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Abstract We evaluate analytically the master integrals for
double real radiation emission in the b → uW ∗ decay, where
b and u are a massive and massless quark, respectively, while
W ∗ is an off-shell charged weak boson. Since the W boson
can subsequently decay in a lepton anti-neutrino pair, the
results of the present paper constitute a further step toward a
fully analytic computation of differential distributions for the
semileptonic decay of a b quark at NNLO in QCD. The latter
partonic process plays a crucial role in the study of inclusive
semileptonic charmless decays of B mesons. Our results are
expressed in terms of multiple polylogarithms of maximum
weight four.
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1 Introduction

The study of inclusive semileptonic B meson decays is
important for the determination of the Cabibbo–Kobayashi–
Maskawa (CKM) matrix elements |Vub| and |Vcb| and, there-
fore, it constitutes a stringent test on the unitarity of the CKM
matrix.

Inclusive determinations of |Vub| rely on an Operator
Product Expansion (OPE) [1–4], according to which the total
B meson semileptonic decay rate and various kinematic dis-
tributions can be described, at leading order in a power expan-
sion with respect to the inverse b-quark mass, in terms of
the partonic decay rate of an on-shell b quark into a lepton-
neutrino pair and a u quark. Within this framework, theoret-
ical predictions for the partonic decay rates are obtained by
means of perturbation theory. Phenomenological predictions
for observables related to the semileptonic B-meson decays
are then obtained by combining perturbative calculations for
the semileptonic b-quark decays with a finite number of non-
perturbative parameters.

However, the measurements of the B → Xueν̄ decay are
affected by large backgrounds due to the B → Xceν̄ decay.
In order to suppress this background, experiments impose
sharp cuts (for example, cuts on the final state hadronic invari-
ant mass). This in turn leads to problems with the conver-
gence of the OPE in theoretical predictions. These issues
can be addressed by parameterizing the residual motion of
a b-quark in the B meson by means of the shape function
[5–7]. Further studies [8,9] showed that with a combina-
tion of cuts on the hadronic and leptonic invariant masses
the impact of the shape function can be suppressed and
the OPE can be used to describe the B → Xueν̄. In both
approaches the QCD corrections to the partonic process
b → uW ∗ (where W ∗ indicates an off shell W boson
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and the mass of the up quark is set to zero) play a crucial
role.

An analytic result for the next-to-leading order (NLO)
QCD corrections to the b → lν̄lu differential decay rate was
obtained in [10]. A fully differential calculation of this decay
rate at next-to-next-to-leading order (NNLO) was carried
out in [11,12]. A related result for the differential top-quark
semileptonic decay at NNLO was presented in [13]. These
NNLO calculations are based on numerical techniques. Ana-
lytic results at NNLO are also known; however so far these
studies were carried out in the shape-function region by
using Soft-Collinear Effective Theory [14–16]. The contri-
bution of these corrections to |Vub| were then considered in
[17].

In this paper, we focus on the analytic calculation of the
Master Integrals (MIs) necessary for the determination of
the contribution of the QCD double-real radiation to the
b → uW ∗ decay. This process is one of the three elements
that are necessary for the evaluation of the triple-differential
distribution in the charged lepton energy, leptonic invariant
mass and final-state hadronic invariant mass at NNLO in
QCD. For what concerns the other two elements, the two-
loop corrections to the b → uW ∗ decay were evaluated
analytically in [14–16,18], while the one-loop real-virtual
contribution will be the subject of future work.

In order to carry out the calculation, we employed the
method of reverse unitarity. This approach was introduced in
the context of the evaluation of the NNLO QCD corrections
to the production of a Higgs boson in gluon fusion [19] and
then applied to several other processes (see for example [20–
25]). The method consists in applying Cutkosky rules [26] in
order to map the calculation of the interference between two
leading order (LO) 2 → 3 diagrams integrated over the final
state phase-space into the evaluation of “cuts” of two-loop
2 → 2 diagrams. In this way, the on-shell condition for the
real particles in the final state of the 2 → 3 process is con-
verted into the difference of two propagators with opposite
i0+ prescription. Subsequently, one can calculate the cut dia-
grams by means of techniques for the analytic evaluation of
multi-loop diagrams which were developed starting from the
late ’90s. In particular, dimensionally regularized scalar inte-
grals are reduced to MIs by using Integration by-Parts Iden-
tities (IBPs) [27–29]. Reduction algorithms based on IBPs
are implemented in publicly available computer programs
[30–38]. The MIs are analytically evaluated by means of the
Differential Equations (DE) method [39–43] and expressed
in terms of generalized polylogarithms (GPLs) [44–46] of
two variables: t , which is connected to the invariant mass of
the hadronic final state, and z, which is related to the leptonic
invariant mass. The evaluation of the ε expansion of the MIs
was carried out up to terms that include GPLs of maximum
weight four.

Our results are also relevant for the determination of the
total width of a top quark that decays into a massless bottom
quark and a lepton-neutrino pair [13].

The paper is structured as follows. In Sect. 2, we discuss
the calculation, by introducing the notation and the kinemat-
ics of the process, and by identifying the MIs and the range of
validity of their analytic expressions. In Sect. 3, we present
the results for the MIs. Section 4 contains our conclusions.
“Appendix A” collects the explicit expressions of the ε-poles
of the MIs.

The analytic expressions of the twelve MIs evaluated in
this work are collected in an ancillary file included in the
arXiv submission.

2 Calculation

The calculation of double emission corrections to the b →
uW ∗ process is first mapped into the problem of calculat-
ing three-particle cuts in two-loop bW ∗ → bW ∗ forward
box-diagrams, using the method proposed in [19]. Three
auxiliary topologies which encompass all of the combina-
tions of denominators which can appear in the cut diagrams
were subsequently identified. The MIs belonging to each
topology were identified by using IBPs as implemented in
LiteRed [31,32]. The MIs, which depend on two dimen-
sionless parameters (defined below), are then calculated by
employing the DE method. The technique employed in this
work is by now a standard method in the analytic calculation
of Feynman diagrams. In this section we describe the way in
which we parameterized the kinematics of the process, we
define the MIs which were identified and we discuss the way
in which the integration constants arising in the DE method
were fixed.

2.1 Kinematics

At tree-level, the kinematics of the decay we are interested
in is

b(p1) → W−(q) + u(p2) , p1 = p2 + q , (2.1)

where p1, p2 and q are the four-momenta of the bottom
quark, up quark and W boson, respectively. Consequently,

p2
1 = m2

b , p2
2 = 0 , (2.2)

where mb indicates the mass of the bottom quark and the
mass of the up quark is neglected. The W boson is off-shell.
At tree level the energy of the up quark in the bottom-quark
rest frame is smaller that mb/2. Therefore, we introduce the
dimensionless parameter z defined as
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Fig. 1 Physical phase space regions in the z, p̂2 plane (left panel) and z, t plane (right panel). In both cases, the line corresponding to tree level
kinematics is indicated in red

z ≡ 2p1 · p2

m2
b

, 0 ≤ z ≤ 1. (2.3)

Beyond leading order, it is necessary to consider the pro-
cess

b(p1) → W−(q) + X (pX ) , p1 = pX + q, (2.4)

where X indicates an inclusive state involving light quarks
and gluons, so that p2

X �= 0 in general. As it was done in
[10], the invariant mass of the state X is parameterized by
introducing the variable t defined through the relation

p2
X ≡ m2

b p̂
2 ≡ m2

b

4
z2(1 − t2), (2.5)

where z remains defined as in Eq. (2.3), provided that p2

is replaced by pX . Tree-level kinematics, i.e. p2
X = 0 with

0 ≤ z ≤ 1, is recovered in the t → 1 limit. Beyond tree
level, the available phase space in the { p̂2, z} and {t, z} plane
is shown in Fig. 1. The physical region in the { p̂2, z} plane
is shown in the left panel of Fig. 1 and it is delimited by the
conditions

0 ≤ z ≤ 2 , max{0, z − 1} ≤ p̂2 ≤ z2

4
. (2.6)

In the {t, z} plane the physical region (shown in the right
panel of Fig. 1) is given by

0 ≤ z ≤ 2 , 0 ≤ t ≤ min

{
1,

2

z
− 1

}
. (2.7)

In the calculation of the MIs which we carry out in this
paper, we keep t �= 1. In fact, the differential distributions
which we ultimately want to obtain by employing the inte-
grals which we evaluate here is divergent for t → 1; the

divergences are ultimately regulated by “star” distributions
of the form1 [10]

(
lnn p̂2

p̂2

)
∗

, n = 0, 1, 2, 3. (2.8)

However, it is sufficient to calculate the MIs for real radiation
corrections by keeping t �= 1, since the expression of the par-
tonic double differential distribution in the t → 1 limit was
evaluated by using Soft Collinear Effective Theory (SCET) in
[17]. The partonic real radiation corrections to the complete
partonic differential distribution in the t → 1 ( p̂2 → 0) limit
were recalculated with SCET methods also by us in the pre-
liminary stages of this work and they will play an important
role at the moment of assembling the complete differential
distributions. In fact these corrections, which receive contri-
butions from double-real and real-virtual diagrams, involve
poles in ε and finite terms proportional to δ( p̂2) as well as the
terms proportional to the star distributions of Eq. (2.8). At
the cross section level the coefficients of the star distributions
obtained in SCET and the singular terms arising from the cal-
culation carried out at t �= 1 must match; to be specific, in a
calculation carried out at t �= 1 one will find divergent terms
which should be regulated by star distributions according to
relations of the form

4

z2(1 − t2)
lnn

(
z2

4
(1 − t2)

)
−→

(
lnn p̂2

p̂2

)
∗
. (2.9)

The calculation of the partonic double differential distribu-
tion carried out at t �= 1 depends on the MIs evaluated here

1 Star distributions can be defined through the relation

∫ m̂2

0
d p̂2 f

(
p̂2

) (
lnn p̂2

p̂2

)
∗

= f (0)
lnn+1 m̂2

n + 1

+
∫ m̂2

0
d p̂2 lnn p̂2

p̂2

[
f
(
p̂2

)
− f (0)

]
,

where f is a smooth test function.
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as well as on the two cut MIs which will be the subject of
a future work. Therefore, at the stage in which the partonic
differential distribution will be assembled, the SCET calcu-
lation of the real radiation will serve as a further cross check
of the calculation carried out at t �= 1, since the singular
terms of the calculation at t �= 1 will have to match the star
distributions present in the SCET calculation, after replace-
ments of the type shown in Eq. (2.9). At the same time, the
SCET calculation will provide the complete contribution of
the real corrections proportional to δ( p̂2). We already tested
with success this procedure by recalculating at NLO the dif-
ferential distribution originally derived in [10].

2.2 Auxiliary topologies and master integrals

All of the Feynman diagrams contributing to the double emis-
sion corrections to the b → uW ∗ process can be calculated
once the scalar integrals belonging to the (three cuts of the)
three auxiliary topologies are known.

The integrals belonging to the first auxiliary topology con-
sidered, which is referred to as topology A, are defined as
follows

IA (α1, α2, α3, α4, α5, α6, α7) =
∫

ddk1

(2π)d

ddk2

(2π)d

7∏
i=1

1

Pαi
i

.

(2.10)

The seven propagators Pi in Eq. (2.10) are

P1 = k2
1 , P2 = (p1 − k1)

2 − m2
b ,

P3 = (p1 − k1 − k2)
2 − m2

b, P4 = (p2 − k1 − k2)
2,

P5 = k2
2 , P6 = (k1 + k2)

2 P7 = (p2 − k1)
2, (2.11)

where the last three propagators in the list are cut propagators.
For example

1

P5
→ δ(k2

2) = 1

2π i

[
1

k2
2 + i0+ − 1

k2
2 − i0+

]
. (2.12)

Equivalent relations hold for P6 and P7. As a consequence of
the presence of cut propagators, the integrals IA in Eq. (2.10)
are zero when at least one among the powers α5, α6, α7 is
zero or negative. The eight MIs belonging to topology A are
shown in Fig. 2. We introduce the following notation in order
to label the MIs of topology A:

I1 ≡ IA (0, 0, 0, 0, 1, 1, 1) , I2 ≡ IA (0, 1, 0, 0, 1, 1, 1) ,

I3 ≡ IA (0, 1, 0, 0, 1, 2, 1) , I4 ≡ IA (0, 0, 1, 0, 1, 1, 1) ,

I5 ≡ IA (0, 1, 1, 0, 1, 1, 1) , I6 ≡ IA (0, 1, 1, 0, 1, 1, 2) ,

I7 ≡ IA (0, 1, 1, 0, 2, 1, 2) , I8 ≡ IA (0, 1, 0, 1, 1, 1, 1) .

(2.13)

The integrals belonging to topology B are defined in anal-
ogy to Eqs. (2.10, 2.11):

IB (α1, α2, α3, α4, α5, α6, α7)=
∫

ddk1

(2π)d

ddk2

(2π)d

7∏
i=1

1

Qαi
i

,

(2.14)

with

Q1 = P2, Q2 = (p1 + k2)
2 − m2

b,

Q3 = P3, Q4 = (p2 + k2)
2,

Q5 = P5, Q6 = P6, Q7 = P7, (2.15)

where again Q5, Q6, Q7 are cut propagators. Topology B
involves eleven MIs, which include the eight MIs already
needed for topology A, plus the three non planar MIs shown
in Fig. 3. The latter are labeled as follows

I9 ≡ IB (0, 1, 1, 0, 1, 1, 1) , I10 ≡ IB (0, 2, 1, 0, 1, 1, 1) ,

I11 ≡ IB (1, 0, 1, 1, 1, 1, 1) (2.16)

Topology C is defined by the integrals

IC (α1, α2, α3, α4, α5, α6, α7) =
∫

ddk1

(2π)d

ddk2

(2π)d

7∏
i=1

1

Rαi
i

,

(2.17)

with

R1 = Q2, R2 = P3, R3 = Q4, R4 = P4,

R5 = P5, R6 = P6, R7 = P7. (2.18)

Topology C involves five MIs: I1 and I4, which are present
also in topologies A and B, I9 and I10, which are already
needed for topology B and one additional non-planar integral

I12 ≡ IC (1, 1, 1, 1, 1, 1, 1) , (2.19)

which is shown in Fig. 4.

2.3 Differential equations

Each MI satisfies differential equations with respect to the
two dimensionless parameters z and t which we use in
order to parameterize the phase space. The differential equa-
tions can be derived starting from the IBPs and are directly
obtained from LiteRed. Only the integrals of topology A
involving the propagators P2, P3, P5, P6, P7 are found to
involve more than two MIs. Indeed, the MIs I5, I6 and I7
share the propagators listed above and satisfy a system of
three coupled first-order differential equations with respect
to the variable t and with respect to the variable z. (Of course
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int 8

Fig. 2 Master integrals for topology A: integrals I1, . . . , I8
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int 11

Fig. 3 Additional master integrals from Topology B; integrals I9, I10, I11

int 12

Fig. 4 Additional master integral from Topology C: integral I12

the differential equations will also involve MIs depending
on a subset of the propagators P2, P3, P5, P6, P7. These
subtopologies MIs are supposed to be known at the moment
of solving the system of equations for I5, I6 and I7.) The
other MIs satisfy either a system of two coupled first-order
differential equations (ex. the MIs I2 and I3) or single first-
order differential equations (ex. the MI I8). First-order differ-
ential equations and systems of two coupled first-order dif-

ferential equations can be solved with standard techniques,
while the solutions of a system of three first-order differen-
tial equations cannot be found with standard methods. Conse-
quently, the evaluation of the three MIs with the five propaga-
tors listed above could be problematic. However, the integrals
I5, I6 and I7 satisfy a system of three differential equations
in t and y which decouple order by order in ε. For this reason,
in the case at hand it was possible to evaluate the twelve MIs
in the problem without employing a canonical basis [47].

In order to eliminate square-root weights in the GPLs
which appear in the solution of differential equations sat-
isfied by the MIs, we traded the variable z with the variable
y defined through the relation

z ≡ (1 + y)2

y
. (2.20)

For 0 ≤ z ≤ 2 the variable y is a pure phase which we choose
to parameterize as

y ≡ eiα,
π

2
≤ α ≤ π. (2.21)

The differential equations with respect to t and y satis-
fied by the MIs are solved order by order in ε using iterated

123



Eur. Phys. J. C (2018) 78 :674 Page 7 of 12 674

Table 1 Values of the constants determined by evaluating the analytic
result for the MIs with GiNaC. The condition imposed in order to fix
the constants is that integrals I2 and I5 vanish in the t → 1 limit. The
second column indicates the MIs used to fix a given constant and the
power n at which the constant first appears as a cofactor of εn . In the
last column one can find the complex value of the constant, which can
in principle be determined at arbitrary precision

Constant Integral/
order

Value

C1 Î2, ε
10.239578222392149411675195562805

−iπ 17.545177444479562475337856971665

C2 Î2, ε2 54.371980398832744511559678484441
+iπ 36.558523291963772395233838229141

C3 Î2, ε3 − 47.871542821739167668291943163802
−iπ 3.3493397758103340833715632589416

C4 Î5, ε0 332.70825644476215311648744195295
+iπ 177.44567822334599921081142309329

C5 Î5, ε
2633.3473713725843348505159328717

−iπ 1825.2057515759382789946953393520

C6 Î5, ε2 − 4672.8756370231810881261045894874
+iπ 5234.4198993443246068516773900101

integration. The solutions depend on several integration con-
stants. Most of these constants can be fixed by imposing the
regularity of the MIs in the t → 0 limit. However, a subset
of seven constants is left undetermined once the regularity in
t → 0 has been required. MIs are in general not regular in the
t → 1 limit; indeed, one expects the differential distribution
to be singular in the tree-level kinematic limit. The singular
part of the distribution in the tree-level limit was evaluated
by using SCET. However, all of the MIs which are finite in ε

(i.e. I1, I2, I4, I5, I9) vanish in the t → 1 limit. In particular,
the behavior of I2 and I5 in the tree level limit is sufficient
to overconstrain the seven remaining constants. The analytic
expression of the MIs in terms of GPLs of argument y and t
are very long but they can be evaluated to arbitrary precision
by means of the GiNaC routines of [48]. Therefore, six of
the seven constants were fixed by requiring that integrals I2
and I5 vanish in the t → 1 limit. They are given in numeric
form in Table 1 with more that thirty significant digits. In
general, we evaluated MIs up to the order in the ε expansion
where GPLs of weight four first appear in the result, since
one does not expect GPLs of weight five to be present in the
NNLO differential distributions we are ultimately interested
in. (Table 2 summarizes the order in ε at which the various
MIs were evaluated.) A notable exception is represented by
the MI I5. Indeed, one of the integration constants which
appears alongside GPLs of weight four in I7, appears only
at order ε2 in I5. The term of ε2 in I5 also involves GPLs of
weight five. This is not surprising since the set of MIs that was
chosen does not have uniform transcendentality. Therefore,
we evaluated I5 up to order ε2 and required that it vanishes
in the t → 1 limit in order to fix this residual constant. In the
following section we present analytic results for the MIs.

Table 2 This table summarizes the structure of the ε expansion of the
various MIs. The numbers in the table indicate the maximum weight
of the GPLs found at a given order of the epsilon expansion. Terms
involving GPLs of weight five and higher were not evaluated (except
for the case of I5, see text) and are indicated with an X in the table

Integrals 1/ε2 1/ε ε0 ε ε2 ε3 ε4 Numerical constants

I1 – – 0 1 2 3 4 None

I2 – – 1 2 3 4 X C1,C2,C3

I3 – 1 2 3 4 X X C1,C2

I4 – – 1 2 3 4 X None

I5 – – 3 4 X X X C1,C4,C5

I6 – 1 2 3 4 X X C1,C2,C4,C5

I7 – 0 1 2 3 4 X C1,C2,C4,C5,C6

I8 – 2 3 4 X X X C1,C2

I9 – – 2 3 4 X X None

I10 – 1 2 3 4 X X None

I11 1 2 3 4 X X X C1,C2,C4,C5

I12 1 2 3 4 X X X None

3 Results

3.1 Alphabet

The analytic expressions for the MIs which we evaluated are
written in terms of Harmonic Polylogarithms [46] and (two-
dimensional) GPLs [45,48–50] of arguments t and y. GPLs
can be defined recursively, for n ≥ 0, via the iterated integral

G(a1, . . . , an; z) =
∫ z

0

dt

t − a1
G(a2, . . . , an; t), (3.1)

for a generic argument z and weights {a1, . . . , an}, assuming
G(z) = G(; z) = 1. The case in which ai = 0 for all i needs
to be considered separately:

G(0, . . . , 0; z) ≡ 1

n! lnn z. (3.2)

The weights of the GPLs or argument t can depend on y. For
convenience we define the combinations

w1 ≡ 1 − y

1 + y
, w2 ≡ 1 + y2

(1 + y)2 = z − 2

z
. (3.3)

Consequently, w2 is real while w1 is imaginary.
The list of weights, i.e. the “alphabet”, appearing in the

GPLs of argument t is

{0,±1,±w1,±w2}. (3.4)

The alphabet for the GPLs of argument y includes the weights

{0,±1,±i}. (3.5)
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Fig. 5 Plots of the first order in ε which contains GPLs of weight four for the MIs Î1, . . . , Î6
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Fig. 6 Plots of the first order in ε which contains GPLs of weight four for the MIs Î7, . . . , Î12
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3.2 Integrals

The simplest MI in the list is the two-loop phase space dia-
gram shown in the top left panel of Fig. 2, for which one can
find an expression which is exact in d = 4 − 2ε dimensions
[51]

I1 = 2−9+8επ−3+2ε �3(1 − ε)

�(2 − 2ε)�(3 − 3ε)

× m2
b

(
m2

b

μ2

)−2ε

[z2(1 − t2)]1−2ε,

≡ m2
bK (ε)

(
m2

b

μ2

)−2ε

Î1 (z, t, ε) , (3.6)

with

K (ε) = 2−9+8επ−3+2ε �3(1 − ε)

�(2 − 2ε)�(3 − 3ε)
. (3.7)

The first two terms of the ε expansion of Î1 read

Î1 = z2(1 − t2) − 2εz2(1 − t2) [G(−1, t) + G(1, t)

−2G(0, y) + 4G(−1, y)] + O(ε2). (3.8)

In analogy with Eq. (3.6), we introduce the notation

Ii ≡ m2
bK (ε)

(
m2

b

μ2

)−2ε

Îi , i ∈ {2, . . . , 12}. (3.9)

The analytic expression of all Îi up to terms involving
GPLs of weight four can be found in the ancillary file
MasterIntegrals.txt.

We cross-checked 9 out of the 12 MIs which we calculated
analytically in this work by comparing the numerical evalu-
ation of their analytic expressions (carried out by means of
GiNaC) to the direct numerical integration of the MIs, car-
ried out with the package SecDec [52–54]. We found agree-
ment within the SecDec numerical integration error in all
points tested. The remaining three MIs (I8, I11, I12) belong
to subtopologies which also admit at least one two-particle
cut. Consequently, these MIs cannot be evaluated directly by
comparing them to the imaginary part of a 2 → 2 forward box
calculated withSecDec, since that imaginary part receives a
contribution from two-particle and three-particle cuts. Once
the MIs corresponding to the two-particle cuts are known,
they can be combined with the three-particle cuts calculated
here and the sum of two- and three-particle cuts can finally
be compared with the imaginary part of the corresponding
2 → 2 box integrals.

Finally, we employed GiNaC to evaluate the analytic
results we found in all of the phase space. In Figs. 5 and

6 we plot, for all of the integrals Îi , the order in ε at which
GPLs of order four appear first.

4 Conclusions

In this paper we evaluated analytically the MIs needed for
the calculation of the double emission corrections to the
b → uW ∗ decay at tree level. The problem was mapped into
the calculation of three-particle cuts in two-loop bW ∗ →
bW ∗ forward box diagrams. We identified a set of 12 MIs
belonging to three auxiliary topologies by using IBPs. The
MIs depend on two dimensionless parameters. Their ana-
lytic expression in terms of GPLs was found by means of
the DE method. The integrals can be evaluated with arbitrary
numerical precision by means of the GPLs functions imple-
mented in GiNaC. The complete analytic expression of all
of the MIs can be found in an ancillary file included in the
arXiv version of this paper. The result were cross checked
against a direct numerical integration of the MIs carried out
by means of the program SecDec. The results obtained here
are needed for the analytic evaluation of the b → uW ∗ decay
double differential distribution to NNLO in QCD. Since the
two-loop virtual corrections to the b → uW ∗ decay are
already known analytically [14–16,18], the only missing ele-
ment at this stage are the one-loop, single-emission diagrams
contributing to b → uW ∗ decay to NNLO.
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A MIs poles

In this appendix we collect the explicit expression of the poles
of the MIs which are divergent in the ε → 0 limit.

Î3 = − 1

m4
bε

8

zt
[G(−1; t) − G(1; t)] + O(ε0). (A.1)

Î6 = 1

m6
bε

32

t z2
[
4 + z(t2 − 1)

] [G(−1; t) − G(1; t)]

+ O
(
ε0

)
,

123
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Î7 = 1

m8
bε

128

z4(t2 − 1)2 + O(ε0). (A.2)

Î8 = − 1

m4
bε

8

zt

[
G(−w2,−w1; t) + G(−w2, w1; t)

− G(w2,−w1; t) − G(w2, w1; t)
− G(−1,−w1; t) − G(−1, w1; t) + G(1,−w1; t)
+ G(1, w1; t) + G(−w1,−1; t)
− G(−w1, 1; t) + G(w1,−1; t) − G(w1, 1; t)
+ 2G(1; y)G(−w2; t) − 2G(1; y)G(w2; t)
− G(0; y) (G(1; t) + G(−w2; t) − G(w2; t))
− G(−w2,−1; t) + G(w2, 1; t)
+ ln(2) (G(w2; t) − G(−w2; t))
+ G(−1; t) (G(0; y) − 2G(1; y) + ln(2))

+ 2G(1; t)G(1; y) + G(−1, 1; t) − G(1,−1; t)
− ln(2)G(1; t)

]
+ O(ε0). (A.3)

Î10 = 1

m6
bε

4

t z
[G(−1; t) − G(1; t)] + O

(
ε0

)
. (A.4)

Î11 = 1

m6
bε

2

8

t z2 [G(−1; t) − G(1; t)]

+ 1

m6
bε

4

t z2 {2[2G(−1,−w1; t) + 2G(−1, w1; t)

− 2G(1,−w1; t) − 2G(1, w1; t) + 2G(−w1,−1; t)
− 2G(−w1, 1; t)
+ 2G(w1,−1; t) − 2G(w1, 1; t) − 5G(−1,−1; t)
− G(−1, 1; t) + 2G(0,−1; t)
− 2G(0, 1; t) + G(1,−1; t) + 5G(1, 1; t)]
− (G(−1; t) − G(1; t)) [16G(−1; y)
− 4G(0; y) − 8G(1; y) + 13 + 4 ln(2)]} + O

(
ε0

)
.

(A.5)

Î12 = 1

m8
bε

2

128

t (1 − t2)z4 [G(−1; t) − G(1; t)]

+ 1

m8
bε

64

t (1 − t2)z4 {9G(1, 1; t) − 9G(−1,−1; t)

+ G(−1, 1; t) + 4G(0,−1; t) − 4G(0, 1; t)
− G(1,−1; t) + (G(−1; t) − G(1; t))
× [8G(0; y) − 16G(−1; y) − 13]} + O(ε0). (A.6)
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