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Abstract We investigate whether the new horizon first law
proposed recently still work in f (R) theory. We identify the
entropy and the energy of black hole as quantities propor-
tional to the corresponding value of integration, supported
by the fact that the new horizon first law holds true as a
consequence of equations of motion in f (R) theories. The
formulas for the entropy and energy of black hole found here
are in agreement with the results obtained in literatures. For
applications, some nontrivial black hole solutions in f (R)

theories have been considered, the entropies and the energies
of black holes in these models are firstly computed, which
may be useful for future researches.

1 Introduction

It is well-known that there is a profound connection between
gravity and thermodynamics: the spacetime with horizons
can be described by thermodynamic laws. Bekenstein found
that the area of a black hole can be seen as its entropy [1].
Four laws of black hole mechanics were proposed in [2].
It has been shown that the entropy of a black hole can be
taken as the Noether charge associated with the diffeomor-
phism invariance of the theory of gravity [3,4]. From the first
law of thermodynamics Einstein equation has been derived in
[5]. Non-equilibrium thermodynamics of spacetime has been
investigated in [6]. By using a more general definition of the
Noether charge entropy, the equations of motion of general-
ized theories of gravity are equivalent to the thermodynamic
relation δQ = T δS [7]. This attempt also has been consid-
ered in modified gravity theories: such as f (R) theory [8],
Lancos-Lovelock gravity [9], and the scalar-Gauss-Bonnet
gravity [10]. In [11], a general formalism for understand-
ing the thermodynamics of horizons in spherically symmet-
ric spacetimes was developed. For stationary axis-symmetric
horizons and time dependent evolving horizons, it has been
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shown that the near horizon structure of Einstein equations
can be expressed as a thermodynamic identity under the vir-
tual displacement of the horizon [12]. It also has been shown
that the gravitational field equations of n + 1 -dimensional
topological black holes with constant horizon curvature, in
cubic and quartic quasi-topological gravity, can be recast in
the form of the first law of thermodynamics [13]. All these
studies were based on some assumptions, such as horizon,
null surfaces, Unruh temperature, and so on. In [14], with-
out assuming a temperature or a horizon the thermal entropy
density has been obtained for any arbitrary spacetime, imply-
ing that gravity possesses thermal effects, or, thermal entropy
density possesses effects of gravity. These results has been
generalized to the case of nonzero chemical potential [15].

When assuming a horizon equation of state, one can get
a horizon first law by considering a virtual displacement,
from which the entropy can be obtained [11]. Recently a
new horizon first law was suggested in [16], in this approach
both the entropy and the free energy are derived concepts,
and from which the standard horizon first law is recovered
by a Legendre projection. For Einstein gravity and Lovelock
gravity which only give rise to second-order field equation
for all metric components, their results have establish a way
of how to formulate consistent black hole thermodynamic
without conserved charges. Here we will investigate whether
the new horizon first law still work in f (R) gravity which
has fourth-order field equation. In these higher order gravita-
tional theories, the issue associated with the energy of black
hole is problematic. Several attempts to find a satisfactory
answer to this problem have been carried out (see for exam-
ple [17–21] and references therein). We find that the new
horizon first law can give not only the entropy but also the
energy of black holes in f (R) theories, which are consistent
with the results obtained in literatures.

The rest of the paper is organized as follows. In Sec. II,
we sketch the suggestion of the new horizon first law. In Sec.
III, we consider whether the new horizon first law holds in
f (R) theory. In Sec. IV, we discuss applications for some
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f (R) theories. Conclusions and discussions are presented in
Sec. V.

2 The new horizon first law

When discussing the thermodynamics of gravitation, it is
usual to assume that the sources of thermodynamic system
are also the sources of gravity, which as a principle was
firstly proposed in [15], such as: ρ, P|gravitational source =
ρ, P|thermal source, with ρ the energy density and P the pres-
sure. For horizon thermodynamics, this assumption implies
that the radial component of the stress-energy tensor serves
as a thermodynamic pressure: P = T r

r |r+ . Further one can
assume an horizon equation of state, P = P(V, T ), where
the temperature is identified with the Hawking temperature
and the horizon is assigned a geometric volume V = V (r+)

[22]. Then one can reasonably realize the radial Einstein
equation. Considering a virtual displacement of the horizon
[11], the horizon equation of state can be reformulate as a
horizon first law

δE = T δS − PδV, (1)

where S is the horizon entropy and E is quasilocal energy
of the black hole. In theory of Einstein gravity, E turns out
to be the Misner-Sharp energy [23]. It was shown that the
horizon first law (1) is a special case of the ‘unified first law’
[24].

These results are quite inspiring, but there are some prob-
lems in this procedure that are needed to be further checked
up. Firstly, the thermodynamic variables were derived that
was vague in the original derivation, and these variables
require further determination. The second problem is the
restriction of the virtual displacements δr+ of the hori-
zon radius. This makes the horizon first law (1) to be of
‘cohomogeneity-one’: as a function only depending on r+,
because both S and V arefunctions of only r+. In fact, Eq. (1)
can be written in δE = (

T S′ + PV ′) δr+, where the primes
represents the derivative with respected to r+. This makes
the terms ‘work’ and ‘heat’ unclear and results to a ‘vac-
uum interpretation’ of the first law (1) [16]. To avoid these
two problems, the key point is to vary the horizon equation
of state with the temperature T and the pressure P as inde-
pendent thermodynamic quantities. This procedure leads to
a new horizon first law [16].

δG = −SδT + V δP, (2)

which is obviously of cohomogeneity-two (depending on
both T and P) and non-degenerate (T and P can vary inde-
pendently). Furthermore, for specified volume, pressure, and
temperature, the horizon entropy S and the Gibbs free energy
G are derived concepts. The standard horizon first law (1)

can be derived though a degenerate Legendre transforma-
tion E = G + T S − PV . This new derivation indicates that
horizon thermodynamics has practical utility and provides
further evidence that gravitational field equations can indeed
be interpreted as an equation of state.

We first briefly review this method to horizon thermody-
namics in 4-dimensional Einstein gravity to explain how it
works [16]. Considering the spacetime of a static spherically
symmetric black hole whose geometry is given by

ds2 = −B(r)dt2 + dr2

B(r)
+ r2d�2, (3)

where the event horizon is located at r = r+ which is the
largest positive root of B(r+) = 0 which fulfils B ′(r+) �= 0.
Supposing minimal coupling to the matter, with the stress-
energy tensor Tμν , the radial Einstein equation yields

8πT r
r |r+ = Gr

r |r+ = B ′(r+)

r+
− 1 − B(r+)

r2+
. (4)

We take the units in which G = c = h̄ = 1 throughout
this paper. Assuming that the thermal sources are also the
gravitational sources [15], we have P = T r

r and identify
[11]

T = B ′(r+)

4π
, (5)

as the the temperature T . At the horizon, the radial Einstein
Eq. (4) can be rewritten as

P = T

2r+
− 1

8πr2+
, (6)

which is the horizon equation of state. The identification of
the temperature T in (5) is via standard arguments in thermal
quantum field theory; it does not fall back on any gravitational
field Eq. [16]. The definition the pressure in (6), according
to the conjecture proposed in [15], is identified with the (rr )

component of the matter stress-energy, also independent of
any gravitational field equations. With this information, it
is reasonable to suggest that the radial field equation for a
gravitational theory under consideration takes the following
form [16]

P = D(r+) + C(r+)T, (7)

where D and C are some functions of r+ that in general
depend on the gravitational theory under consideration, like
the linear equation of state in the temperature T . To obtain
the new horizon first law from the generalized equation of
state (7), assuming a virtual displacements δr+ of the horizon
radius and varying the Eq. (7), then multiplying the geometric
volume V (r+), it is straightforward to get

V δP = V
(
D′ + C ′T

)
δr+ + VCδT, (8)
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in which VC is just the entropy and V
(
D′ + C ′T

)
δr+ is the

variation of the Gibbs free energy G, comparing with the Eq.
(2). It is now easy to rewrite this equation as [16]

V δP = SδT + δG, (9)

where

G =
∫

V (r+)D′(r+) dr+ + T
∫

V (r+)C ′(r+)dr+

= PV − ST −
∫

V ′(r+)D(r+)dr+, (10)

and

S =
∫

V ′(r+)C(r+)dr+, (11)

by making use of the integration by parts. The derivation
of the Eq. (9) depends only on the generalized equation of
state with the form (7), having not used the specific form of
the volume. Using the degenerate Legendre transformation
E = G + T S − PV , we obtain the energy as [16]

E = −
∫

V ′(r+)D(r+)dr+. (12)

Taking variation of the Eq. (12) and combining the Eq. (9),
one can obtain the horizon first law (1) which is a special
case of the ‘unified first law’ [24].

Supposing that P , T , and V can be identified as the pres-
sure, the temperature, and the volume, then one can come to
the conclusion that S, G, and E are the entropy, the Gibbs
free energy, and the energy of the black hole, respectively.
For Einstein gravity in four dimensions, it is straightforward
to have D(r+) = −(8πr2+)−1 and C(r+) = 1/(2r+) from
(6), yielding S = πr2+ from (11) and E = r+/2 from (12).

3 The entropy and energy of black holes in f (R) Theory

The new horizon first law works well in Einstein’s theory,
as shown in the previous section. A question naturally rises
whether it still work in other modified gravity theories?
Here we consider this problem in f (R) theories. The gen-
eral action of f (R) gravity theories in four-dimensional with
source is

I =
∫

d4x
√−g

[
f (R)

2k2 + Lm

]
, (13)

where k2 = 8π , f (R) is a general function of the Ricci scalar
R, and Lm is the matter Lagrangian. For physical meaning,
function f (R) must satisfy the stability conditions [25]: (a)
no ghosts, d f/dR > 0; (b) no tachyons, d2 f/dR2 > 0
[26]; (c) limR→∞( f (R) − R)/R = 0 for the existence
of an effective cosmological constant at high curvature; (d)
limR→0 d( f (R)−R)/dR = 0 for recovering general relativ-
ity at early time (allowing for vaccum solutions). Moreover,

in order to give rise to stable solutions, f (R) also must fulfill
additional condition: d f/dR/d2 f/dR2 > R [27]. From the
variation of the action (13) with respect to the metric, the
gravitational field equations are obtained as follows

Gμν ≡ Rμν − 1

2
gμνR = k2

(
1

F
Tμν + 1

k2 Tμν

)
, (14)

where Tμν = −2√−g
δLm
δgμν is the energy-momentum tensor of

the matter, F = d f
dR , and Tμν is the tress-energy tensor of the

effective curvature fluid which is given by

Tμν = 1

F(R)

[
1

2
gμν( f − RF) + ∇μ∇νF − gμν�F

]
,

(15)

where � = ∇γ ∇γ . Using the relations �F = 1√−g
∂μ

[√−ggμν∂νF] and assuming the geometry of a static spher-
ically symmetric black hole takes the form of the Eq. (3),
we derive after some calculations the (1

1) components of the
Einstein tensor and the stress-energy tensor of the effective
curvature fluid, respectively, as

G1
1 = 1

r2 (−1 + r B ′ + B), (16)

and

T 1
1 = 1

F

[
1

2
( f − RF) − 1

2
B ′F ′ − 2

r
BF ′

]
. (17)

where the primes represents the derivative with respected to
r . Taking the trace of the equation (13), we derive the relation

RF(R) − 2 f (R) + 3�F(R) = k2T . (18)

Inserting Eqs. (16) and (17) and T 1
1 = P into the Eq. (14),

we obtain after some appropriate arrangements

k2P = −
[
F

r2 + 1

2
( f − RF)

]

+
(
F

r
+ 1

2
F ′

)
B ′ + FB

r2 + 2BF ′

r
. (19)

At the horizon, r = r+, we have B(r+) = 0 and Hawking
temperature T = B ′(r+)/4π , the Eq. (19) reduces to

P = − 1

8π

[
F

r2+
+ 1

2
( f − RF)

]

+ 1

4

(
2F

r+
+ F ′

)
T . (20)

Comparing Eq. (7) with Eq. (27), we then have

D(r+) = − 1

8π

[
F

r2+
+ 1

2
( f − RF)

]

, (21)

and

C(r+) = 1

4

(
2F

r+
+ F ′

)
. (22)
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The geometric volumeV of the black hole in four-dimensional
spacetime is V (r+) = 4πr3+/3. Inserting this equation and
(29) into Eq. (11), the entropy is given by

S =
∫

V ′(r+)C(r+)dr+ =
∫

(2πr+F + πr2+F ′)dr+

= F(r+)
A

4
, (23)

which is F(r+) times the Bekenstein-Hawking Entropy, it
is in agreement with results obtained by using the Euclidean
semiclassical approach or the Wald entropy formula [28–30].
By implementing the degenerate Legendre transformation
E = G + T S − PV and substituting the geometric volume
V and Eq. (21) into Eq. (12), then we get the energy as

E = −
∫

V ′(r+)D(r+)dr+

= 1

2

∫ [
F

r2+
+ 1

2
( f − RF)

]

r2+dr+, (24)

which is also consistent with the expression obtained in [17]
where the entropy was pre-given as that obtained by using
the Wald method. The results obtained here show that the
new horizon first law is still respected by f (R) theories.

4 Applications

In this section, we will illustrate the method with explicit
examples of entropy and energy calculation by using the Eqs.
(23) and (24). We will analyze some f (R) theories which
have received a lot of attentions. These models admit solu-
tions with constant Ricci curvature (such as Schwarzschild
or the Schwarzschild-de Sitter solutions) or solutions with
non-constant Ricci curvature.

4.1 The constant Ricci curvature case

As a simple but important example, we firstly consider a
spherically symmetric solution of (14) with constant cur-
vature R0, such as the Schwarzschild (R0 = 0) or the
Schwarzschild-de Sitter solution, in which B(r) takes the
form B(r) = 1 − 2M/r − R0r2/12 with M the mass of the
black hole [31]. In this case, the trace Eq. (18) simply reduces
to

R0F(R0) = 2 f (R0), (25)

which must be fulfilled by any f (R) theories allowing a
Schwarzschild-de Sitter solution. At the horizon, one has
B(r+) = 0 which gives

2M = r+ − 1

12
R0r

3+. (26)

which relates the mass M , the radius r+, and the Ricci cur-
vature R0 together.

The first one we focus on, introduced in [32,33] to give
rise to a late-time acceleration and reconsidered in [34,35],
is given by

f (R) = R − αRn . (27)

where α and n are constant with α > 0 and 0 < n < 1. Since
f (0)=0, this model allows for a Schwarzschild solution. The
condition to admit a Schwarzschild-de Sitter black hole, (25),
leads to R0 = {1/[(2 − n)α]}1/(n−1). From the Eq. (23), we
obtain the entropy of Schwarzschild-de Sitter black hole as

S =
(

1 − αnRn−1
0

)
πr2+ = 2 − 2n

2 − n

A

4
, (28)

which is 2−2n
2−n times the Bekenstein-Hawking Entropy. Since

α > 0, we have S → A/4 for n → 0 and S → 0 for n → 1,
meaning the entropy of Schwarzschild-de Sitter black hole
in this f (R) model is less than the Bekenstein-Hawking
Entropy. While for Schwarzschild black hole, the entropy
in this f (R) theory is equivalent to Bekenstein-Hawking
Entropy. The energy of the black hole is obtained form (24)
as

E = 1 − n

2 − n
r+ − 1 − n

12(2 − n)
R0r

3+ = 2 − 2n

2 − n
M, (29)

having the same limit properties as that in the entropy (28),
comparing with the result in Einstein’s gravity. Since 0 <

n < 1, both the entropy and the energy are positive.
The second model, proposed in [36] without a cosmolog-

ical constant, is defined by

f (R) = R − αR∗ ln

(
1 + R

R∗

)
, (30)

where α and R∗ are positive parameters. The condition for
no ghosts gives: α < R̃/R∗ + 1, where R̃ is the value of the
Ricci scalar at the final accelerated fixed point. Since f (0) =
0, this model also admits a Schwarzschild solution. For a
Schwarzschild-de Sitter black hole, the constant curvature
R0 from (25) is given by

− αR∗R0

R∗ + R0
= R0 − 2αR∗ ln

(
1 + R0

R∗

)
. (31)

The entropy for the Schwarzschild-de Sitter black hole in this
model is obtained from (23) as

S =
[
(1 − α)R∗ + R0

R∗ + R0

]
πr2+ =

[
(1 − α)R∗ + R0

R∗ + R0

]
A

4
,

(32)

which is (1−α)R∗+R0
R∗+R0

times and less than the Bekenstein-
Hawking Entropy. For R0 = 0, the equation (32) reduces
to the entropy of Schwarzschild black hole in this model
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S = (1 − α)A/4, also less than the Bekenstein-Hawking
Entropy. By computing the energy from (24), we have

E = 1

2

[
(1 − α)R∗ + R0

R∗ + R0

]
r+

+ 1

12

[
αR∗R0

R∗ + R0
− αR∗ ln

(
1 + R

R∗

)]
r3+

= 1

2

[
(1 − α)R∗ + R0

R∗ + R0

]
r+

− 1

24

[
(1 − α)R∗ + R0

R∗ + R0

]
R0r

3+

=
[
(1 − α)R∗ + R0

R∗ + R0

]
M, (33)

where the conditions (26) and (31) has been used. For
R0 = 0, the Eq. (33) reduces to the energy of Schwarzschild
black hole in this model E = (1 − α)M . To guarantee the
nonnegativity of the entropy and the energy, we must have
α ≤ 1 + R0/R∗ for Schwarzschild-de Sitter black hole and
α ≤ 1 for Schwarzschild black hole, giving new constrains
on the parameter α.

The entropy and the energy of black hole in the above
two f (R) theories just are the corresponding values in Ein-
stein’s gravity timing the factor F(r+), compatible with the
results obtained in [28]. The situation, however, will change
for black hole with non-constant Ricci curvature, which we
come to discuss in the next subsection.

4.2 The non-constant Ricci curvature case

We apply the same procedure for solutions with non-constant
curvature which is more interesting but less concerned in
literatures. The starting point is the following f (R) theory
with the form

f (R) = R + 2α
√
R, (34)

where α is a constant (−∞ < α < 0). This model was found
in [37], which admits the following solution

B(r) = 1

2
+ 1

3αr
, (35)

with the Ricci scalar R = 1/r2. At the horizon, B(r+) = 0
gives r+ = −2/(3α). From the Eq. (23), the entropy of the
black hole is computed as

S = πr2+ (1 + αr+) = A

12
, (36)

which is a third of the Bekenstein-Hawking Entropy. The
energy of black hole which is derived from (24)

E = 1

8
(4 + 3αr+)r+ = − 1

6α
. (37)

Since −∞ < α < 0, guaranteeing that the entropy and the
energy both are positive.

The second f (R) model with non-constant curvature we
consider here is given by [38]

f (R) = R + 2α
√
R − 4
 − 2
, (38)

where α < 0 and 
 is an integration constant which can be
interpreted as the cosmological constant. This model allows
the solution with B(r) having the form

B(r) = 1

2
+ 1

3αr
− 


3
r2. (39)

The Ricci scalar evolves as R = 1
r2 + 4
. At the horizon,

B(r+) = 0, which gives

− 2

3α
= r+ − 2


3
r3+. (40)

From the Eq. (23), we get the entropy of the black hole

S = πr2+ (1 + αr+) = (1 + αr+)
A

4
, (41)

which is 1+αr+ times and less than the Bekenstein-Hawking
Entropy. The nonnegativity of the entropy gives constraint
on the parameter α: α ≥ −1/r+. Comparing (36) and (41),
though the two f (R) models are different, the entropies of
black hole in them have the same form, which is interesting.
The two values, however, are not the same. From (23), the
energy is given by

E = 1

24

(
12 + 9αr+ − 4
r2+ − 6α
r3+

)
r+

= 1

12
(3 − 2
r2+)r+, (42)

where the condition (40) has been used. The nonnegativ-
ity of the energy gives constraint on the parameter 
: 
 ≤
3/(2r2+). In these two f (R) theories, the As are not the areas
of black holes in Einstein’s gravity any more, therefore the
entropies also are not the entropies of black holes in Einstein’s
gravity timing the factor F(r+). The situation for energy is
even more complicated.

5 Conclusions and discussions

In this paper the issue whether the new horizon first law still
work in f (R) theory has been tackled. We have proposed to
identify the entropy and the energy of black hole as quanti-
ties proportional to the corresponding value of integration.
The identifications are substantiated by the fact that the new
horizon first law holds true as a consequence of equations
of motion in f (R) theories. The formula for entropy is in
agreement with the results obtained by using the Euclidean
semiclassical approach or the Wald entropy formula [28–30],
and the express of energy is also consistent with that obtained
in [17] where the entropy was pre-given as that obtained by
using the Wald method. For applications, some nontrivial
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exact black hole solutions in f (R) theories have been con-
sidered, the entropies and the energies of black holes in these
models are firstly computed, which may be useful for future
analysis. In addition, we found that the nonnegativity of the
entropy or of the energy can gives new constraints on the
parameters of some f (R) theories. The results obtained here,
together with other results in literatures, seem to indicate that
the thermodynamic origin of a generalized modified gravity,
when horizons are present, has a broad validity. Whether the
approach presented here is applicable to higher dimensions,
rotating black hole, and other higher order gravities remains
an interesting subject for future study.
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