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Abstract The scalar and vector cosmological perturbations
at all length scales of our Universe are studied in the frame-
work of the phantom braneworld model. The model is char-
acterized by the parameter �M ≡ M3/2m2H0, with M and
m the five- and four-dimensional Planck scales, respectively,
and H0 the Hubble parameter today, while �M → 0 recov-
ers the �CDM model. Ignoring the backreaction due to the
peculiar velocities and also the bulk cosmological constant,
allows the explicit computation of the gravitational poten-
tials, � and �. They exhibit exponentially decreasing screen-
ing behaviour characterized by a screening length which is a
function of the quasidensity parameter �M .

1 Introduction

In the braneworld (BW) model the 3 + 1-dimensional Uni-
verse we live in is a timelike hypersurface (the brane) of
codimension one or more, embedded in a higher dimen-
sional spacetime (the world), see [1,2] for a vast review
and also references therein. Unlike the higher dimensional
theories such as Gauss–Bonnet gravity, e.g. [3], in the BW
model all standard model matter fields are confined on
the brane whereas only gravity can propagate in the extra
dimension(s).

The existence of the extra dimension implies depar-
ture from General Relativity. For example in the Randall–
Sundrum model with a single extra dimension, the modifi-
cation occurs at the small scales [4,5]. The extra dimension
needs to neither be small nor compact and can even be infi-
nite. Compact extra dimensions, on the other hand, imply an
infinite and discrete Kaluza–Klein spectrum on the brane, see
e.g. [6]. We further refer our reader to [7–12] for a description
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of fitting the galaxy rotation curves and the study of gravi-
tational lensing in this model. While the extra dimension is
usually taken to be spacelike, we refer our reader to [13] for
a timelike extra dimension.

Discussions on static solutions such as a black hole in the
BW model can be seen in [14–17] and references therein. For
the so called two branch RS-I model, from the modification
of Newton’s law, the upper bound on the bulk anti-de Sitter
radius turns out to be l � 14µm; whereas for the one branch
RS-II model, the binary gravity wave data puts a bound :
l � 3.9µm [18]. Probing the extra dimensional effects by
studying the strong gravitational lensing can be seen in [19].
We refer our reader to [20] for a modification of the RS
model with cosmological constants associated with both the
bulk and the brane, fine tuned to make the bulk flat. This sce-
nario is in particular helpful to estimate the energy lost by the
brane via the Kaluza-Klein gravitons. In [21,22], the effect of
brane – bulk energy exchange on cosmology was investi-
gated and a model where our current universe is obtained
as a late time attractor was proposed. We further refer our
reader to [23] for a vast review and an exhaustive list of ref-
erences pertaining to gravity and cosmology in the context
of the braneworld model.

In this paper, we shall be interested in an extension of the
Dvali–Gabadadze–Porrati braneworld (DGP) model [24–27]
containing in the action, the 4-dimensional Ricci scalar on
the brane, induced by the one loop correction due to the
graviton–matter interaction, and the extrinsic curvature of
the brane. This model, unlike the Randall–Sundrum case,
modifies gravity only beyond a characteristic length scale,
depending on the five- and four-dimensional Newton con-
stants. The relevant equation of motion gives rise to two
branches of cosmological solutions, both with flat spatial sec-
tions, one being self accelerated without requiring any dark
energy/cosmological constant, whereas the other branch (the
normal branch) requires at least one cosmological constant to
accommodate for the current accelerated expansion [28–30].
However, the former was shown to have ghost instability in
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subsequent works [31,32], leaving only the “normal” branch
to be a possible alternative to the �CDM model.

Furthermore, the equation of state parameter for the effec-
tive dark energy source is time dependent, w(t), and turns
out to be less than minus one today [33–37]. For a cer-
tain range of parameter values, w(t) will reach asymptoti-
cally the value − 1 (the de Sitter phase). Otherwise, the uni-
verse can even leave at some stage the phase of accelerated
expansion reentering matter domination, thus evading the so
called phantom disaster [38]. Since w(t) < −1 in the cur-
rent epoch, this model is often called “phantom braneworld
model”. Interestingly, this model indicates that the expansion
of our universe was stopped at redshift z � 6 and ‘loitered’
there for a long period of time favouring structure formation.
Arguments supporting this, based on the observed data of
population of the quasistellar objects and supermassive black
holes in 6 � z � 20 can be found in [36]. Scalar cosmolog-
ical perturbation theory in the phantom braneworld model
and further details are studied in [39–41], while in [42] the
stability analysis of large scale cosmic structures via their
size-versus-mass study in the context of the present model
and in the presence of a bulk cosmological constant, was per-
formed. We also refer our reader to [43] for constraints on
the braneworld model via gravity wave data. See also [44]
for phenomenological arguments in the favour of w(t) < −1
via the neutrino mass higherarchy.

The braneworld model under study here is assumed to have
‘zero thickness’ in the extra dimension. Interesting effects
however, may arise when one considers a thick brane [45,46].
In particular, in such a scenario, with a large extra dimension,
one can have a new energy scale on the brane, determined by
both brane thickness and the size of the extra dimension. For
energies much larger than this new scale, the physics in the
brane depends upon the position along the extra dimension,
while for much smaller energies the equivalence principle
may be violated, resulting in certain fine tuning to preserve
it.

Given that the phantom braneworld model modifies grav-
ity significantly at large scales, it becomes an interesting task
to investigate this model’s prediction at arbitrarily large dis-
tances. One such arena seems to be the study of screening
effects, where certain terms in the scalar perturbation equa-
tion, which we can ignore at small scales, lead to modifica-
tions of the gravitational potential at large scales [47–57]. By
approximating the inhomogeneities of our universe as delta
function sources, a first order analytical formalism for the
cosmological scalar and vector perturbations for the �CDM
model was developed recently in [47], where a Yukawa-like
fall-off of the gravitational potential was derived at large
scales. Various extensions of this work, including the case
of interacting fluid sources, can be found in [48–53]. Dis-
cussions on the N -body simulations in the context of cosmic
screening can be seen in [54,55]. We further refer our reader

to [56,57] for second order computations on the scalar pertur-
bation pertaining respectively to the �CDM and the Einstein
de Sitter models. The extra dimensional scenario is certainly
not included in the above examples. Motivated by this, we
shall study in this work the first order cosmological screen-
ing in the phantom braneworld model. Our chief goal would
be, apart from casting the perturbation equations in a suitable
form and solving them, to point out differences of this model
from �CDM, that can arise at very large scales.

The paper is organized as follows. In the next section
we briefly review the phantom braneworld model. In Sect.
3 we develop the first order equations pertaining to the scalar
and the vector perturbations with no bulk cosmological con-
stant. In Sect. 4 we solve for the scalar perturbation ignoring
the peculiar velocities, and compare it both analytically and
numerically with the �CDM model. We conclude with a
Sect. 5.

We shall use mostly negative signature for the metric and
will set c = 1 throughout.

2 The phantom braneworld model

Let us first briefly review the basic features of the phantom
braneworld model, details of which can be seen in e.g. [40]
and references therein. The relevant action is given by,

S = M3
[ ∫

bulk

(
R − 2�5D

)
− 2

∫
brane

K

]
+

∫
brane

(
m2R − 2σ

)

−
∫

brane
L(gμν, φ) (1)

where R and R are the Ricci scalars corresponding to five
(the bulk) and four dimensions (the brane) and M and m are
the respective Planck masses. The quantity�5D is the cosmo-
logical constant in the bulk and σ is the brane tension, related
to the brane cosmological constant � by � = σ/m2. K is the
trace of the extrinsic curvature of the brane. L(gμν, φ) stands
collectively for all matter fields, φ, confined to the brane and
gμν is the induced metric on it. For our current purpose, φ

would correspond only to the cold dark matter.
Being interested in the 3 + 1-dimensional physics, we

choose to measure energies in units of the four-dimensional
Planck mass m. So, we set m = 1 throughout.

Using the Gauss–Codacci relations, the Einstein equations
on the brane become

Gμν −
(

�RS

b + 1

)
gμν

=
(

b

b + 1

)
Tμν −

(
1

b + 1

)[
1

M6 Qμν − Cμν

]
(2)

where

b = 1

6
�l2, l = 2

M3 , �RS = �5D

2
+ 1

12
�2l2 (3)
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are convenient parameters, and

Qμν = 1

3
EEμν − EμλE

λ
ν + 1

2

(
EρλE

ρλ − 1

3
E2

)
gμν,

Eμν ≡ Gμν − Tμν, E = Eμ
μ (4)

The tensor Cμν is traceless, coming from the projection of
the five-dimensional Weyl tensor onto the brane. Taking the
divergence of Eq. (2) yields the constraint equation,

∇μ
(b + 1

m2 Eμν + Tμν + 1

M6 Qμν − Cμν

)
= 0 (5)

The spatially homogeneous Einstein equation reads (in con-
formal time, η) with the cold dark matter as the source,

H2

a2 = ρ̄

3a3 + �

3

+ 2

l2

[
1 −

√
1 + l2

(
ρ̄

3a3 + �

3
− �5D

6
− C

a4

)]
(6)

where a ≡ a(η) is the scale factor, H = a−1da/dη is the
Hubble rate and ρ̄ the time independent background homo-
geneous cold dark matter density in co-moving coordinates.
The constant C is due to the existence of the Weyl tensor in
the bulk. Due to the radiation like behavior of the term con-
tainingC , it is often named “Weyl radiation”. We shall ignore
its backreaction effects onto the cosmological background,
though we shall take into account the inhomogeneous per-
turbations of the projection of the Weyl tensor. We will also
ignore the backreaction effects of �5D . Taking �M → 0 in
the above equation one recovers the �CDM limit. Notice that
Eq. (6) in the absence of �5D and C may be conveniently
expressed as

H
a

= 1

l

⎡
⎣

√
1 + l2

3

(
ρ̄

a3 + �

)
− 1

⎤
⎦ (7)

We will also need the derivative of this equation with
respect to conformal time η

dH
dη

= H2
(

1 − 3�m

2(1 + �M )

)
(8)

where1

�m = ρ̄

3H2a
, �M = aM3

2H , �σ = �

3H2 (9)

Consequently, Eq. (6) takes the simple form

�m + �σ − 2�M = 1 (10)

in everything that follows we have replaced ρ̄ in favor of
3H2�ma, M3 in favor of 2�MH/a and � in favor of

1 We would like to mention that the quantity �M is often defined as√
�l in the related literature.

3H2�σ . It is very convenient since everything we derive
may be expressed as functions of �m and �M , only (�σ is
solved for from Eq. 10). The advantage of this procedure is
twofold, firstly these parameters are dimensionless and we
claim rather intuitive to handle, secondly these will make
comparison to �CDM trivial by simply taking �M to zero.

3 Derivation of scalar and vector perturbation
equations

We shall extend below the linear perturbation scheme devel-
oped for the �CDM model in [47] to the phantom braneworld
model described in the preceeding section. We start with the
ansatz for the first order McVittie metric on the brane in the
Cartesian coordinates,

ds2 = a2(η)
[
(1 + 2�(η, x))dη2 + 2Bi (η, x)dηdxi

−(1 − 2�(η, x))δi j dx
i dx j ] (11)

where �, � and Bi ’s are respectively the scalar and vector
perturbations and the bold font is used to indicate a vector,
which determines the position in space where the potentials
are evaluated at. Note that unlike the �CDM, � �= � here,
owing to the anisotropic stresses originating from the bulk,
e.g. [40].

We shall consider the backreaction effects due to N self
gravitating moving point masses. Following [47], we define
the proper interval for the n-th mass,

dsn = a(η)
[
(1 + 2�) + 2Biv

i
n − (1 − 2�)δi jv

i
nv

j
n
]1/2

dη

(12)

The peculiar velocities appearing above can be evaluated by
subtracting from the observed velocity of the mass, the veloc-
ity due to the Hubble flow, e.g. [38].

The energy momentum tensor for these point masses is
then given by

Tμν =
∑
n

mn√−g

dxμ
n

dη

dxν
n

dη

dη

dsn
δ3(x − xn) (13)

where xn is the value of the x coordinate (as defined in
the metric Eq. 11) where the nth particle is located at.
Existing data shows that the peculiar velocities are in gen-
eral rather small or non-relativistic, at most of the order of
106 ms−1 [58]. Putting these all in together, we find from Eq.
(13) the energy momentum tensor up to the first order,

Tμν = 1

a5

((
1 − 2� + 3�

)
ρ

∑
n ρnvn∑

n ρnvn 0

)
(14)

where each ρn corresponds to a delta function point mass
located at rn ,

ρn ≡ mnδ
3(x − xn) (15)
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We decompose the total energy density ρ in Eq. (14) as,

ρ = ρ̄ + δρ(η, x), ρ̄ =
∑
n

mn/V (16)

where δρ(η, x) stands for the contribution of the inhomo-
geneities. The index n runs over all N particles in the Uni-
verse. Note here that δρ is not treated as a perturbation, due
to the fact that it is dominant at small scales (see [60]).

Since we must have |�|, |�| � 1 in Eq. (11), we write
from Eq. (14) at first order,

δT00 = 1

a

(
δρ + 2ρ̄� + 3ρ̄�

)
,

δT0i = 1

a

(
ρ̄Bi −

∑
n

ρnv
i
n

)
, δTi j = 0 (17)

the geodesic equation for the nth particle in Eq. (12) also
reads,
(
aB|x=xn − avn

)′ = a∇�|x=xn (18)

where the ‘prime’ denotes differentiation once with respect
to the conformal time η and the variations δTμν , δCμν and
δQμν depend on both space and time. Since we wish to build a
perturbation scheme valid all the way to superhorizon scales,
we cannot assume that the perturbations’ spatial variations
dominate over the temporal ones, unlike the case of the study
of cosmic structures, e.g. [38].

Finally, we come to the perturbation of the Weyl tensor’s
projection onto the brane, δCμν . Its most generic form is given
by, e.g. [40],

δCμν = 1

a2

(
δρC ∂ivC
∂ivC

δρC
3

δi j − δπi j

)
(19)

where δπi j = (∇i∇ j − gi j�/3)δπC (� stands for the
Euclidean 3-Laplacian) is trace free and δρC , vC and δπC
are scalars. In particular, vC can be regarded as a momentum
potential, whose backreaction effects will also be ignored,
while considering its time evolution also negligible.

The Einstein equations on the brane (Eq. 2), at first order
read, after using Eqs. (17, 19),

�� − 9H2�m

2m2
eff

� − 3H� ′ − 3H2�

= δρ

2m2
effa

+ �M

2m2
effa

2
δρC (20)

which is the 00 component, and for i �= j

�M

m2
effa

2
δπi j −

(
1 − 3�m

4m4
eff

)

×
(

∂i∂ j (� − �) − 1

2
∂(i

(
B ′
j) + 2HBj)

))
= 0 (21)

We also have for the vector perturbation,

1

4
�Bi − 3H2�m

2m2
eff

Bi + ∂i
(
� ′ + H�

) = − 1

2m2
effa

∑
n

ρnv
i
n

(22)

where � as earlier is the Laplacian on the Euclidean 3-space
and also the function meff ≡ meff(η) has been introduced

m2
eff ≡ 1 + �M (23)

The �CDM limit in the above equations is obtained by letting
�M → 0 in which case we recover the results of [47].

At small length scales relevant to cosmic structures, the
spatial derivatives of the potential in Eq. (20) dominate over
its temporal derivatives and the other effective mass-like
terms appearing on the left hand side. Accordingly, at such
small scales, Eq. (20) reduces to the Poisson equation, yield-
ing a gravitational potential falling off as 1/r , along with a
modified Newton’s constant [42]. For �CDM in particular,
we have δρC = 0, yielding Newton’s potential. However, at
length scales much larger than those of cosmic structures,
the temporal derivative and the effective mass terms can be
comparable and, as we will show in Sect. 4, this leads to a
significant modification in the behavior of the solution of Eq.
(20), as is expected due to the presence of the mass-like term
on its left-hand side.

The divergence of Eq. (22), in the Poisson gauge ∂i Bi = 0,
gives

�� = ∂i

(∑
n

ρnvn
i

)
(24)

where � := −2m2
effa(� ′ + H�). The solution of Eq. (24)

is

� = 1

4π

∑
n

mn
(x − xn) · vn

|x − xn|3 (25)

Equation (22) has the same form as the corresponding solved
in [47].

In this work, we are chiefly interested in distinguishing the
phantom braneworld model from �CDM with respect to the
cosmological screening, which is certainly impossible unless
we go to very large length scales. Note that at such scales,
the backreaction effects due to the peculiar velocities, which
are essentially non-relativistic, would be negligible, e.g. [58].
Thus for our current purpose, we shall from now on ignore
the peculiar velocities (and hence the vector perturbation)
throughout.
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4 Solutions ignoring peculiar velocities

From the definition of � and Eq. (25) in the limit of irrelevant
peculiar velocities we have (since � = 0)

� ′ = −H� (26)

With this equation in hand we can simplify Eq. (20)

�� − 9H2�m

2m2
eff

� = δρ

2m2
effa

+ �M

2m2
effa

2
δρC (27)

On the other hand we can write Eq. (21)

�M

m2
effa

2
δπC =

(
1 − 3�m

4m4
eff

)
(� − �) + constant (28)

and recall that in a marginally closed universe with a vanish-
ing bulk cosmological constant, one has [39],

�δπC = δρC
2

(29)

Combining Eqs. (28) and (29) to eliminate δπC we get

�M

2m2
effa

2
δρC =

(
1 − 3�m

4m4
eff

)
�(� − �) (30)

In order to solve for � and � we want one more equation.
This comes from the spatial component of Eq. (5), after using
Eqs. (18) and (27), we obtain

�M

2m2
effa

2

(
1 − 3�m

2m2
eff

)
δρC

= �� −
(

1 + 3�m

2m4
eff

)
�� + constant (31)

We can substitute Eq. (30) into Eqs. (27) and 31 to obtain a
system of two equations with only two unknowns, the per-
turbations � and �. The constant in Eqs. (28) and (31) has
to be zero in order for the potential to be vanishing at infinity.
The solution of the system is straightforward

�� = I �� (32)

and

�� − 9H2�m,eff

2
� = δρ

2m2
eff,�a

(33)

where

I ≡ 1 + 4�M

1 + 2m2
eff − 3�m

2m4
eff

, �m,eff ≡ �m

m2
eff,�

,

m2
eff,� ≡ m2

eff + (1 − I )
(
m2

eff − 3�m

4m2
eff

)
(34)

Equation (33) is identical to the one obtained for �CDM
derived in [47] if we drop the eff subscripts, it is trivial to

solve our equation by comparing with [47], and using eff

subscripts wherever appropriate. The solution is

�
∣∣
many particle = 1

3
− 1

8πm2
eff,�a

∑
n

mn

|x − xn| e
− |x−xn |

λ

(35)

where

λ =
√

2

9H2�m,eff
(36)

For a single particle – a single central over-density – the
solution for the potential �, valid for all length scales is

�
∣∣
one particle = − 1

8πm2
eff,�a

m0

r
e−r/λ (37)

where m0 is the mass of the central overdensity and r = |x|.
We have dropped the 1

3 which is generated by the existence
of an infinite number of point particles. We will prove that
this occurs naturally when considering an isolated sub-region
of the Universe (e.g. the observable Universe) at the end of
this section. The exponential appearing above clearly indi-
cates the suppression of Newton’s potential at large scales,
originating from the term present in the perturbation equa-
tion behaving as an effective mass. Thus the length scale, λ,
should be interpreted as a screening length.

In every case we can find � solving Eq. (32)

� = I � (38)

Figures 1, 2 and 3 elucidate various properties of the
gravitational potentials and the screening length. We use
the values for cosmological parameters �m = 0.3089 and
H0 = 67.74 km s−1Mpc−1 as specified in [59] and we exam-
ine the gravitational potentials for one particle with mass
M	 = 1.989 · 1030 kg. Figure 1 depicts the behavior of the
effective mass density parameter and the screening length
versus �M . The �CDM limit is obtained by letting �M → 0.

We also note that since the screening length is typically of
the order of O(103) Mpc (Fig. 1), at length scales compara-
ble of the size of a typical cosmic structure i.e. O(100) Mpc,
Eq. (37) recovers the 1/r fall-off of the gravitational poten-
tials. However, the 1/m2

eff,� ≡ I/m2
eff,� and 1/m2

eff,� terms
present modify Newton’s ‘constant’ in � and � respectively
and make it time dependent, as discussed in [42].

Figure 2 depicts the behavior of the effective Newton’s
constant for � and �. In the �M → 0 limit both of them
aproach 1 recovering the �CDM limit. Note also that in this
limit setting further ρ̄ → 0 (�m → 0) removes the expo-
nential fall off since then λ → ∞ (cf., Eqs. 34, 36), yielding
Newton’s potential for a point mass located in a de Sitter
universe. It is easy to verify that, as expected, this is the lin-
earized approximation of the Schwarzschild-de Sitter metric
in the McVittie coordinate frame. Similar conclusions hold
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Fig. 1 Plots of the effective mass density and the screening length versus �M
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Fig. 2 Plots of 1/8πm2
eff,� and 1/8πm2

eff,� respectively versus �M . These are proportional to the Newton’s constant for each potential respectively.
Note that the one for � decreases faster than �

Fig. 3 Plot of �	(r) r/Mpc and �	(r) r/Mpc versus �M and log(r /Mpc) for one particle with mass equal to one solar mass

for the potential �
∣∣
one particle. Finally, we depict the potentials

in Fig. 3.
We would now like to show that with respect to the uni-

verse visible to an observer located at some point x, we can
actually get rid of the first term in Eq. (35). Indeed, let N be
the total number of point sources in Eq. (35) and let Ñ be
the number located within the Hubble horizon radius of an
observer located at x. Clearly, we may expect that only these
Ñ particles would contribute significantly into Eq. (35). On

the other hand, since we should have N → ∞ in order to
obtain a non-vanishing ρ̄, it is natural to consider Ñ � N .
We next split the summations in Eq. (35) into two parts

N→∞∑
n=1

=
Ñ∑

n=1

+
∞∑

n=Ñ+1

Since the second summation gets contributions from all par-
ticles outside the Hubble horizon of the observer, we can
average the potential of this part following [47] and using
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ρ̄ = ∑∞
1 mn/V ≈ ∑∞̃

N+1 mn/V . It is easy to see that this
average cancels-out the constant (1/3) term in Eq. (35), lead-
ing to

�
∣∣
many particle; average = − 1

8πm2
eff,�a

Ñ∑
n=1

mn

|x − xn| e
− |x−xn |

λ

where “average” in the subscript refers to the aforementioned
averaging over sources located outside the observer’s Hub-
ble horizon. Note that the above formula has a smooth one
particle (Ñ = 1) limit, recovering Eq. (37).

5 Discussion

At very large length scales of our universe not decoupled
from the cosmic expansion, one might expect the gravita-
tional potential to be modified from that of Newton’s, as has
explicitly been demonstrated for the �CDM model in [47]. It
is an interesting task to investigate the same for other viable
gravity models as well. Being motivated by this, we have
investigated the cosmological screening at such large length
scales for the phantom braneworld model described in Sect.
2, with the expectation that the qualitative differences of
this model compared to �CDM should be maximum at the
(super-)horizon scales of our universe. We have presented the
equations governing the first order scalar and vector perturba-
tions in Sect. 3. Finally, by ignoring the backreaction effects
due to the bulk cosmological constant and the vector pertur-
bation, we have demonstrated analytically and numerically,
the behaviour of the two potentials up to the superhorizon
length scale in Sect. 4.

It seems to be an interesting task to investigate the tensor
perturbation for this model in an early universe scenario. We
hope to address this issue in future work.
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