, rNi

2 +
1

64π2 A
2
N±
i

≈ 1
64π2 A

2
N±
i

, and for m̃LS � m̃D

εN±
i

≈ −128π Im
[
m̃†

LSm̃D

]
i i

rNi v
2

(
m̃†

Dm̃D

)2 . (54)

Substituting m̃†
Dm̃D ≈ |y1|2

(
vvρ′/�

)2, m̃†
Dm̃LS ≈ y∗

1 y2v
2(

vρvρ′/�2
)

and rNi ≈ 4
(
vρvρ′/�2

) (
m′

i/Mi
)

in the above
equation, we obtain

εN±
i

≈ −512π

(
vρ

vρ′

)2 Im
[
y∗

1 y2
]

|y1|4
m′

i

Mi
. (55)

Writing y∗
1 y2 = |y1y2|eiθε , one can have

εN±
i

≈ −512π

(
vρ

vρ′

)2 |y2|
|y1|3

m′
i

Mi
sin θε . (56)

Here we calculate the baryon asymmetry for the case
M3 � M2 < M1, i.e., the normal hierarchy in the active
neutrino sector with m1 < 0.005 eV. It is mainly the decay
of M±

3 that contributes to the final baryon asymmetry. Since
the decay is in the strong wash-out region, the final baryon
asymmetry is given by [22],

ηB = −28

79

⎛
⎜⎝

0.3εN±
3

g∗KN±
3

(
ln KN±

3

)0.6

⎞
⎟⎠ , (57)

where KN±
i

= 1

8π

(
8π3g∗

90

)−1/2
(

MPl

MN±
i

)
AN±

i
, g∗ ≈

106.75 and MPl = 2.435×1018 GeV are relativistic degrees

of freedom of SM particles and Planck mass, respectively.
Here

KN±
3

= KN3 ≈ 0.234

[
m3 ((eV)

10−2

]
vρ′

vρ

� 1, (58)

as m3 is of the order of 10−2 eV and
vρ′
vρ

� 1. Substituting
KN±

3
and εN±

3
in Eq. (57) gives

ηB ≈ 0.174

⎛
⎜⎜⎜⎝

(
m3(eV)

10−2

)2

K 3
N3

(ln KN3)
0.6

⎞
⎟⎟⎟⎠

|y2|m′
3

|y1|3M3
sin θε. (59)

For y1 ≈ y2 and
m′

3

M3
≈ 1 the above equation gives

ηB ≤ 0.174

⎛
⎜⎜⎜⎝

(
m3(eV)

10−2

)2

|y1|2K 3
N3

(ln KN3)
0.6

⎞
⎟⎟⎟⎠ . (60)

Withm3 ≈ 0.05 eV, |y1|2 = 10−3 and ηB = 6.9×10−10,

from Eqs. (58) and (60) we found the minimum value of
vρ

vρ′
,

which requires one to generate observed baryon asymmetry
as

vρ

vρ′

∣∣∣∣
min

= 5.07 × 10−5 . (61)

Comment on Non-unitarity in leptonic sector:
In the usual case, the light active Majorana neutrino mass
matrix is diagonalized by the PMNS mixing matrixUPMNS as
U †

PMNS mν U∗
PMNS = diag (m1,m2,m3) where m1,m2,m3

are mass eigenvalues for light neutrinos. However, the diago-
nalizing mixing matrix in the case of the linear seesaw mech-
anism, where the neutral lepton sector comprises light active
Majorana neutrinos plus two additional types of RH sterile
neutrinos, is given by

N � (1 − η)UPMNS , (62)

where the non-unitarity effect is parametrized as [36],

η = 1

2
m∗

Dm
† −1
RS m−1

RSm
T
D . (63)

In the linear seesaw framework under consideration, the N–S
mixing matrix mRS is symmetric and, with y1 ≈ y2, the ν–S
mass term can be expressed as m†

LSmLS = 1
2m0M0(vρ/vρ′)

where m0 and M0 are the masses of heaviest active and light-
est heavy neutrinos, respectively. Thus, the above relation for
η can be written in terms of the light neutrino mass matrix
and the other input model parameters as

η = m∗
νm

T
ν

4m0M0
vρ

vρ′
. (64)
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The maximum value of η for the inverted mass hierar-
chy with lightest neutrino mass ml � 0.005 eV, while con-
sidering the constrained value of the ratio of VEV vρ

vρ′ =
5.07 × 10−5 as derived from the discussion of leptogene-
sis and using the representative value M0 = 5 TeV, can be
obtained as follows:

|η| ≈ 1

2

⎡
⎢⎢⎣

4 × 10−12 10−11 10−11

10−11 5 × 10−11 5 × 10−11

10−11 5 × 10−11 5 × 10−11

⎤
⎥⎥⎦ . (65)

Using the representative set of model parametersm0 and M0,
the mass matrices mD and mLS are expressed as follows:

mD =
√

M0m0

vρ/vρ′
, mLS =

√
vρ

vρ′
M0m0 . (66)

Using the constrained value of these model parameters m0

and M0, the Dirac neutrino mass connecting ν–N is found to
be mD ≈ 70 MeV and the other mass term, connecting ν–S,
is mLS ≈ 3.5 keV.

7 Conclusion

In this paper we have considered the realization of the lin-
ear seesaw mechanism by extending the SM symmetry with
A4 × Z4 × Z3 along with a global symmetry U (1)X , which
is broken explicitly in the Higgs potential. In addition to
the SM fermions, the model has six heavy fermions, three
RH neutrinos (NRi ) and three sterile neutrinos (SRi ). We
found that each mass state of the heavy neutrino is nearly
doubly degenerate with a small mass splitting, which can be
neglected for the calculation of active neutrino mass and mix-
ing parameters. The masses of the active neutrinos are found
to be inversely proportional to those of the heavy neutrinos.
The model predicts lepton mixing matrix i.e., the PMNS as
UTBM · U13 · P , where U13 is the rotation in the 13 plane
and hence explains well the results on mixing angles and δCP

from the oscillation experiments. We obtained the parameter
space and correlation plots between various observables by
fixing θ13 at its best-fit value and the ratio of mass-squared
differences, �m2

21/
∣∣�m2

13

∣∣, at 0.0291 and varying δCP in its
3σ range.

We have demonstrated that pairs of nearly degenerate
Majorana neutrinos in the model open the door to resonant
leptogenesis to account for the baryon asymmetry of the Uni-
verse. We calculated the minimum value of vρ/vρ′ to gener-
ate the observed baryon asymmetry by fixing the mass of the
lightest heavy neutrino in TeV for the case where the heavy
neutrino masses are highly hierarchical, so that the only con-
tribution to the baryon asymmetry is from the decay of the two
lightest heavy neutrinos. The parameter space which satis-

fies this condition, predicts the normal hierarchy in the active
neutrino sector with the lightest one being less than 0.005 eV.
In this case the maximum non-unitarity value that the model
can accommodate in the leptonic sector is very small and is
of the order of 10−11 and the mass parameters are found to
be mD ≈ 70 MeV and mLS ≈ 3.5 keV.
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Appendix A: The scalar potential

The most general renormalizable scalar potential of the
model involving all the flavon fields which is invariant under
A4×Z4×Z3 and respectingU (1)X symmetry can be written
as

V = V (H) + V (φS) + V (φT ) + V (ξ) + V (ξ ′) + V (ρ′)
+V (ρ) + V (H, φS, φT , ξ, ξ ′, ρ) + V (φS, φT , ξ, ξ ′, ρ′)
+Vex(H, φS, φT , ξ, ξ ′, ρ′, ρ), (A1)

where

V (H) = μ2
H H†H + λH (H†H)(H†H), (A2)

V (φS) = μ2
S(φ

†
SφS)1 + λS

1 (φS
†φS)1(φ

†
SφS)1

+λS
2 (φ

†
SφS)1′(φ†

SφS)1′′

+λS
3 (φ

†
SφS)3S(φ

†
SφS)3S

+λS
4 (φ

†
SφS)3A(φ

†
SφS)3A

+λS
5 (φ

†
SφS)3S(φ

†
SφS)3A, (A3)

V (φT ) = μ2
T (φ

†
TφT )1 + λ1

T (φ
†
TφT )1(φ

†
TφT )1

+λ2
T (φ

†
TφT )1′(φ†

TφT )1′′

+λ3
T (φ

†
TφT )3S(φ

†
TφT )3S

+λ4
T (φ

†
TφT )3A(φ

†
TφT )3A

+λ4
T (φ

†
TφT )3S(φ

†
TφT )3A, (A4)

V (ξ) = μ2
ξ ξ

†ξ + λξ (ξ
†ξ)(ξ†ξ), (A5)

V (ξ ′) = μ2
ξ ′ξ ′†ξ ′ + λξ ′(ξ ′†ξ ′)(ξ ′†ξ ′), (A6)

V (ρ′) = μ2
ρ′ρ′ρ′ + λρ′(ρ′ρ′)(ρ′ρ′), (A7)

V (ρ) = μ2
ρρ†ρ + λρ

(
ρ†ρ
) (

ρ†ρ
)

, (A8)

V (H, φS, φT , ξ, ξ ′, ρ′, ρ)
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= λHS(H
†H)(φ

†
SφS)1 + λHT (H†H)(φ

†
TφT )1

+λHξ (H
†H)(ξ†ξ) + λHξ ′(H†H)(ξ ′†ξ ′)

+λHρ′(H†H)(ρ′ρ′) + λHρ

(
H†H

) (
ρ†ρ
)
, (A9)

V (φS, φT , ξ, ξ ′, ρ′, ρ)

= k11(φTφT )3SφT + k12(φTφT )3AφT

+k31(φ
†
SφS)3SφT + k32(φ

†
SφS)3AφT

+k4(φSφT )1ξ
† + k5(φSφT )1′ξ ′†

+k6(φ
†
SφT )1ξ + k7(φ

†
SφT )1′′ξ ′

+k8(φSφ
†
T )1ξ

† + k9(φSφ
†
T )1′ξ ′†

+k10(φ
†
Sφ

†
T )1ξ + k′

10(φ
†
Sφ

†
T )1′′ξ ′

+λ1
ST (φ

†
SφS)1(φ

†
TφT )1 + λ2

ST (φ
†
SφS)1′(φ†

TφT )1′′

+λ22
ST (φ

†
SφS)1′′(φ†

TφT )1′ + λ3
ST (φ

†
SφS)3S(φ

†
TφT )3S

+λ4
ST (φ

†
SφS)3A(φ

†
TφT )3A + λ5

ST (φ
†
SφS)3S(φ

†
TφT )3A

+λ6
ST (φ

†
SφS)3A(φ

†
TφT )3S + λ′1

ST (φ
†
SφT )1(φ

†
TφS)1

+λ′2
ST (φ

†
SφT )1′(φ†

TφS)1′′ + λ′22
ST (φ

†
SφT )1′′(φ†

TφS)1′

+λ′3
ST (φ

†
SφT )3S(φ

†
TφS)3S + λ′4

ST (φ
†
SφT )3A(φ

†
TφS)3A

+λ′5
ST (φ

†
SφT )3S(φ

†
TφS)3A + λ′6

ST (φ
†
SφT )3A(φ

†
TφS)3S

+λSξ (φ
†
SφS)1(ξ

†ξ) + λSξ ′(φS
†φS)1(ξ

′†ξ ′)
+λSρ′(φ†

SφS)1(ρ
′ρ′) + λSρ(φ

†
SφS)1(ρ

†ρ)

+λT ξ (φ
†
TφT )1(ξ

†ξ) + λT ξ ′(φ†
TφT )1(ξ

′†ξ ′)

+λTρ′(φ†
TφT )1(ρ

′ρ′) + λTρ

(
φ

†
TφT

)
1

(
ρ†ρ
)

+λξρ′(ξ†ξ)(ρ′ρ′) + λξρ(ξ†ξ)(ρ†ρ)

+λξξ ′(ξξ†)1(ξ
′ξ ′†)1 + λξ ′ρ′(ξ ′ξ ′†)(ρ′ρ′)

+λξ ′ρ(ξ ′ξ ′†)(ρ†ρ)

+λSξξ ′(φ†
SφS)1′′(ξ†ξ ′)1′ + λT ξξ ′(φ†

TφT )1′′(ξ†ξ ′)1′

+λ2
Sξξ ′(φ

†
SφS)1′(ξξ ′†)1′′ + λ2

T ξξ ′(φ
†
TφT )1′(ξξ ′†)1′′

+λ1
SSξ (φ

†
SφS)3S(φSξ

†) + λ2
SSξ (φ

†
SφS)3A(φSξ

†)

+λ1
SSξ ′(φ

†
SφS)3S(φSξ

′†) + λ2
SSξ ′(φ

†
SφS)3A(φSξ

′†)

+λ1
T Sξ (φ

†
TφT )3S(φSξ

†) + λ2
T Sξ (φ

†
TφT )3A(φSξ

†)

+λ1
T Sξ ′(φ

†
TφT )3S(φSξ

′†) + λ2
T Sξ ′(φ

†
TφT )3A(φSξ

′†)

+λ11
SSξ (φ

†
SφS)3S(φ

†
Sξ) + λ22

SSξ (φ
†
SφS)3A(φ

†
Sξ)

+λ11
SSξ ′(φ

†
SφS)3S(φ

†
Sξ

′) + λ22
SSξ ′(φ

†
SφS)3A(φ

†
Sξ

′)

+λ11
T Sξ (φ

†
TφT )3S(φ

†
Sξ) + λ22

T Sξ (φ
†
TφT )3A(φ

†
Sξ)

+λ11
T Sξ ′(φ

†
TφT )3S(φ

†
Sξ

′) + λ22
T Sξ ′(φ

†
TφT )3A(φ

†
Sξ

′),
(A10)

Vex(H, φS, φT , ξ, ξ ′, ρ′, ρ)

=
[
μ2

ρξ + λHρξ H
†H + λTρξ

(
φ

†
TφT

)
1
+ λSρξ

(
φ†
s φs
)

1

+ λξρξ ξ
†ξ + λξ ′ρξ ξ

′†ξ ′ + λρ′ρξρ
′ρ′] ρξ

+λSρξ ′
(
φ

†
SφS

)
1′′ ρξ ′ + λρρξ

(
ρ†ρ
)
ρξ + h.c.. (A11)

The potential Vex(H, φS, φT , ξ, ξ ′, ρ′, ρ) breaks the U (1)X
symmetry explicitly. As the potential presented above
involves several free parameters, such a large number of
free parameters should naturally allow the required VEV
alignment of the flavons considered in this article, i.e.,
〈φS〉 = vS(1, 1, 1), 〈φT 〉 = vT (1, 0, 0), 〈ξ 〉 = vξ , 〈ξ ′〉 =
vξ ′ , 〈ρ′〉 = vρ′ , 〈ρ〉 = vρ .

The terms involving ρ in the scalar potential are given by

V ′(ρ) =
[
μ2

ρ + λ′
HρH

†H + λ′
Tρ

(
φ

†
TφT

)
1
+ λ′

Sρ

(
φ

†
SφS

)
1

+λ′
ξρξ†ξ + λ′

ξ ′ρξ ′†ξ ′ + λ′
ρ′ρρ′ρ′] ρ†ρ

+λρ

(
ρ†ρ
)2

+[(μ2
ρξ + λHρξ H

†H + λTρξ (φ
†
TφT )1

+λSρξ (φ
†
s φs)1 + λξρξ ξ

†ξ

+λξ ′ρξ ξ
′†ξ ′ + λρ′ρξρ

′ρ′)ρξ

+λSρξ ′(φ†
SφS)1′′ρξ ′

+λρρξ (ρ
†ρ)ρξ + h.c.]. (A12)

In terms of the VEVs of the fields, the above potential can
be written as

V ′(ρ) = μ′
ρ

2
v∗
ρvρ + λρ(v∗

ρvρ)2

+[(μ′ 2
ρξ vξ + μ2

ρξ ′vξ ′)vρ

+λρρ(v∗
ρvρ)vρvξ + h.c.], (A13)

where

μ′ 2
ρ = μ2

ρ + λ′
Hρv2 + λ′

Tρv∗
T vT + λ′

Sρv∗
SvS + λ′

ξρv∗
ξ vξ

+λ′
ξ ′ρvξ ′ ∗vξ ′ + λ′

ρ′ρv2
ρ′ ,

μ′ 2
ρξ = μ2

ρξ + λHρξ v
2 + λTρξ v

∗
T vT + λξρξ v

∗
ξ vξ

+λξ ′ρξ vξ ′ ∗vξ ′ + λρ′ρvρ′ 2 + 3λSρξ v
∗
s vs,

μ2
ρξ ′ = 3λSρξ ′v∗

s vs . (A14)

For μ′
ρ

2
> 0, λρ > 0 and μ′

ρξ , μρξ ′ � μ′
ρ

2, V ′(ρ) (Eq.
(A13)) has a minimum at

v∗
ρ ≈ −

(
μ′ 2

ρξ vξ + μ2
ρξ ′vξ ′

)∗

μ′
ρ

2 . (A15)

Estimate mass of flavon field. ρ. From Eq. (A15), one can
obtain the mass of the flavon field ρ as

μ′
ρ =
√√√√μ′

ρξ
2
vξ + μ′

ρξ ′
2
vξ ′

vρ

. (A16)

Substituting the VEVs given in Table 2 in Eq. (A16) gives
the mass of the field ρ (μ′

ρ) as 5.8 TeV, for μ′
ρξ , μ′

ρξ ′ �
10 GeV. The condition μ′

ρξ , μ
′
ρξ ′ � 10 GeV is satisfied for

the parametric choice, μρξ � O(10 GeV), and λHρξ , λTρξ ,
λξ ′ρξ , λρ′ρ , λSρξ , λSρξ ′ � O(10−6). Such small couplings as
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involved in those terms of the Higgs potential which break
the U (1)X symmetry explicitly imply that the symmetry is
softly broken.
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