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Abstract In this research, we consider thermodynamically
the behaviour of an accelerating BIon and show that the
entropy of this system has the form of Tsallis entropy. A
BIon is a system that consists of a brane, an anti-brane and
a wormhole which connects them together. By increasing
the acceleration of branes, the area of BIon increases and its
Tsallis entropy grows.

1 Introduction

Recently, Tsallis and Cirto have argued that the entropy of a
gravitational system such as a black hole could be extended
to the non-additive entropy, which is given by S = γ Aβ ,
where A is the horizon area [1]. There have been lots of dis-
cussion on this topic so far. For example, some authors have
considered the limited behaviour of the evolution of Tsallis
entropy in self-gravitating systems. They have shown that
the Tsallis entropy generally exhibits a bounded property in
self-gravitating system. This indicates the existence of global
maximum of Tsallis entropy [2]. Some other authors have
proposed a coherence quantifier in terms of the Tsallis rela-
tive α entropy which lays the foundation to the non-extensive
thermo-statistics and plays the same role as the standard log-
arithmic entropy does in the information theory [3–5]. In
another consideration, authors have derived entropic-force
terms from a generalized black-hole entropy proposed by
C. Tsallis and L.J.L. Cirto in order to examine the entropic
cosmology. Unlike the Bekenstein entropy, which is propor-
tional to area, the generalized entropy is proportional to vol-
ume because of appropriate nonadditive generalizations [6].
In another work, the relation between Tsallis entropy and the
exchange of energy between the bulk (the universe) and the
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boundary (the horizon of the universe) has been considered
[7]. In another investigation, using Tsallis entropy, the evolu-
tion of the universe in entropic cosmologies has been studied.
In this model, authors have considered an extended entropic-
force model that includes a Hubble parameter (H) term and a
constant term in entropic-force terms. The H term is derived
from a volume entropy, whereas the constant term is derived
from an entropy proportional to the square of an area [8].
In another research, the evolutions of Tsallis entropy during
Non-adiabatic-like the accelerated expansion of the late uni-
verse has been considered [9]. In addition, the application
of this entropy in other aspects of cosmology and physics
has been investigated [10,11] in other studies. And finally,
employing the modified entropy-area relation suggested by
Tsallis and Cirto and the holographic hypothesis, a new holo-
graphic dark energy (HDE) model was proposed [12].

In this paper, we will calculate the entropy of an accel-
erating BIon and will show that this entropy includes some
terms similar to Tsallis entropy. A BIon is a configuration
which has been constructed from a brane, an anti-brane and
a wormhole which connects them together [13–15]. We will
discuss that by passing time, the area of BIon increases and
the entropy grows.

The outline of the paper is as follows. In Sect. 2, we will
obtain the area of a BIon in which branes are boosted with
acceleration. In Sect. 3, we will calculate the entropy of an
accelerating BIon and show that it is in good agreement with
Tsallis entropy. The last section is devoted to conclusion.

2 Area of an accelerating BIon with accelerating branes

In this section, we will obtain the area of a BIon with accel-
erating branes. We will show that the acceleration leads to
the emergence of a Rindler space-time. In this space-time,
each part of BIon in flat space-time can be transformed to
two parts, which act reverse to each other. Each of the parts
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Fig. 1 Two Flowing BIons with accelerating branes are emerged in
two regions I and II of a Rindler horizon

live in one region (see Figs. 1, 2). When, one part of BIon in
region I expands, another part in region II contracts. We will
obtain the separation distance between branes in each region
and calculate the area of BIon.

To consider the BIon, we specify an embedding of the
D3-brane world volume in 10D Minkowski space-time with
metric [18];

ds2 = −dt2 + dr2 + r2
(
dθ2 + sin2θdφ2

)
+

6∑
i=1

dx2
i (1)

without background fluxes. We assume that the branes are
boosted with the acceleration. In this case, the relation
between the world volume of the coordinates of the accelerat-
ing D3-branes (τ, σ ) and the coordinates of 10D Minkowski
space-time (t, r ) are [19];

at = eaσ sinh(aτ) ar = eaσ cosh(aτ) In Region I

at = −e−aσ sinh(aτ) ar = e−aσ cosh(aτ) In Region II

(2)

where a is the acceleration of branes. The acceleration leads
to the emergence of two new regions in a Rindler space-time.
In each region, we have a flowing BIon with two accelerating
branes. The behaviour of the BIon in region I is reverse to
the BIon in region II. Infact, when one accelerating brane in
region I is expanding, its partner in region II is compacting
with the same acceleration (see Fig. 1). We can rewrite the
Eq. (1) as;

ds2
I = −dt2 + dr2 + r2 (dθ2 + sin2θdφ2)

+
6∑

i=1

dx2
i = e2aσ

(
dτ 2 − dσ 2)

+
(

1

a
eaσ cosh(aτ)

)2 (
dθ2 + sin2θdφ2)+

6∑
i=1

dx2
i

(3)

ds2
I I = −dt2 + dr2 + r2 (dθ2 + sin2θdφ2)

+
6∑

i=1

dx2
i = e−2aσ

(
dτ 2 − dσ 2)

+
(

1

a
e−aσ cosh(aτ)

)2 (
dθ2 + sin2θdφ2)+

6∑
i=1

dx2
i

(4)

We can suppose that the coordinate along the separa-
tion distance between branes (x4 = z) depends on the
r = ± 1

a e
±aσ cosh(aτ) and rewrite the Eqs. (3, 4) as;

ds2
I = −dt2 +

(
1 +

(
dz

dr

)2
)
dr2

+r2 (dθ2 + sin2θdφ2)+
5∑

i=1

dx2
i

=
(
e2aσ + 1

sinh2(aτ)

(
dz

dτ

)2
)
dτ 2

−
(
e2aσ + 1

cosh2(aτ)

(
dz

dσ

)2
)
dσ 2

+ 1

sinh(aτ) cosh(aτ)

(
dz

dτ

dz

dσ

)
dτdσ

+
(

1

a
eaσ cosh(aτ)

)2 (
dθ2 + sin2θdφ2)+

5∑
i=1

dx2
i

(5)

ds2
I I = −dt2 +

(
1 +

(
dz

dr

)2
)
dr2

+r2 (dθ2 + sin2θdφ2)+
5∑

i=1

dx2
i

=
(
e−2aσ + 1

sinh2(aτ)

(
dz

dτ

)2
)
dτ 2

−
(
e−2aσ + 1

cosh2(aτ)

(
dz

dσ

)2
)
dσ 2

− 1

sinh(aτ) cosh(aτ)

(
dz

dτ

dz

dσ

)
dτdσ

+
(

1

a
e−aσ cosh(aτ)

)2 (
dθ2 + sin2θdφ2)+

5∑
i=1

dx2
i

(6)

These equations show that the acceleration of branes leads
to the emergence of a new Rindler space-time. In fact, the
initial orthogonal metric converts to a non-diagonal metric
and one curved space-time is emerged. We will show that
this metric produces two types of solutions for BIons. In one
region of the Rindler space-time, some energy is transmitted
from one brane to another. Consequently, one brane is com-
pacted and another is expanded. While, in another region
of the Rindler space-time, the transferring of the energy is
reversed and the first parane is expanded and another one is
compacted. To show this, we begin with the DBI action for
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the D3-brane which takes the form [13–15];

IDBI = −TD3

∫

w.v.

d4x
√

−det (γab + 2πl2s Fab)

+TD3

∫

w.v.

P[C(4)] (7)

where the integrals are performed over the four-dimensional
world-volume. Here we have defined the induced world-
volume metric;

γab = gμν∂a X
μ∂bX

ν (8)

where gμν is the background metric, Xμ(xa) is the embed-
ding of the brane in the background, xa is the world-volume
coordinates, a, b = 0, 1, 2, 3 are world-volume indices and
μ, ν = 0, 1, ..., 9 are target space indices. Furthermore, Fab
is the two-form field strength which lives on the brane, C(4)

is the RR-four form gauge field of the background, P[C(4)]
is its pull-back to the world-volume and TD3 is the tension
of D3-brane. For flat space-time, above action yields the fol-
lowing Lagrangian;

γabdx
adxb = −dt2 +

(
1 +

(
dz

dr

)2
)
dr2

+r2
(
dθ2 + sin2θdφ2

)

�⇒ L = −4πTD3

∫ ∞

r0

drr2

×
√

1 +
(
dz

dr

)2

− (
2πl2s Fab

)2 (9)

Also, for Rindler space-time, we obtain;

γab,I dx
adxb =

(
e2aσ + 1

sinh2(aτ)

(
dz

dτ

)2
)
dτ 2 −

(
e2aσ + 1

cosh2(aτ)

(
dz

dσ

)2
)
dσ 2

+ 1

sinh(aτ) cosh(aτ)

((
dz

dτ

dz

dσ

))
dτdσ +

(
1

a
eaσ cosh(aτ)

)2 (
dθ2 + sin2θdφ2) �⇒ L I,hal f

= −TD3

∫ ∞

σ0

dσ

(
1

a
eaσ cosh(aτ)

)2 (
sinh2(aτ) + cosh2(aτ)

)

×
√

1 + e−2aσ

sinh2(aτ)

(
dz

dτ

)2

+ e−2aσ

cosh2(aτ)

(
dz

dσ

)2

+ e−2aσ

sinh(aτ) cosh(aτ)

((
dz

dτ

dz

dσ

))
− (2πl2s Fab)

2 (10)

γab,I I dx
adxb =

(
e−2aσ + 1

sinh2(aτ)

(
dz

dτ

)2
)
dτ 2 −

(
e−2aσ + 1

cosh2(aτ)

(
dz

dσ

)2
)
dσ 2

− 1

sinh(aτ) cosh(aτ)

(
dz

dτ

dz

dσ

)
dτdσ +

(
1

a
e−aσ cosh(aτ)

)2 (
dθ2 + sin2θdφ2) �⇒ L I I,hal f

= −TD3

∫ ∞

σ0

dσ

(
1

a
e−aσ cosh(aτ)

)2 (
sinh2(aτ) + cosh2(aτ)

)

×
√

1 + e2aσ

sinh2(aτ)

(
dz

dτ

)2

+ e2aσ

cosh2(aτ)

(
dz

dσ

)2

− e2aσ

sinh(aτ) cosh(aτ)

(
dz

dτ

dz

dσ

)
− (

2πl2s Fab
)2 (11)

The above equations show that the accelerating boost pro-
duces two types of Lagrangians, related to spaces I and II. An
observer lives on the branes of a BIon in region I and measures
a different Lagrangian in respect to the observer who lives
on the branes of a BIon in region II. Thus, the behaviour of
fields and also the evolutions of branes in region I are reverse
in respect to the evolutions of branes in region II.

On the other hand, the above Lagrangians represent the
evolutions of half of the Flowing BIon. This part includes a
brane and half of a wormhole. The behaviour of the second
part is reverse to this one (see Fig. 2). For example, when one
brane compacts, gives its energy to another part and leads to
its expansion. Also, we have shown that the behaviour of the
partner of each part in the other region of Rindler horizon is
reverse to it. Thus, we can obtain the following relations;

L I,hal f −A = L I I,hal f −B

L I,hal f −B = L I I,hal f −A (12)

Now, we can focus on the evolution of Hamiltonians. Pre-
viously, it has been shown that the Hamiltonian of BIon in
flat space-time and the metric of Eq. (1) is [13–15];

HDBI = 4πTD3

∫
dr

√
1 +

(
∂z

∂r

)2

FDBI

FDBI = r2

√
1 + K 2

r4 (13)

For the Rindler space-time and coordinates in Eq. (2) and
also Lagrangians in Eqs. (10, 11), we can obtain the below
Hamiltonians;
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Fig. 2 Two parts of the
Flowing BIon acts reverse to
each other and similar to partner
of another part in other region.
Parts with the same color
behaves similar to each other

HDBI,I,hal f = TD3

∫
dσ

√
1 + e−2aσ

sinh2(aτ)

(
dz

dτ

)2

+ e−2aσ

cosh2(aτ)

(
dz

dσ

)2

+ e−2aσ

sinh(aτ) cosh(aτ)

((
dz

dτ

dz

dσ

))
FDBI,I I,hal f

FDBI,I,hal f =
(

1

a
eaσ cosh(aτ)

)2
√√√√1 + K 2

( 1
a e

aσ cosh(aτ)
)4

(
sinh2(aτ) + cosh2(aτ)

)
(14)

HDBI,I I,hal f = TD3

∫
dσ

√
1 + e2aσ

sinh2(aτ)

(
dz

dτ

)2

+ e2aσ

cosh2(aτ)

(
dz

dσ

)2

− e2aσ

sinh(aτ) cosh(aτ)

((
dz

dτ

dz

dσ

))
FDBI,I I,hal f

FDBI,I I,hal f =
(

1

a
e−aσ cosh(aτ)

)2
√√√√1 + K 2

( 1
a e

−aσ cosh(aτ)
)4

(
sinh2(aτ) + cosh2(aτ)

)
(15)

These equations describe the evolutions of the energy of
the Flowing BIons in region I and region II. It is clear that
both Hamiltonians depend on the acceleration, time and coor-
dinate of branes. Also, when the Hamiltonian of one system
grows, the Hamiltonian of the other system in another region
decreases.

Figure 2 shows that each Flowing BIon is divided into two
parts in each region. These parts act reverse to each other. For
example, when one part expands, the other part compacts.
This is because the energy is transmitted from one brane

to another and consequently, the first brane compacts and
another one expands. On the other hand, each part acts reverse
to the partner in another region. Thus, we can write the below
relations between Hamiltonians;

HI,hal f −A = HI I,hal f −B

HI,hal f −B = HI I,hal f −A (16)

The wave equations which are extracted from equations
(14, 15) are;

∂

∂τ

⎛
⎜⎜⎝

e−2aσ

sinh2(aτ)

( dz
dτ

)
FDBI,I,A√

1+ e−2aσ

sinh2(aτ)

( dz
dτ

)2+ e−2aσ

cosh2(aτ)

( dz
dσ

)2+ e−2aσ

sinh(aτ) cosh(aτ)

(( dz
dτ

dz
dσ

))

⎞
⎟⎟⎠

+ ∂

∂σ

⎛
⎜⎜⎝

e−2aσ

cosh2(aτ)

( dz
dσ

)
FDBI,I,A√

1+ e−2aσ

sinh2(aτ)

( dz
dτ

)2+ e−2aσ

cosh2(aτ)

( dz
dσ

)2+ e−2aσ

sinh(aτ) cosh(aτ)

(( dz
dτ

dz
dσ

))

⎞
⎟⎟⎠

+ ∂2

∂σ∂τ

⎛
⎜⎜⎝

e−2aσ

sinh(aτ) cosh(aτ)

( dz
dτ

+ dz
dσ

)
FDBI,I,A√

1+ e−2aσ

sinh2(aτ)

( dz
dτ

)2+ e−2aσ

cosh2(aτ)

( dz
dσ

)2+ e−2aσ

sinh(aτ) cosh(aτ)

(( dz
dτ

dz
dσ

))

⎞
⎟⎟⎠=0 (17)
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∂

∂τ

⎛
⎜⎜⎝

e2aσ

sinh2(aτ)

( dz
dτ

)
FDBI,I,B√

1+ e2aσ

sinh2(aτ)

( dz
dτ

)2+ e2aσ

cosh2(aτ)

( dz
dσ

)2 − e2aσ

sinh(aτ) cosh(aτ)

(( dz
dτ

dz
dσ

))

⎞
⎟⎟⎠

+ ∂

∂σ

⎛
⎜⎜⎝

e2aσ

cosh2(aτ)

( dz
dσ

)
FDBI,I,B√

1+ e2aσ

sinh2(aτ)

( dz
dτ

)2+ e2aσ

cosh2(aτ)

( dz
dσ

)2 − e2aσ

sinh(aτ) cosh(aτ)

(( dz
dτ

dz
dσ

))

⎞
⎟⎟⎠

+ ∂2

∂σ∂τ

⎛
⎜⎜⎝

e2aσ

sinh(aτ) cosh(aτ)

( dz
dτ

+ dz
dσ

)
FDBI,I,B√

1+ e2aσ

sinh2(aτ)

( dz
dτ

)2+ e2aσ

cosh2(aτ)

( dz
dσ

)2 − e2aσ

sinh(aτ) cosh(aτ)

(( dz
dτ

dz
dσ

))

⎞
⎟⎟⎠=0 (18)

By solving the above equations, we can obtain the below
form for the separation distance between branes;

zI−A = zI I−B �
∫

dτdσ
(
e−4aσ sinh2(aτ) cosh2(aτ)

)

×

⎛
⎜⎜⎝

FDBI,I,A(τ, σ )
(

FDBI,I,A(τ,σ )

FDBI,I,A(τ,σ0)
− e−4a(σ−σ0) cosh2(aτ0)

cosh2(aτ)

)− 1
2

FDBI,I,A(τ0, σ )
(

FDBI,I,A(τ0,σ )

FDBI,I,A(τ0,σ0)
− e−4a(σ−σ0) cosh2(aτ0)

cosh2(aτ)

)− 1
2

− sinh2(aτ0)

sinh2(aτ)

⎞
⎟⎟⎠

− 1
2

(19)

zI−B = zI I−A �
∫

dτdσ
(
e4aσ sinh2(aτ) cosh2(aτ)

)

×

⎛
⎜⎜⎝

FDBI,I I,A(τ, σ )
(

FDBI,I I,A(τ,σ )

FDBI,I I,A(τ,σ0)
− e4a(σ−σ0) cosh2(aτ0)

cosh2(aτ)

)− 1
2

FDBI,I I,A(τ0, σ )
(

FDBI,I I,A(τ0,σ )

FDBI,I I,A(τ0,σ0)
− e4a(σ−σ0) cosh2(aτ0)

cosh2(aτ)

)− 1
2

− sinh2(aτ0)

sinh2(aτ)

⎞
⎟⎟⎠

− 1
2

(20)

The total separation between branes in the two regions
are;
zI = zI−A + zI−B

zI I = zI I−A + zI I−B �⇒
zI = zI I (21)

The above equation shows that the total separation dis-
tance between branes depends on the acceleration, time

and coordinates of branes and is independent of regions.
This is because when the separation distance for a part of
BIon grows, this parameter in another part decreases. Also,
the separation of distance for each part in another region
acts reversely and thus, the total separation distance in both
regions acts similarly.

Now, we can calculate the area of BIon. In our consider-
ation, BIon has a cylindrical shape and thus, we can obtain:

A = πr2zI = π

(
1

a
e±aσ cosh(aτ)

)2

⎡
⎢⎢⎢⎣

⎛
⎜⎜⎜⎝
∫

dτdσ
(
e−4aσ sinh2(aτ) cosh2(aτ)

)

×

⎛
⎜⎜⎝

FDBI,I,A(τ, σ )
(

FDBI,I,A(τ,σ )

FDBI,I,A(τ,σ0)
− e−4a(σ−σ0) cosh2(aτ0)

cosh2(aτ)

)− 1
2

FDBI,I,A(τ0, σ )
(

FDBI,I,A(τ0,σ )

FDBI,I,A(τ0,σ0)
− e−4a(σ−σ0) cosh2(aτ0)

cosh2(aτ)

)− 1
2

− sinh2(aτ0)

sinh2(aτ)

⎞
⎟⎟⎠

− 1
2
⎞
⎟⎟⎟⎠

+
(∫

dτdσ
(
e4aσ sinh2(aτ) cosh2(aτ)

)

×

⎛
⎜⎜⎝

FDBI,I I,A(τ, σ )
(

FDBI,I I,A(τ,σ )

FDBI,I I,A(τ,σ0)
− e4a(σ−σ0) cosh2(aτ0)

cosh2(aτ)

)− 1
2

FDBI,I I,A(τ0, σ )
(

FDBI,I I,A(τ0,σ )

FDBI,I I,A(τ0,σ0)
− e4a(σ−σ0) cosh2(aτ0)

cosh2(aτ)

)− 1
2

− sinh2(aτ0)

sinh2(aτ)

⎞
⎟⎟⎠

− 1
2
⎞
⎟⎟⎟⎠

⎤
⎥⎥⎥⎦ (22)
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Above equation shows total area of BIon. This area depends
on the acceleration of BIon and time. By passing time
and increasing the acceleration of BIon, the separation dis-
tance between branes increases and the area grows. On the
other hand, for negative accelerations, the separation distance
between branes decreases and the area decreases.

3 Tsallis entropy of an accelerating BIon

In this section, we will obtain the entropy of accelerating
BIon and compare it with Tsallis entropy. We will show that
the accelerating BIon produces exactly Tsallis entropy. To
this aim, we can turn to obtaining the thermodynamics for a
Flowing BIon with accelerating branes, at non-zero temper-
ature. We can obtain this from a black D3-F1 brane bound
state geometry that is placed in a Rindler space-time. We
begin with the D3-F1 black brane bound state background in
flat space-time which has the string frame metric [20]

ds2 = D− 1
2 H− 1

2
(
dx2

2 + dx2
3

)+ D
1
2 H− 1

2
(− f dt2 + dx2

1

)

+D− 1
2 H

1
2
(
f −1dr2 + r2d�2

5

)
(23)

where

f = 1 − r4
0

r4 H = 1 + r4
0 sinh2 α

r4

D = cos2 ε + sin2 εH−1 (24)

And

cosh2 α = 3

2

cos δ
3 + √

3 cos δ
3

cos δ

cos ε = 1√
1 + K 2

r4

(25)

With the definition;

cos δ = T̄ 4

√
1 + K 2

r4

T̄ =
(

9π2N

4
√

3TD3

) 1
2

T (26)

Comparing the metric in Eq. (23) with the metrics of Eqs.
(5, 6), we obtain the explicit form of metrics of thermal BIons
in region I and region II of the Rindler space-time;

ds2
I,A,thermal

= D
1
2
I−AH

− 1
2

I−A fI−A

(
e2aσ + 1

sinh2(aτ)

(
dz

dτ

)2
)
dτ2

−D
− 1

2
I−AH

1
2
I−A f −1

I−A

(
e2aσ + 1

cosh2(aτ)

(
dz

dσ

)2
)
dσ 2

+ 1

sinh(aτ) cosh(aτ)

(
dz

dτ

dz

dσ

)
dτdσ

+D
− 1

2
I−AH

1
2
I−A

(
1

a
eaσ cosh(aτ)

)2 (
dθ2 + sin2θdφ2

)

+D
− 1

2
I−AH

− 1
2

I−A

5∑
i=1

dx2
i (27)

ds2
I I,A,thermal

= D
1
2
I I−AH

− 1
2

I I−A fI I−A

(
e−2aσ + 1

sinh2(aτ)

(
dz

dτ

)2
)
dτ2

−D
− 1

2
I I−AH

1
2
I I−A f −1

I I−A

(
e−2aσ + 1

cosh2(aτ)

(
dz

dσ

)2
)
dσ 2

− 1

sinh(aτ) cosh(aτ)
(
dz

dτ

dz

dσ
)dτdσ

+D
− 1

2
I I−AH

1
2
I I−A

(
1

a
e−aσ cosh(aτ)

)2 (
dθ2 + sin2θdφ2

)

+D
− 1

2
I I−AH

− 1
2

I I−A

5∑
i=1

dx2
i (28)

where

f I−A = 1 − (eaσ0 cosh(aτ0))
4

(eaσ cosh(aτ))4 HI−A = 1

+ (eaσ0 cosh(aτ0))
4 sinh2 αI−A

(eaσ cosh(aτ))4

DI−A = cos2 εI−A + sin2 εI−AH
−1
I−A (29)

f I I−A = 1 −
(
e−aσ0 cosh(aτ0)

)4

(
e−aσ cosh(aτ)

)4 HI I−A = 1

+ (eaσ0 cosh(aτ0))
4 sinh2 αI I−A

(eaσ cosh(aτ))4

DI I−A = cos2 εI I−A + sin2 εI I−AH
−1
I I−A (30)

And

cosh2 αI−A = 3

2

cos δI−A
3 + √

3 cos δI−A
3

cos δI−A

cos εI−A = 1√
1 + K 2

(a−1e−aσ cosh(aτ))
4

(31)

cosh2 αI I−A = 3

2

cos δI I−A
3 + √

3 cos δI I−A
3

cos δI I−A

cos εI I−A = 1√
1 + K 2

(a−1eaσ cosh(aτ))
4

(32)

With the definition;

cos δI−A = T̄ 4
0,I−A

√√√√1 + K 2

(
a−1e−aσ cosh(aτ)

)4
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T̄0,I−A =
(

9π2N

4
√

3TD3

) 1
2

T0,I−A (33)

cos δI I−A = T̄ 4
0,I I−A

√√√√1 + K 2

(
a−1eaσ cosh(aτ)

)4

T̄0,I I−A =
(

9π2N

4
√

3TD3

) 1
2

T0,I I−A (34)

where T0 is the temperature of BIon in non-Rindler space-
time. The above results show that how the metric of the D3-F1
black brane evolves by the acceleration and time in a Rindler
space-time. It is observed that the thermal BIon which is
constructed by black D3-branes experiences different phase
transitions by growing or decreasing the acceleration and
temperature. It is clear that each BIon is divided into two
parts, one expands and the other contracts. Reversely, their
partners in region II contract and expand (see Fig. 2).

ds2
I,A,thermal = ds2

I I,B,thermal

ds2
I,B,thermal = ds2

I I,A,thermal (35)

At this stage, we can calculate the total mass, entropy
and free energy of a thermal BIon in the Rindler space-time.

Previously, thermodynamics of a thermal BIon in flat space-
time has been considered and leads to the following results;

M = 4T 2
D3

πT 4

∫ ∞

r0

dr
F(r)r2

√
F2(r) − F2(r0)

4 cosh2 α + 1

cosh4 α

S = 4T 2
D3

πT 5

∫ ∞

r0

dr
F(r)r2

√
F2(r) − F2(r0)

4

cosh4 α

Free = 4T 2
D3

πT 4

∫ ∞

r0

dr

√
1 + (

∂z

∂r
)2F(r) (36)

with new definition of F(r) [13];

F(r) = r2 4 cosh2 α − 3

cosh4 α
(37)

where M is the mass, S is the entropy and Free is the free
energy of system.

For the Rindler space-time with the metrics of Eqs. (27,
28) and coordinates of (2), we obtain;

MI−A = MI I−B = 4T 2
D3

πT 4
0,I−A

∫ ∞

σ0

dσ
FDBI,I,A(σ, τ )

( 1
a e

aσ cosh(aτ)
)2 (

sinh2(aτ) + cosh2(aτ)
)

√
F2
DBI,I,A(σ, τ ) − F2

DBI,I,A(σo, τ )

× 4 cosh2 αI−A + 1

cosh4 αI−A

SI−A = SI I−B = 4T 2
D3

πT 5
0,I−A

∫ ∞

σ0

dσ
FDBI,I,A(σ, τ )

( 1
a e

aσ cosh(aτ)
)2 (

sinh2(aτ) + cosh2(aτ)
)

√
F2
DBI,I,A(σ, τ ) − F2

DBI,I,A(σo, τ )
× 4

cosh4 αI−A

FreeI−A = FreeI I−B = 4T 2
D3

πT 4
0,I−A

∫ ∞

r0

dσ FDBI,I,A(σ, τ )

(
1

a
eaσ cosh(aτ)

)2 (
sinh2(aτ) + cosh2(aτ)

)

×
√

1+ e−2aσ

sinh2(aτ)

(
dz

dτ

)2

+ e−2aσ

cosh2(aτ)

(
dz

dσ

)2

+ e−2aσ

sinh(aτ) cosh(aτ)

((
dz

dτ

dz

dσ

))
(38)

with the below definition of FDBI,I,A;

FDBI,I,A = FDBI,I I,B

=
(
a−1eaσ cosh(aτ)

)2 4 cosh2 αI−A − 3

cosh4 αI−A
(39)

And

MI I−A = MI−B = 4T 2
D3

πT 4
0,I I−A

∫ ∞

σ0

dσ
FDBI,I I,A (σ, τ )

( 1
a e

−aσ cosh(aτ)
)2 (

sinh2(aτ) + cosh2(aτ)
)

√
F2
DBI,I I,A(σ, τ ) − F2

DBI,I I,A(σo, τ )

4 cosh2 αI I−A + 1

cosh4 αI I−A

SI I−A = SI−B = 4T 2
D3

πT 5
0,I I−A

∫ ∞

σ0

dσ
FDBI,I I,A(σ, τ )

( 1
a e

−aσ cosh(aτ)
)2 (

sinh2(aτ) + cosh2(aτ)
)

√
F2
DBI,I I,A(σ, τ ) − F2

DBI,I I,A(σo, τ )

4

cosh4 αI I−A

FreeI I−A = FreeI−B = 4T 2
D3

πT 4
0,I I−A

∫ ∞

σ0

dσ FDBI,I I,A(σ, τ )

(
1

a
e−aσ cosh(aτ)

)2 (
sinh2(aτ) + cosh2(aτ)

)

×
√

1+ e2aσ

sinh2(aτ)

(
dz

dτ

)2

+ e2aσ

cosh2(aτ)

(
dz

dσ

)2

+ e2aσ

sinh(aτ) cosh(aτ)

((
dz

dτ

dz

dσ

))
(40)
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with the below definition of FDBI,I I,A;

FDBI,I I,A = FDBI,I,B

=
(
a−1e−aσ cosh(aτ)

)2 4 cosh2 αI I−A − 3

cosh4 αI I−A

(41)

Above equations describe the thermodynamics of the
flowing BIon which its branes are boosted with accelera-
tions. It is clear that when the entropy, mass or free energy
of brane grows, the ones of other brane decreases.

Now, we can calculate the total entropy of BIon:

SI = SI−A + SI−B = 4T 2
D3

πT 5
0,I−A

∫ ∞

σ0

dσ
FDBI,I,A(σ, τ )

( 1
a e

aσ cosh(aτ)
)2 (

sinh2(aτ) + cosh2(aτ)
)

√
F2
DBI,I,A(σ, τ ) − F2

DBI,I,A(σo, τ )

4

cosh4 αI−A

+ 4T 2
D3

πT 5
0,I I−A

∫ ∞

σ0

dσ
FDBI,I I,A(σ, τ )

( 1
a e

−aσ cosh(aτ)
)2 (

sinh2(aτ) + cosh2(aτ)
)

√
F2
DBI,I I,A(σ, τ ) − F2

DBI,I I,A(σo, τ )

4

cosh4 αI I−A
(42)

To obtain the explicit form of entropy, we should solve
Eqs. (39 and 41) and obtain:

cosh2 αI−A

=
(
a−1eaσ cosh(aτ)

)2 +
√(

a−1eaσ cosh(aτ)
)4 + 12FDBI,I,A

4FDBI,I,A

cosh2 αI I−A

=
(
a−1e−aσ cosh(aτ)

)2 +
√(

a−1e−aσ cosh(aτ)
)4 + 12FDBI,I I,A

4FDBI,I I,A

(43)

Substituting Eq. (43) in Eq. (42) and comparing with Eq.
(22), we can obtain:

SI = SI I = 4T 2
D3

πT 5
0,I−A

[
1 + T 5

0,I−A

πT 5
0,I I−A

]
A

3
2 (44)

This entropy is very similar to Tsallis entropy (S = γ Aβ )

with (γ = 4T 2
D3

πT 5
0,I−A

[1 + T 5
0,I−A

πT 5
0,I I−A

] and β = 3
2 ). This means

that Tsallis entropy not only works in black hole system but
also gives the true entropy for systems in string theory like
the BIonic systems.

4 Summary and discussion

In this paper, we have obtained the entropy of an acceler-
ating BIon which was constructed from two accelerating
branes and a wormhole. We have observed that this entropy
includes some terms similar to Tsallis entropy and could be
written as S = γ Aβ , where A is the area of BIon [1]. We

have shown that by passing time and increasing the accel-
eration of BIon, the separation distance between branes and
the length of wormhole grows. Consequently, the area of
BIon increases and the entropy grows. This result is consis-
tent with the second principle of thermodynamics, as well as
with thermodynamical extensivity of the entropy.
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