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Abstract In the present article, we have constructed a static
charged anisotropic compact star model of Einstein field
equations for a spherically symmetric space-time geome-
try. Specifically, we have extended the charged isotropic
Heintzmann solution to an anisotropic domain. To address
this work, we have employed the gravitational decou-
pling through the so called minimal geometric deformation
approach. The charged anisotropic model is representing
the realistic compact objects such as RX J1856 − 37 and
SAX J1808.4 − 3658(SS2). We have reported our results in
details for the compact star RX J1856 − 37 on the ground
of physical properties such as pressure, density, velocity
of sound, energy conditions, stability conditions, Tolman–
Oppenheimer–Volkoff equation and redshift etc.

1 Introduction

Since the birth of the Einstein gravity theory, general relativ-
ity (GR). It has been a great challenge to find solutions that
describe a well behaved structures from the physical point of
view in the Universe. The first who gives an exact solution
to Einstein field equations describing the exterior of a spher-
ically symmetric and static fluid sphere was Schwarzschild
[1]. Then R. Tolman found several solutions corresponding to
a perfect fluid matter distributions [2], but was G. Lamaitre
who pointed out that all the structures inside the Universe
may contain anisotropic matter distributions, explaining that
the spherically symmetry do not require the isotropic condi-
tion pr = pt at all [3]. On the other hand, the work of Bowers
and Liang, about local anisotropic equation of state for rela-
tivistic spheres [4], allowed a better understanding respect to
this type of matter distributions. Also the studies of Ruder-
man about more realistic stellar models show that the nuclear
matter may be anisotropic at least in certain very high den-
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sity ranges (ρ > 1015g/cm3), where the nuclear interactions
must be treated relativistically [5]. In the recent years sev-
eral works available in the literature [6–11] (and reference
contained therein) address this issue in order to examined
how anisotropic matter distribution affects on the effective
mass, radius of the stars, central energy density, critical sur-
face red-shift and stability of highly compact bodies, since
in some cases the presence of anisotropy rises in a repulsive
force (pt > pr ) which counteracts the gravitational gradi-
ent [12]. Moreover, models with a matter tensor containing
anisotropy, must be consistent with physical requirements for
astrophysical applications. This is so because the presence of
anisotropic pressures leads to values of observed compact-
ness parameters for several astrophysical bodies [7].

All the mentioned works above, concerned only a neu-
tral spherically symmetric and static configurations. How-
ever, it is also interesting study these fluid spheres in pres-
ence of a static electric field. As a extension of the exte-
rior Schwarzschild’s solution to this context, we have the
well known Reissner–Nordstrom solution [13,14]. As was
pointed out by Thirukkanesh et al. [15] it is interesting to
note that, in presence of the electromagnetic fields, the col-
lapse of a spherically symmetric matter distribution to a point
singularity may be avoided during the gravitational collapse
or during an accretion process onto compact object [16]. In
this scenario, the gravitational attraction is counterbalanced
by the repulsive Coulomb force in addition to the pressure
gradient [17]. Another important feature is related with the
energy density associated to the electric field, which has a
significant role in producing the gravitational mass of the
object [18]. In fact, several literature [19–24] can be referred
to understand the effects of the electric charge on the relativis-
tic compact stellar system. In a more widely context, charged
self-gravitating anisotropic fluid spheres have been exten-
sively investigated in general relativity since the pioneering
work of Bonnor [25]. In fact, the presence of anisotropy +
static electric field enhances the stability and equilibrium
conditions of compact objects [11,18,26–28]. Of course, as
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mentioned earlier each of these ingredients counteracts the
gravitational force.

So, in the present work we obtain from the charged
isotropic Heinzmann’s interior solution describing compact
star [15], an anisotropic extension. It’s achieved employ-
ing the so called minimal geometric deformation approach
(MGD) [29,30]. This method was originally proposed in
the context of the Randall–Sundrum braneworld [31,32] and
was designed to deform the standard Schwarzschild solution
[33,34]. The main point of this scheme is that the isotropic
and anisotropic sectors can be split. Therefore, the decou-
pling of both gravitational sources can be done in a sim-
ple form establishing a novel way to search new families of
anisotropic solutions of Einstein field equations.

The paper is organized as follows: Sect. 2 presents the Ein-
stein field equations for an anisotropic matter distributions.
In Sect. 3 the MGD approach is presented in brief, in order
to explain how to generate arbitrary anisotropic solutions.
Section 4 is devoted to apply this method to a particular seed
solution, the charged isotropic Heinzmann model for com-
pact objects. In Sect. 5 we analyzed all the requirements
for a well behaved solution from the physical point of view.
Finally, in Sect. 6 we give some conclusions for the reported
study.

2 Main field equations for anisotropic distributions

The starting point is the static, spherically symmetric line ele-
ment represented in Schwarzschild-like coordinates. It reads

ds2 = eνdt2 − eλdr2 − r2
(
dθ2 + sin2 θdφ2

)
, (1)

where ν = ν(r) and λ = λ(r). The metric (1) is a generic
solution of the Einstein field equations

Rμν − 1

2
Rgμν = −κTμν, (2)

describing an anisotropic fluid sphere. The coupling constant
is given by κ = 8πG

c4 , from now on we will employ relativistic
geometrized units, that is c = G = 1.

The stress-energy tensor Tμν corresponding to an
anisotropic matter distribution, in an orthonormal basis is
characterized by ρ, pr and pt [35], which are related to the
metric functions ν and λ through (2). Then the field equations
explicitly reads

8πρ = 1

r2 − e−λ

(
1

r2 − λ′

r

)
(3)

8πpr = − 1

r2 + e−λ

(
1

r2 − ν′

r

)
(4)

8πpt = 1

4
e−λ

(
2ν′′ + ν′2 − λ′ν′ + 2

ν′ − λ′

r

)
. (5)

The primes denote differentiation with respect to r . Bianchi
identity invokes the following conservation equation for the
stress-energy tensor

∇νTμν = 0. (6)

On the other hand we will make use the following represen-
tation for the energy-momentum tensor

Tμν = T̃μν + αθμν, (7)

where the first term in the right hand side represents an
isotropic perfect fluid,

T̃μν = (ρ̃ + p̃) uμuν − p̃gμν, (8)

representing the vector uμ = e−ν(r)/2δ
μ
0 the unit timelike

four-velocity. Along this work the thermodynamics observ-
able ρ̃ and p̃, correspond to charged isotropic Heintzmann
interior solution [15]. According to this representation, the
extra gravitational contribution is given by the θ -term, which
causes a deviation fromGR. In principle this additional grav-
itational source can be e.g. a scalar field, a vector field or
a tensor field. It is coupled to gravity via a dimensionless
parameter α. It noteworthy that in the limit α → 0 GR is
recovered, i.e. Einstein equations for isotropic matter distri-
butions are obtained.

In the system of Eqs. (3)–(5), ρ, pr and pt represent the
effective density, the effective radial pressure and the effec-
tive tangential pressure respectively, that are given by

ρ = ρ̃ + αθ tt (9)

pr = p̃ − αθrr (10)

pt = p̃ − αθϕ
ϕ . (11)

Hence, it is clear that the presence of the θ -term raises an
anisotropy if θrr �= θ

ϕ
ϕ . Thus the effective anisotropy is

defined as

Π ≡ pt − pr = α
(
θrr − θϕ

ϕ

)
(12)

Taking into account the expression (7) the corresponding
conservation law (6) yields to

p̃′ + ν′

2
( p̃ + ρ̃) − α

[ (
θrr

)′ + ν′

2

(
θrr − θ tt

)

+ 2

r

(
θrr − θϕ

ϕ

) ]
= 0, (13)

being the above expression a linear combination of the Eqs.
(3)–(5). To solve the system of Eqs. (3)–(5) we will face it
applying the MGD scheme [29].
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3 Minimal geometric deformation scheme in brief

Here we present in short the MGD approach, an extensive
development of this method is given in references [36–41]
and recent applications of it can be found in [42–45]. So this
scheme causes an anisotropic modification to usual solutions
of Einstein field equations. In order to tackle the system of
Eqs. (3)–(5), we take a spherically symmetric isotropic mat-
ter distribution, this is pr = pt = p. From this seed solution
also are known the metric functions eλ and eν . The output
will be a shift in the effective pressures such that pr �= pt . To
accomplish it, one makes a most general minimal geomet-
ric deformation on the temporal and radial metric functions
keeping the spherically symmetry of the original solution

eν(r) �→ eν(r) + αh∗(r) (14)

e−λ(r) �→ μ(r) + α f ∗(r). (15)

In the above linear mapping h∗(r) and f ∗(r) are the corre-
sponding deformations. In principle the method allows to us
set h∗(r) = 0. Therefore all the anisotropic sector θμν relies
over the radial deformation (15). The most remarkable fea-
ture of the MGD method is that it decouple the system (3)–(5)
resulting in two separated system of equations related only
by the metric function ν. One of them corresponds to the stan-
dard Einstein equations for the chosen solution (perfect fluid
solution), and the second one an effective “quasi-Einstein”
system of equations to the anisotropic sector. Then we have

8πρ̃ = 1

r2 − μ

r2 − μ′

r
(16)

8π p̃ = − 1

r2 + μ

(
1

r2 + ν′

r

)
(17)

8π p̃ = μ

4

(
2ν′′ + ν′2 + 2

ν′

r

)
+ μ′

4

(
ν′ + 2

r

)
, (18)

along with the conservation equation

p̃′ + ν′

2
(ρ̃ + p̃) = 0, (19)

this is a linear combination of the Eqs. (16)–(18). On the
other hand we have the following equations to the θ - sector

8πθ tt = − f ∗

r2 − f ∗′

r
(20)

8πθrr = − f ∗
(

1

r2 + ν′

r

)
(21)

8πθϕ
ϕ = − f ∗

4

(
2ν′′ + ν′2 + 2

ν′

r

)
− f ∗′

4

(
ν′ + 2

r

)
. (22)

The corresponding conservation equation ∇νθμν = 0 then
yields to

(
θrr

)′ − ν′

2

(
θ tt − θrr

) − 2

r

(
θϕ
ϕ − θrr

) = 0. (23)

Being the Eq. (23) a linear combination of the quasi-Einstein
equations. At this stage it is clear that the interaction between
the two sectors is completely gravitational. It is reflected in
the Eqs. (19) and (23), where both sectors are individually
conserved.

Summarizing, we began with a complete general system
of Eqs. (3)–(5). Then a linear mapping over the radial metric
function is performed (15), which leads to two decoupled sys-
tem of equations. The system corresponding to a perfect fluid
sector {ρ̃, p̃, ν, μ} given by (16)–(18) is completely deter-
mined once we pick a well behaved isotropic solution. To
the remainnig Eqs. (20)–(22) one can imposes some con-
strints over the unknown functions { f ∗, θ tt , θrr , θ

ϕ
ϕ } in order

to generate the anisotropic solution, which it described by
the thermodynamic observables (9)–(11).

4 Charged anisotropic Heintzmann solution

The above explanation w.r.t MGD approach, is the most gen-
eral case where the input corresponds to a perfect fluid solu-
tion. However, the seed can be another type of matter distribu-
tion. For example, it could be anisotropic from the beginning
i.e described by

T̃μν = (ρ̃ + p̃r ) uμuν − p̃t gμν + ( p̃r − p̃t ) ημην, (24)

with uμ being the fluid four-velocity and ημ a spacelike vec-
tor which is orthogonal to uμ. Another option is take a perfect
fluid coupled to a static electric field (like in our case), where
the energy-momentum tensor reads

T̃μν = (ρ̃ + p̃) uμuν − p̃gμν + 1

4π

(
− Fσ

μ Fνσ

+ gμν

4
FαβFαβ

)
.

(25)

Here Fμν is the anti-symmetric electromagnetic field tensor
and can be defined as

Fμν = ∂μAν − ∂ν Aμ (26)

where Aμ = (φ(r), 0, 0, 0) is the four-potential. Fμν satis-
fies the covariant Maxwell equations, given by

∂μ

[√−gFνμ
] = 4π

√−gJ ν, (27)

∂αFβσ + ∂βFσα + ∂σ Fαβ = 0, (28)

where J ν is the electromagnetic four-current vector defined
as

J ν = σuν, (29)
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where σ = eν/2 J 0(r) represents the charge density and g is
the determinant of the metric (1), which explicitly reads

g = −eν+λr4 sin2 θ. (30)

For a static spherically symmetric stellar system J 0 is the
only non vanishing component of the electromagnetic four-
current J ν which is a purely radial function. The only non
zero components of the electromagnetic field tensor are F01

and F10, which are related by F01 = −F10. Being both the
radial component of the electric field. From Eqs. (27) and
(29) the electric field E(r) reads

E(r) = F01(r) = 4π

r2 e−(ν+λ)/2
∫ r

0
r ′2σeλdr ′, (31)

and the total charge q(r) is given by

q(r) = E(r)r2. (32)

So, from the expressions (27), (29), (31) and (32) the energy-
momentum tensor (25) becomes

Tμν = diag

(
−ρ̃ − E2

8π
, p̃ − E2

8π
, p̃ + E2

8π
, p̃ + E2

8π

)
.

(33)

Thus, the Einstein–Maxwell equations for (33) are

8πρ̃ + E2 = 1

r2 − μ

r2 − μ′

r
(34)

8π p̃ − E2 = − 1

r2 + μ

(
1

r2 + ν′

r

)
(35)

8π p̃ + E2 = μ

4

(
2ν′′ + ν′2 + 2

ν′

r

)
+ μ′

4

(
ν′ + 2

r

)
. (36)

Now let’s apply the MGD approach in order to solve the Ein-
stein field equations for the interior of charged anisotropic
compact stars. We take as a seed the charged Heintzmann
solution {ν;μ; ρ̃; p̃} modelling compact objects [15]. As
said above, MGD approach decouple the system of Eqs. (3)–
(5), one of them corresponding in this case to the Einstein–
Maxwell system (34)–(36), solved once the seed solution is
specified. In this case we have that the seed is described by

ρ̃(r) = 1

16π

[(
12a3r4 + 39a2r2 + 9a

) (
1 + 4ar2

)1/2

(
1 + 4ar2

)3/2 (
1 + ar2

)2

+9
(
1 + 3ar2

)
ac − 2

(
32r4a2 + 46ar2 + 11

)
βr2

(
1 + 4ar2

)3/2 (
1 + ar2

)2

]
,

(37)

p̃(r) = 3

16π

[(
3a − 3a2r2

) (
1 + 4ar2

)1/2 − (
1 + 7ar2

)
ca

(
1 + 4ar2

)1/2 (
1 + ar2

)2

+
(
2 + 12r2

)
βr2

(
1 + 4ar2

)1/2 (
1 + ar2

)2

]
, (38)

with the following metric components

eν(r) = A2
(

1 + ar2
)3

(39)

μ(r) = 1 − 3ar2

2

⎡
⎣1 +

(
c − 4βr2

3a

) (
1 + 4ar2

)−1/2

1 + ar2

⎤
⎦ ,

(40)

which are regular everywhere inside the star even at the center
r = 0, where eλ(r=0) = μ(r = 0) = 1 and eν(r=0) > 0. The
constant parameters A, a, c and β, will be determined using
junction conditions at the surface r = R. For this purpose
the interior solution will be joined smoothly at the surface of
spheres with the exterior Reissner–Nordstrom solution. Here
the β parameter is related with the electric field, given by

E2(r) = βr2
√

1 + 4ar2

(
1 + ar2

)2 . (41)

Once the system of Eqs. (3)–(5) has been decoupled, the
remaining Eqs. (20)–(22) must be solved in order to obtain
an anisotropic solution. For that, it is unavoidable to choose
reasonable constraints that lead to physically acceptable solu-
tions. The next section shows at least one restriction that leads
to an admissible solution from the physical point of view.

4.1 Mimicking the pressure for the anisotropy

The closure of the system (3)–(5) must be complemented
with extra information. In principle nothing prevents us to
choose some expression for f ∗(r) that results in a physically
well-behaved solution, or perhaps impose some restrictions
on θμν that leads to the desired result. In this opportunity we
consider a restriction on θrr , imposing that it be equal to the
pressure p̃ of the seed solution

θrr (r) = p̃(r). (42)

The previous assignment establishes a direct relationship
between Eqs. (17) and (21), from which the following expres-
sion is derived for f ∗(r)

f ∗(r) = −μ(r) + 1

1 + rν′(r)
. (43)

Thus the deformed radial component (15) becomes to

e−λ �→ (1 − α)μ(r) + α
1 + ar2

1 + 7ar2 , (44)
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while the temporal component eν remains unchanged. Con-
sequently (39) and (44) constitute the deformed solution

ds2 = A2
(

1 + ar2
)3

dt2 −
[

(1 − α) μ(r)

+α
1 + ar2

1 + 7ar2

]−1

dr2 − r2
(
dθ2 + sin2 θdφ2

)
, (45)

where μ(r) is given by (40). Of course, taking α = 0 in (44)
we recover the original solution (39)–(40).

5 Effective thermodynamic observables and mass
function

By virtue of the mimicking (42) and the expression given for
f ∗(r) in (43), and using the Eqs. (20)–(22) we obtain the
following effective thermodynamic observables that charac-
terize the fluid

pr (α; r) = (1 − α) p̃ (46)

pt (α; r) = pr + αr2

8π

[
9a2

(
7a2r4 + 10ar2 + 3

)
(
1 + 7ar2

)2 (
1 + ar2

)2

−β
(
1 + 4ar2

)1/2

(
1 + ar2

)2

]
. (47)

From the latter equations, the anisotropy is directly com-
puted; comparing with Eq. (12) we obtain

Π(α; r) = αr2

8π

[
9a2

(
7a2r4 + 10ar2 + 3

)
(
1 + 7ar2

)2 (
1 + ar2

)2

−β
(
1 + 4ar2

)1/2

(
1 + ar2

)2

]
. (48)

One can go on computing the density following (9) with
the temporal component of the anisotropy given by (20)

ρ(α; r) = ρ̃+ α

16π

[
9a

(
3ar2+3 − 7a3r6 − 31a2r4

)
(
1 + 7ar2

)2 (
1 + ar2

)2

+ a2r2
(
32βr4 − 27c

)+a
(
76βr4 − 9c

)+20βr2

(
1 + 4ar2

)3/2 (
1 + ar2

)2

]
. (49)

As we will see later, an admissible solution must satisfy some
general physical requirements. However, we analyze some of
them early in order to achieve the corresponding constants
parameters that lead a well behaved anisotropic solution.
These physical features are respect to the regularity of the
effective thermodynamic observables ρ̃, p̃r and p̃t inside the
star (0 ≤ r ≤ R). All of them must be positive and monoton-
ically decreasing toward to the surface object. The effective

Fig. 1 Effective anisotropy factor Π , for the strange star candidate
RX J1856 − 37

central pressure and density at the interior are given by

8πpr (r = 0) = 8πpt (r = 0) = 3a (1 − α) (3 − c)

2
> 0,

(50)

8πρ(r = 0) = 9a

2
(c − cα + 3α + 1) > 0. (51)

To satisfy Zeldovich condition at the interior, pr/ρ at center
must be ≤ 1. Therefore

(1 − α) (3 − c)

3 (c − cα + 3α + 1)
≤ 1. (52)

On using (50) and (52) we get a constraint on c given as

3α

α − 1
≤ c < 3. (53)

From (46) we obtain an upper limit α < 1. This ensures
the positiveness of the effective radial pressure pr within the
star. On the other hand (47) imposes a lower bound α > 0,
this is so because pt > pr > 0 everywhere inside the star.
Moreover, we need to ensure the following statement in the
surface: pr |r=R = 0 (it determines the star size).

It is clear from Fig. 1 that the effective anisotropy Π , it
vanishes at r = 0. That is so because at the center the effec-
tive radial and transverse pressures coincide. On the other
hand, as the radius increases the values of these quantities
drift apart, and therefore the anisotropy increases toward the
surface of the object.

5.1 Junction conditions

In order to generate a model of a physically realizable boun -
ded object we need to ensure that the interior spacetime M−
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Table 1 Constant parameters calculated for radii and mass for some strange star candidates with α = 0.0

Strange star candidates radii (R)/(km) M/M� a/(×10−3 km−2) β/(×10−5 km−4) c (dimensionless) A (dimensionless)

RXJ 1856−37 6 0.9 3.09232 3.24749 2.51019 0.66063

SAX J1808.4−3658 (SS2) 6.35 1.323 4.95862 5.01359 2.08932 0.51715

Table 2 Constant parameters calculated for radii and mass for some strange star candidates with α = 0.2

Strange star candidates radii (R)/(km) M/M� a/(×10−3 km−2) β/(×10−5 km−4) c (dimensionless) A (dimensionless)

RXJ 1856−37 6 0.9 3.15327 3.31036 2.49500 0.65908

SAX J1808.4−3658 (SS2) 6.35 1.323 5.48604 5.49469 1.86200 0.49895

Table 3 Constant parameters calculated for radii and mass for some strange star candidates with α = 0.3

Strange star candidates radii (R)/(km) M/M� a/(×10−3 km−2) β/(×10−5 km−4) c (dimensionless) A (dimensionless)

RXJ 1856−37 6 0.9 3.19500 3.30625 2.47478 0.65771

SAX J1808.4−3658 (SS2) 6.35 1.323 5.10875 5.30252 2.08381 0.51554

Fig. 2 The mass function m(r) versus the fractional radius r/R, for
the strange star candidate RX J1856 − 37. The solid black line corre-
sponds to the seed solution (hereinafter), while the dotted (red line) and
the dashed line (green line) are the corresponding minimal deformed
metrics for α = 0.2 and α = 0.3 respectively

must match smoothly to the exterior spacetime M+ [46].
In our case, the interior spacetime is given by the deformed
metric (45), and since the exterior spacetime is empty, M+
is taken to be the Reissner–Nordstrom solution

ds2 =
(

1 − 2M

r
+ Q2

r2

)
dt2 −

(
1 − 2M

r
+ Q2

r2

)−1

dr2

− r2
(
dθ2 + sin2 θdφ2

)
,

(54)

which requires the continuity of eλ, eν and q across the
boundary Σ (defined by r = R). It is known as the first
fundamental form [ds2]Σ = 0, yielding to

e−λ(R) = 1 − 2M̃

R
+ Q2

R2 (55)

eν(R) = 1 − 2M̃

R
+ Q2

R2 (56)

q(R) = Q. (57)

On the other hand the effective radial pressure (10) vanishes
at the surface star (r = R), consequently

pr |r=R− = (
p̃ − αθrr

) |r=R− = 0. (58)

The above expression corresponds to the second fundamental
form [Gμνxν]Σ = 0, where xν is a unit vector projected in
the radial direction. Due the election (42), Eq. (58) is equiv-
alent to request p̃(R) = 0 in (38). Therefore, we obtain the
following expression for the constant β

β = a(3
√

(4R2a + 1)aR2+7acR2 − 3
√

(4R2a + 1)+c)

2R2(6R2a+1)
.

(59)

So, the remaining constants A and a are obtained from (55)
and (56), it explicitly reads

A2
(

1 + aR2
)3 = 1 − 2M̃

R
+ Q2

R2 (60)

(1 − α)μ(R) + α
1 + aR2

1 + 7aR2 = 1 − 2M̃

R
+ Q2

R2 . (61)
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(a)(a) (b)

Fig. 3 a Shows the behaviour of the temporal metric function eν(r). At the center it is completely regular, finite and positive. b Displays the
behaviour of the radial function, which is equal to eλ(0) = 1 at r = 0. These plots correspond to the strange star candidate RX J1856 − 37

(a) (b)

Fig. 4 Zeldovich’s condition for the ratios pr/ρ (left panel) and pt/ρ (right panel) against the dimensionless radius, for the strange star candidate
RX J1856 − 37

However in order to close the matching conditions, the
parameters M̃ and R for strange star candidates have been
used [47]. Tables 1, 2 and 3 shown all the constant parameters
calculated for different values of the dimensionless coupling
constant α.

5.2 Mass function

The mass function m(r) can be calculated from

e−λ(r) = 1 − 2m(r)

r
+ q2(r)

r2 , (62)

then using the Eqs. (32), (40), (41) and (44) we arrive to

m(r) = r

2

[
3ar2(ar2 + 1)(

√
4ar2 + 1 + c) + 2βr4(2ar2 − 1)

2
√

4ar2 + 1(ar2 + 1)2

+ α

[
(4 + 17ar2 − 5a2r4)

√
4ar2 + 1

2
√

4ar2 + 1(ar2 + 1)(7ar2 + 1)

− r2(7ar2 + 1)(3ac − 4βr2)

2
√

4ar2 + 1(ar2 + 1)(7ar2 + 1)

]]
. (63)

We observe from (63) that m(0) = 0. However m′(r) is
positive for r > 0. It indicates that m(r) is increasing mono-
tonically away from centre and attains regular minimum at
r = 0 (see Fig. 2).
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(a) (b)

(c) (d)

Fig. 5 a,bShow the dimensionless effective radial and tangential pres-
sure respectively against the dimensionless radius. c Exhibits a com-
parison between the radial and tangential pressure for α = 0.2. The
anisotropy causes the pressures values to drift apart. Finally, d shows

the dimensionless effective density energy for different values of the
constant α. All these plots correspond to the strange star candidate
RX J1856 − 37

6 Physical features

In order to be physically meaningful, the interior solution for
static fluid spheres must satisfy some more general physical
requirements. The following conditions have been generally
recognized to be crucial for anisotropic fluid spheres [48]

1. The solution should be free from physical and geometric
singularities and non zero positive values of eλ and eν

i.e. (eλ)r=0 = 1 and eν > 0.
2. The radial pressure pr must be vanishing but the tangen-

tial pressure pt may not vanish at the boundary r = R
of the sphere. However the radial pressure equal to the
tangential pressure at the centre of the fluid sphere.

3. The density ρ and pressures pr , pt should be positive
inside the star.

4.
(
dpr
dr

)
r=0

= 0 and
(
d2 pr
dr2

)
r=0

< 0 so that pressure gra-

dient dpr
dr is negative for 0 < r ≤ R.

5.
(
dpt
dr

)
r=0

= 0 and
(
d2 pt
dr2

)
r=0

< 0 so that pressure gra-

dient dpt
dr is negative for 0 < r ≤ R.

6. (
dρ
dr )r=0 = 0 and

(
d2ρ

dr2

)
r=0

< 0 so that density gradient
dρ
dr is negative for 0 < r ≤ R. The condition (4), (5) and
(6) imply that pressure and density should be maximum
at the centre and monotonically decreasing towards the
surface.
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(a) (b)

Fig. 6 Variation of the sound speed versus the fractional radius r/R for the strange star candidate RX J1856 − 37. a Corresponds to the radial
sound speed and b to the transverse sound speed

7. Inside the static configuration the speed of sound should

be less than the speed of light, i.e. 0 ≤
√

dpr
dρ < 1 and

0 ≤
√

dpt
dρ < 1. In addition to the above, the velocity

of sound should be decreasing towards the surface. i.e.
d
dr

(
dpr
dρ

)
< 0 or

(
d2 pr
dρ2

)
> 0 and d

dr

(
dpt
dρ

)
< 0 or(

d2 pt
dρ2

)
> 0 for 0 ≤ r ≤ R i.e. the velocity of sound is

increasing with the increase of density.
8. A physically reasonable energy-momentum tensor has

to obey the null energy condition (NEC), weak energy
condition (WEC), strong energy condition (SEC) and the
dominant energy condition (DEC).

9. Electric intensity E , such that E(0) = 0, is taken to be
monotonically increasing i.e. (dE/dr) > 0 for 0 < r <

R.
10. The central red shift Z0 and surface red shift ZR should

be positive and finite i.e. Z0 = [
e−ν(r)/2 − 1

]
r=0 > 0

and ZR = [
eλ(r)/2 − 1

]
r=R > 0 and both should be

bounded.

6.1 Regularity of the metric functions at the center

A well behaved spherically symmetric and static solution of
the Einstein’s gravitational field equations should be free of
geometric singularities. This means that the temporal eν(r)

and the radial eλ(r) metric functions are continuous within
the star, and completely regular at the object center r = 0.
The corresponding behaviour of the metric functions inside
the compact object it shown in Fig. 3.

6.2 Effective thermodynamic quantities

Respect to the effective quantities, say pr , pt and ρ they must
be positive, finite and monotonically decreasing towards the
surface through the star. Moreover all these observables have
their maximum value at the center of the object. On the other
hand, the ratios dpr/dρ and dpt/dρ obey the Zeldovich’s
condition ≤ 1 (Fig. 4). In the Fig. 5 panel c), is noteworthy
the presence of a force due to the anisotropic nature of the
fluid. This force is directed outward when pt > pr (inward
otherwise). In this case we are in presence of a repulsive
force, which allows the construction of more compact objects
when using anisotropic fluid than when using isotropic fluid
[12,49].

6.3 Causality condition

The anisotropic models should satisfy the causality condi-

tions, i.e. 0 ≤ vr =
√

dpr
dρ < 1 and 0 ≤ vt =

√
dpt
dρ < 1, at all

points inside the star. From Fig. 6, we can see that our model
is satisfying the above causality conditions. Moreover, the
velocities of sound vr and vt are increasing with the increase
of density and it should be decreasing outwards. Therefore,
we observe that the speed of sound decreases monotonically
from the center of star (high density region) towards the sur-
face of the star (low density region). So our anisotropic solu-
tion is well behaved.

6.4 Energy conditions

The charged anisotropic fuid sphere should satisfy the fol-
lowing energy conditions: (i) null energy condition (NEC),
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(a) (b)

(c) (d)

(e) (f)

Fig. 7 Energy conditions for a charged anisotropic fluid sphere againts fractional radius r/R, corresponding to the strange star candidate
RX J1856 − 37
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Fig. 8 The central redshift Z0 against the fractional radius r/R, for
the strange star candidate RX J1856 − 37

(ii) weak energy condition (WEC), (iii) strong energy con-
dition (SEC) and (iv) dominant energy condition (DEC).
For satisfying the above energy conditions, the following
inequalities must be hold simultaneously inside the charged
fluid sphere [50,51]

1. (NEC): ρ + pr ≥ 0, ρ + pt + E2

4π
≥ 0.

2. (WEC): ρ + E2

8π
≥ 0, ρ + pr ≥ 0, ρ + pt + E2

4π
≥ 0 .

3. (SEC): ρ + pr ≥ 0, ρ + pt + E2

4π
≥ 0,

ρ + 2pt + pr + E2

4π
≥ 0.

4. (DEC): ρ+ E2

8π
−|pr − E2

8π
| ≥ 0, ρ+ E2

8π
−|pt + E2

8π
| ≥ 0.

By continuity the (WEC) and (SEC) imply the (NEC).
Figure 7 shows that all the above inequalities are satisfied
within the object. Therefore we have a well behaved energy-
momentum tensor.

6.5 Maximum allowable mass and redshift

A relativistic uncharged static fluid sphere has a compact-
ness parameter u = M/R limited by ≤ 4/9 (in the unit
c = G = 1) [52]. However, the last bound has been gener-
alized for static charged configurations. The lower limit was
given by Andreasson [53] and the upper bound was given by
Bohmer and Harko [54]. This constraint on the mass-radius
ratio explicitly reads

Q2
(
18R2 + Q2

)

2R2
(
12R2 + Q2

) ≤ M

R
≤ 4R2 + 3Q2 + 2R

√
R2 + 3Q2

9R2 .

(64)

So, the compactness parameteru, can be expresses in terms of
the effective mass Mef f which for charged matter distribution

is given by [55]

Mef f = 4π

∫ R

0

(
ρ + E2

8π

)
r2dr = R

2

[
1 − e−λ(R)

]
, (65)

explicitly

Mef f = R

2

⎡
⎣1 − α

1 + aR2

1 + 7aR2

− (1 − α)

(
1 − 3aR2

2

⎡
⎣

(
c − 4βR2

3a

) (
1 + 4aR2

)−1/2

1 + aR2

− 1

1 + aR2

⎤
⎦

)⎤
⎦ . (66)

The compactness parameter of the star is therefore

u(R) = Mef f

R
= 1

2

[
1 − e−λ(R)

]
, (67)

u(R) = 1

2

[
1 − α

1 + aR2

1 + 7aR2

− (1 − α)

(
1 − 3aR2

2

[(
c − 4βR2

3a

) (
1 + 4aR2

)−1/2

1 + aR2

− 1

1 + aR2

])]
. (68)

The gravtitational surface redshift corresponding to above
compactness u (68) can be calculated as

Zs = (1 − 2u)−1/2 − 1. (69)

In the case of isotropic matter distribution, the maximum
possible surface redshift is Zs = 4.77. On the other hand,
as was pointed out by Bowers and Liang, in the presence
of anisotropic matter distribution this upper bound can be
exceeded [4]. When the anisotropy parameter is positive i.e.
(pt > pr ) the surface redshift is greater than its isotropic
counterpart. On the other hand, the central redshift Z0 is

Z0(r) = e−ν(r)/2 − 1 = 1√
A2(1 + ar2)3

− 1. (70)

Its monotonically decreasing behaviour inside the compact
star, is shown in Fig. 8.

6.6 Electric properties

We note from (41) that the electric intensity E vanishes at the
center of the configuration and it is monotonically increasing
toward the surface of the object. The electric charged defined
as
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(a) (b)

Fig. 9 The dimensionless electric charge (left panel) and the dimensionless charge density (right panel) versus the fractional radius r/R, for the
strange star candidate RX J1856 − 37

Fig. 10 The electric field E against the fractional radius r/R, for the
strange star candidate RX J1856 − 37

q = Er2 → q = r2

√√√√βr2
√

1 + 4ar2

(
1 + ar2

)2 , (71)

has the same behaviour like the electric field E , i.e. null at the
center and monotonically increasing with increasing radius
r toward the boundary of the compact star. So, the electric
charge and electric field behaviour are shown in Figs. 9 (left
panel) and 10, respectively.

On the other hand, the surface density is given by

σ = e−λ/2

4πr2

(
r2E

)′
. (72)

Fig. 11 The adiabatic index Γ against the fractional radius r/R, for
the strange star candidate RX J1856 − 37

This has its maximum in the center and decreases as it
approaches to the surface of the star, as shown in Fig. 9 (right
panel).

6.7 Stability conditions

An important analysis in the study of compact objects in
GR are the stability conditions, we analyze both the adia-
batic index Γ and the radial and tangential sound velocities.
In the case of a Newtonian isotropic matter distribution, it
is well known that the collapsing condition corresponds to
Γ < 4/3 [56,57]. On the other hand, with respect to relativis-
tic anisotropic fluid spheres the above collapsing condition
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Fig. 12 Variation of the absolute value of square of sound velocity
with respect to fractional radius r/R, for the strange star candidate
RX J1856 − 37

becomes [58,59]

Γ <
4

3
+

[
1

3
κ

ρ0 pr0

|p′
r0|

r + 4

3

(pt0 − pr0)

|p′
r0|r

]

max

(73)

where ρ0, pr0 and pt0 are the initial density, radial and tan-
gential pressure when the fluid is in static equilibrium. The
second term in the right hand side represents the relativis-
tic corrections to the Newtonian perfect fluid and the third
term is the contribution due to anisotropy. It is clear from
(73) that if we have a non-relativistic perfect fluid matter
distribution the bracket vanishes and we recast the collaps-
ing Newtonian limit Γ < 4/3. Heintzmann and Hillebrandt
[57] showed that in the presence of a positive an increasing

Fig. 13 The difference v2
t − v2

r against the fractional radius r/R, for
the strange star candidate RX J1856 − 37

anisotropy factor Π = pt − pr > 0, the stability condition
for a relativistic compact object is given by Γ > 4/3, that
is so because positive anisotropy factor may slow down the
growth of instability. We can explicitly obtain the adiabatic
index from, [60]

Γ = ρ + pr
pr

dpr
dρ

. (74)

Figure 11 shows that Γ > 4/3 everywhere within the stellar
interior. Therefore our model is stable.

Another way to study stability within the framework of
anisotropic compact objects in GR follows from the well
known cracking concept introduced by Herrera [61]. Based
on the Herrera’s cracking concept Abreu et al. [62] showed

(a) (b)

Fig. 14 Variation of square of the radial and transverse velocity with respect to fractional radius r/R, for the strange star candidate RX J1856−37
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(a) (b)

(c) (d)

(e) (f)

Fig. 15 TOV equation for static equilibrium for the strange star candidate RX J1856 − 37
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Table 4 Some physical parameters calculated for radii and mass for some strange star candidates with α = 0.0

Strange star
candidates

ρ(0)/(×1015 gcm−3) ρ(R)/(×1015 gcm−3) pr (0)/ρ(0) pr (0)/(×1035 dyne/cm2) E(R)/(×1019 Vcm−1) Q(R)/(×1019C)

RXJ 1856−37 2.62243 1.31000 0.04651 1.09780 3.62227 1.44891

SAX
J1808.4−3658
(SS2)

3.70095 1.36878 0.09826 3.27293 4.66014 2.08787

Table 5 Some physical parameters calculated for radii and mass for some strange star candidates with α = 0.2

Strange star
candidates

ρ(0)/(×1015gcm−3) ρ(R)/(×1015gcm−3) pr (0)/ρ(0) pr (0)/(×1035dyne/cm2) E(R)/(×1019Vcm−1) Q(R)/(×1019C)

RXJ 1856−37 2.73949 1.28302 0.03745 0.92332 3.65549 1.46219

SAX
J1808.4−3658
(SS2)

4.09497 1.38541 0.09822 3.61994 4.38590 1.96500

Table 6 Some physical parameters calculated for radii and mass for some strange star candidates with α = 0.3

Strange star
candidates

ρ(0)/(×1015gcm−3) ρ(R)/(×1015 gcm−3) pr (0)/ρ(0) pr (0)/(×1035 dyne/cm2) E(R)/(×1019Vcm−1) Q(R)/(×1019C)

RXJ 1856−37 2.80380 1.27232 0.03374 0.85137 3.65206 1.46082

SAX
J1808.4−3658
(SS2)

4.14544 1.29396 0.06365 2.37470 4.78444 2.14356

that potentially unstable regions within the stellar matter dis-
tribution can be identified as a function of the difference of
the radial and tangential speeds. Previously we showed that
the radial and tangential speeds of our model satisfy causal-
ity condition i.e. 0 ≤ vr < 1 and 0 ≤ vt < 1. Moreover,
one expects that the square of the above quantities should be
within the range 0 ≤ v2

r ≤ 1 and 0 ≤ v2
t ≤ 1 (see Fig. 14),

then we have |v2
t − v2

r | ≤ 1. Therefore −1 ≤ v2
t − v2

r ≤ 0
represents a potentially stable regions and 0 < v2

t − v2
r ≤ 1

a potentially unstable regions. It can be seen from Fig. 12
that |v2

t −v2
r | at the center lies between 0 and 1. On the other

hand, from Fig. 13 it is observed that v2
t − v2

r lies between
−1 and 0, thus our model is stable.

6.8 Equilibrium condition

The Tolman–Oppenheimer–Volkoff (TOV) equation for a
charged anisotropic matter fluid spheres reads [63]

−1

2
ν′ (ρ + pr ) − dpr

dr
+ σ Eeλ/2 + 2

r
(pt − pr ) = 0. (75)

This Eq. (75) describes the equilibrium condition for a
charged anisotropic fluid subject to gravitational (Fg), hydro-
static (Fh), electric (Fe) and anisotropic stress (Fa) so that

Fg + Fh + Fe + Fa = 0. (76)

The Fig. 15 shows the TOV equation. It is observed that the
system is in static equilibrium under four different forces, e.g.
gravitational, hydrostatic, electric and anisotropic to attain
overall equilibrium. However, a strong gravitational force
is counter balanced jointly by hydrostatic and anisotro- pic
forces. Panels e) and f ) show that the electric force, it seems,
has a negligible effect on this balancing mechanism.

To conclude the physical analysis, we summarize in Tables
4, 5 and 6 some physical parameters, like the central and sur-
face effective density, the central pressure, the electric field at
the surface star, the surface electric charge and the ratio cen-
tral pressure-central density. All these values were obtained
using observational data of realistic strange star candidates
e.g. RX J1856 − 37 and SAX J1808.4 − 3658 [47].

7 Concluding remarks

Gravitational decoupling through MGD is a novel approach
which provides us a new branch to study self-gravitating sys-
tems with anisotropic matter distribution. In this opportunity,
we have reported radial deformations only, but deformations
on the temporal component of the seed metric may bring
interesting results. Once the system of Eqs. (3)–(5) is decou-
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pled, the gravitational interaction between both, the Einstein
and the quasi-Einstein sectors is purely gravitational, i.e.
there is no exchange of energy-momentum between them.
Among all the possibilities that the method presents to solve
the system of quasi-Einstein Eqs. (20)–(22), for the sake of
simplicity we have chosen a simple relation between p̃ and
θrr . Obtaining a well-behaved compact object model from the
physical point of view.

Particularly, we have extended the charged isotropic He-
intzmann solution to an anisotropic scenario. The resulting
model fulfill all the basic criterion demanded for a well
behaved solution in this context, such as: regularity of the
gravitational potentials at the object center, positive definite-
ness and monotonic decrease behaviour of the energy density,
radial and tangential pressures with increasing radius, van-
ishing radial pressure at the surface star, the continuity of
electric field across the boundary, the speed of sound being
less than the speed of light, stability and equilibrium condi-
tions, etc. On the other hand as was pointed out early, the
presence of the electric field and the effective anisotropy
counterbalance the gravitational force. In the first case due to
electric repulsive force and in the second case due to repulsive
gravitational force. This fact avoid the collapse of a spher-
ically symmetric matter distribution to a point singularity
during the gravitational collapse or during an accretion pro-
cess onto compact object. Moreover, in view of comparing
our model with observational data of realistic stars, several
physical parameters were calculated by fixing the radii and
mass corresponding to the strange star candidates RXJ 1856-
37 and SAX J1808.4-3658 (SS2).
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