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Abstract We revisit neutrino oscillations in matter consid-
ering the open quantum system framework, which allows
to introduce possible decoherence effects generated by New
Physics in a phenomenological manner. We assume that the
decoherence parameters γi j may depend on the neutrino
energy, as γi j = γ 0

i j (E/GeV)n (n = 0,±1,±2). The case
of non-uniform matter is studied in detail and, in particu-
lar, we develop a consistent formalism to study the non-
adiabatic case dividing the matter profile into an arbitrary
number of layers of constant densities. This formalism is
then applied to explore the sensitivity of IceCube and Deep-
Core to this type of effects. Our study is the first atmospheric
neutrino analysis where a consistent treatment of the mat-
ter effects in the three-neutrino case is performed in pres-
ence of decoherence. We show that matter effects are indeed
extremely relevant in this context. We find that IceCube is
able to considerably improve over current bounds in the solar
sector (γ21) and in the atmospheric sector (γ31 and γ32) for
n = 0, 1, 2 and, in particular, by several orders of magni-
tude (between 3 and 9) for the n = 1, 2 cases. For n = 0
we find γ32, γ31 < 4.0 × 10−24 (1.3 × 10−24) GeV and
γ21 < 1.3 × 10−24 (4.1 × 10−24) GeV at the 95% CL, for
normal (inverted) mass ordering.
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1 Introduction

The accurate measurement of the mixing angle θ13 by reactor
neutrino experiments [1], with a small uncertainty compara-
ble to that for θ12, has initiated a precision era for neutrino
physics. In the standard three-family framework, the main
remaining issues are the possible observation of leptonic
CP violation, the determination of the ordering of neutrino
masses and probing the Dirac or Majorana nature of neutri-
nos. Some hints currently exist in the latest data collected by
NOvA and T2K which seem to point to maximal CP violation
in the neutrino sector, but the statistical significance is still
low [2,3]. Likewise, a global fit to neutrino oscillation data
seems to show a mild preference for a normal mass ordering
(see for instance [4,5]), which needs to be confirmed as more
data become available.

At the same time, and in view of the precision of present
and near future neutrino facilities, it is of key importance to
verify if neutrinos have unexpected properties caused by New
Physics (NP) beyond the standard three-family framework.
In this work we study one of the possible windows to NP, the
so-called quantum decoherence in neutrino oscillations, and
update the existing bounds by analyzing IceCube and Deep-
Core data on atmospheric neutrinos. In particular, we are
interested in a kind of decoherence effects in neutrino oscil-
lations studied, for example, in [6–13] and, more recently, in
[14–19]. These decoherence effects differ from the standard
decoherence caused by the separation of wave packets (see
e.g. [20,21]) and might arise, instead, from quantum gravity
effects [22–24]. Throughout this work, for brevity, we will
refer to such non-standard decoherence simply as decoher-
ence.

The authors of Ref. [7] derived some of the strongest
available constraints on neutrino decoherence in neutrino
oscillations up to date, using atmospheric neutrino data from
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the Super-Kamiokande (SK) experiment [25–28]. Moreover,
they considered the general case in which the decoherence
parameters could depend on the neutrino energy via a power
law, γ = γ0(E/GeV)n , where n = 0,−1, 2. Nevertheless,
these limits were obtained within a simplified two-family
framework and without taking into account the matter effects
in the neutrino propagation. Furthermore, only a reduced sub-
set of SK data (taken, in fact, almost 20 years ago now) was
analyzed [25–28].

In this work, we show that performing a three-flavour
analysis which includes the matter effects is essential in
order to correctly interpret such constraints. In particular,
it is not obvious to which γi j parameter the SK bounds
derived in two families [7] would actually apply. We will
show that it strongly depends on the neutrino mass ordering
and on whether the sensitivity is dominated by the neutrino or
antineutrino channels: for neutrinos the decoherence effects
at high energies are mainly driven by γ21 (γ31) for normal
(inverted) ordering, while in the antineutrino channel they
are essentially controlled by γ32 (γ21) for normal (inverted)
ordering. Concerning the solar sector, the authors of Ref. [15]
obtained strong constraints on γ21 from an analysis of Kam-
LAND data [29,30], for n = 0,±1.1 Finally, the authors of
Ref. [32] derived several bounds on the atmospheric deco-
herence parameters γ32 and γ31 from an analysis of MINOS
data [33–35].

Non-standard decoherence has been invoked several times
in the literature in order to decrease the tension in the parame-
ter space among different sets of neutrino oscillation data. For
example, in Refs. [13,14] a solution to the LSND anomaly
based on quantum decoherence, compatible with global neu-
trino oscillation data, was proposed. More recently, in [17] it
was shown that the ∼ 2σ tension between T2K and NOvA
on the measurement of the atmospheric mixing angle θ23

could be alleviated through the inclusion of decoherence
effects in the atmospheric neutrino sector, namely, γ23 =
(2.3±1.1)×10−23 GeV. Such value of γ23 would be close to
the SK bound from Ref. [7], γ < 3.5×10−23 GeV (90% CL),
but still allowed. This topic has recently brought the attention
of a part of the community. In fact, several analyses of deco-
herence effects on present and future long-baseline neutrino
oscillation experiments have been recently performed (albeit
at the probability level only), see e.g. Refs. [16,18,19]. In this
work we will show that the reference value for γ23 consid-
ered in [17] is indeed already excluded by IceCube data (we
note however that, according to the latest results reported by
NOvA, the significance of the tension has been reduced to

1 It should be mentioned that, in [12], very strong bounds on dissipative
effects were derived from solar neutrino data, for n = 0,±1,±2 and
in a two-family approximation. However, such limits do not apply to
the case in which only decoherence effects are included, as pointed out
in [15,31]. This will be further clarified in Sect. 2.2.

less than 1σ [3]). Moreover, we find that IceCube and Deep-
Core data are able to improve significantly over most of the
constraints in past literature, both for solar and atmospheric
decoherence parameters, in some cases by several orders of
magnitude.

The paper is structured as follows. In Sect. 2 we present
the formalism and discuss the effects of decoherence on the
oscillation probabilities. We first review the case of constant
matter density profile, and then proceed to discuss the case
of non-uniform matter. In particular we show that, within the
adiabatic approximation, no significant bounds on the deco-
herence parameters can be extracted from solar neutrino data
when the neutrino energy is assumed to be conserved. We
then proceed to develop a formalism which permits a consis-
tent treatment of the decoherence effects on neutrino prop-
agation in non-uniform matter when the adiabaticity condi-
tion is not fulfilled, as is the case of atmospheric neutrino
experiments. In Sect. 3 we apply this formalism to the com-
putation of the relevant oscillation probabilities in the atmo-
spheric neutrino case, discussing the main features arising in
presence of decoherence. Section 4 summarizes the main fea-
tures of the IceCube and DeepCore experiments, the data sets
considered in our analysis, and the details of our numerical
simulations. Our results are then presented and discussed in
Sect. 5. Finally, we summarize and draw our conclusions in
Sect. 6. Appendices A and B discuss technical details regard-
ing some of the approximations used in our numerical cal-
culations.

2 Quantum decoherence: density matrix formalism

The evolution of the density matrix ρ in the neutrino system
can be described as

dρ

dt
= −i [H, ρ] − D [ρ] , (1)

where H is the Hamiltonian of the neutrino system and the
second term D [ρ] parameterizes the decoherence effects.
In vacuum, the diagonal elements of the Hamiltonian are
given by hi = m2

i /(2E), where mi (i = 1, 2, 3) are the
masses of the three neutrinos and E is the neutrino energy.
Here ρ is defined in the flavour basis, with matrix elements
ραβ . Throughout this work, we will use Greek indices for
flavor (α, β = e, μ, τ ), and Latin indices for mass eigenstates
(i, j = 1, 2, 3).

A notable simplification of Eq. (1) can be achieved via
the following set of assumptions. First, assuming complete
positivity, the decoherence term D [ρ] can be written in the
so-called Lindblad form [36,37]

D[ρ] =
∑

m

[{ρ, DmD
†
m} − 2DmρD†

m], (2)
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where Dm is a general complex matrix. Second, avoiding
unitarity violation, which is equivalent to imposing the con-
dition d Tr[ρ]/dt = 0, requires Dm to be Hermitian. More-
over, Dm = D†

m implies that the entropy S = Tr[ρ ln ρ]
increases with time. Finally, a key assumption is the average
energy conservation of the neutrino system, which is satisfied
when

[H, Dm] = 0. (3)

In presence of matter effects, the Hamiltonian is diagonal-
ized by the unitary mixing matrix2 Ũ (throughout this paper,
in our notation the presence of a tilde denotes that a quantity
is affected by matter effects). Therefore, after imposing the
energy conservation condition given by Eq. (3), we get

H = Ũ diag{h̃1, h̃2, h̃3}Ũ † ≡ Ũ HdŨ
†,

Dm = Ũ diag{d1
m, d2

m, d3
m}Ũ † ≡ Ũ Dd

mŨ
†. (4)

This implies that the average energy is conserved along the
whole neutrino propagation (through vacuum and matter).
This assumption is indeed crucial for our analysis. It is
expected to be fulfilled in vacuum and in very good approx-
imation in matter. While we assume that the quantum deco-
herence itself does not cause the violation of energy conser-
vation, due to the standard neutrino interaction with matter,
for large neutrino energies the energy is not exactly con-
served in presence of matter due to a small energy transfer
to the background fermions. Therefore, in this case, Eq. (4)
does not hold exactly. This issue has been analyzed in detail
in [16,19,31], where it was shown that in a more general
framework in which energy conservation is not assumed, two
types of effects in the neutrino oscillation probabilities can
essentially be distinguished: pure decoherence effects which
suppress the oscillating terms, and the so called relaxation
effects which affect non-oscillating terms. In [10,31] it was
shown that, for atmospheric neutrino oscillations, the relax-
ation effects which arise when the energy is not conserved are
proportional to cos2 2θ23. This suppresses relaxation effects
with respect to pure decoherence effects by at least two orders
of magnitude, since cos2 2θ23 is currently constrained by
experimental data at the level cos2 2θ23 < 0.034 at 95%
CL [4,5]. We will thus focus on the analysis of pure decoher-
ence effects in atmospheric neutrino oscillations assuming
that the neutrino energy is conserved, and therefore Eq. (4)
satisfied, along the whole propagation.

From a model-independent point of view, the d j
m are free

parameters that could a priori depend on the matter effects.
However, the most common assumption in the literature is to
assume that the d j

m are independent of the matter density even

2 Note that we consider the standard definition for the relation between
the mass and flavour eigenstates used in neutrino oscillations: for field
operators, να = ∑

i Uαiνi ; for one-particle states, |να〉 = ∑
i U

∗
αi |νi 〉.

in presence of matter effects.3 In order to be consistent with
most previous studies and to compare the bounds obtained in
our analysis with the constraints derived in previous publi-
cations, we will also assume that this is the case. Notice that
this assumption does not imply that the matter effects are not
relevant when neutrino propagation is affected by decoher-
ence: it just implies that the d j

m are assumed to be constant
during neutrino propagation through the Earth.

2.1 Neutrino propagation in uniform matter

Performing the following change of basis

ρ̃ = Ũ †ρŨ , (5)

Equation (1) can be rewritten as

dρ̃

dt
= −i

[
Hd , ρ̃

] −
∑

m

[{
ρ̃, (Dd

m)2
}

− 2Dd
m ρ̃ Dd

m

]

− Ũ † dŨ

dt
ρ̃ − ρ̃

dŨ †

dt
Ũ . (6)

If the matter profile is constant along the neutrino path, the
system of equations becomes diagonal in ρ̃i j

dρ̃i j

dt
= −[γi j − iΔh̃i j ]ρ̃i j , (7)

where we have defined

γi j ≡
∑

m

(dim − d j
m)2 = γ j i > 0; Δh̃i j = h̃i − h̃ j . (8)

Therefore, the solution of Eq. (1) for constant matter is simply
given by

ραβ(t) = [Ũ ρ̃(t)Ũ †]αβ, (9)

with

ρ̃i j (t) = ρ̃i j (0) e−[γi j−iΔh̃i j ]t , (10)

where ρ̃i j (0) is determined by the initial conditions of the
system. For instance, if the source produces only neutrinos
of flavor α, the initial conditions are given by

ρ̃i j (0) = Ũ∗
αi Ũα j . (11)

3 This is the case for instance when decoherence is originated by quan-
tum gravity.
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As a result, the oscillation probabilities in presence of deco-
herence (for a constant matter profile) read

Pαβ ≡ P(να → νβ) = Tr[ρ̂(α)(t)ρ̂(β)(0)]
= Tr[ρ̂(α)(t)|νβ〉〈νβ |] = 〈νβ |ρ̂(α)(t)|νβ〉
=

∑

i, j

Ũβi Ũ
∗
β j ρ̃i j (t)

=
∑

i, j

Ũ∗
αi Ũβi Ũα j Ũ

∗
β j e

−[γi j−iΔh̃i j ]t , (12)

where ρ̂ denotes the density operator. Finally, after some
manipulation the above equation can be rewritten in the more
familiar form

Pαβ = δαβ − 2
∑

i< j

Re[Ũ∗
αi Ũβi Ũα j Ũ

∗
β j ](1 − e−γi j L cos Δ̃i j )

− 2
∑

i< j

Im[Ũ∗
αi Ũβi Ũα j Ũ

∗
β j ]e−γi j L sin Δ̃i j , (13)

with

Δ̃i j ≡ Δm̃2
i j L

2E
, γi j = γ j i ≡ γ 0

i j

(
E

GeV

)n

, (14)

where Δm̃2
i j ≡ m̃2

i − m̃2
j are the effective mass squared dif-

ferences of neutrinos in matter and we have used the approx-
imation L ≈ t , L being the distance traveled by the neu-
trino as it propagates. Note that the power-law dependence on
the neutrino energy given by Eq. (14) breaks Lorentz invari-
ance, except for the case with n = −1 which gives similar
effects to the neutrino decay (see e.g. [38]). However, the
effect encoded in γi j only suppresses the oscillatory terms in
the oscillation probability while a neutrino decay would also
affect the non-oscillatory terms. Therefore, in the framework
considered in this work the total sum of the probabilities adds
up to 1, while this is not the case for neutrino decay.

From Eqs. (13) and (14), one would expect to have a siz-
able effect in neutrino oscillations for γi j L ∼ 1. This condi-
tion gives an estimate of the values of γi j for which an effect
may be experimentally observable:

γ 0
i j ∼ 1.7 × 10−19

(
L

km

)−1 (
E

GeV

)−n

GeV. (15)

Nevertheless, we would like to remark that fulfilling this con-
dition is not enough to have sensitivity to decoherence effects,
as we will discuss in the next subsection.

Even though in our simulations we will numerically com-
pute the exact oscillation probabilities, in order to under-
stand qualitatively the impact of decoherence on the oscil-
lation pattern it is useful to derive approximate analytical
expressions. In this work, we will be focusing on the study
of atmospheric neutrino oscillations, for which the oscillation

channel Pμμ is most relevant. Recently, in [39,40] approxi-
mated but very accurate analytical expressions for the stan-
dard oscillation probabilities in presence of constant matter
density were derived. For the νμ → νμ oscillation channel
including decoherence effects, using the same parametriza-
tion as in Ref. [40], we find:

Pμμ = 1 − A21[1 − e−γ21L cos Δ̃21]
− A32[1 − e−γ32L cos Δ̃32]
− A31[1 − e−γ31L cos Δ̃31], (16)

where

Ai j ≡ Ai j (θ23, θ̃12, θ̃13, δ)

= 2|Uμi (θ23, θ̃12, θ̃13, δ)|2|Uμj (θ23, θ̃12, θ̃13, δ)|2, (17)

and the effective mass splittings and mixing angles in matter
can be expressed as [40]:

cos 2θ̃13 = cos 2θ13 − a/Δm2
ee√

(cos 2θ13 − a/Δm2
ee)

2 + sin2 2θ13

,

cos 2θ̃12 = cos 2θ12−a′/Δm2
21√

(cos 2θ12−a′/Δm2
21)

2+sin2 2θ12 cos2(θ̃13−θ13)

,

Δm̃2
21 = Δm2

21

√
(cos 2θ12−a′/Δm2

21)
2+sin2 2θ12 cos2(θ̃13−θ13),

Δm̃2
31 = Δm2

31 +
(
a − 3

2
a′

)
+ 1

2
(Δm̃2

21 − Δm2
21),

Δm̃2
32 = Δm̃2

31 − Δm̃2
21. (18)

Here, a ≡ 2
√

2GFneE , where GF is the Fermi constant
and ne is the electron number density along the neutrino
path, Δm2

ee ≡ cos2 θ12Δm2
31 + sin2 θ12Δm2

32, and a′ =
a cos2 θ̃13 +Δm2

ee sin2(θ̃13 −θ13). The corresponding proba-
bility for antineutrinos is obtained simply replacing a → −a
and δ → −δ, where δ denotes the Dirac CP phase.

2.2 Neutrino propagation in non-uniform matter: adiabatic
regime

Equation (13) applies for constant density profiles (which is
a very good approximation in the case of long-baseline neu-
trino oscillation experiments such as T2K or NOvA), but if
the matter density is not constant the analysis becomes more
complicated. Nevertheless, when the adiabaticity condition
dŨ/dt � 1 is fulfilled, as in the solar neutrino case, the solu-
tion of the evolution equations given by Eqs. (9) and (10) is
still a good approximation. In such a case, the oscillation
probability is given by

Pαβ = 〈νβ |ρ̂(α)(t)|νβ〉
=

∑

i, j

ρ̃
(α)
i j (0)e−[γi j−iΔh̃i j ]t 〈νβ |ν̃e f fi 〉〈ν̃e f fj |νβ〉, (19)
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where ν
e f f
i denotes the effective mass eigenstates at time t .

In the case of solar neutrinos, the initial flux of νe is produced
in the solar core and the initial conditions are given by:

ρ̃
(e)
i j (0) = Ũ 0∗

ei Ũ
0
ej , (20)

where Ũ 0 denotes the effective mixing matrix at the produc-
tion point. On the other hand, since the evolution is adia-
batic, when the neutrinos come out from the Sun we have
|ν̃e f fi 〉 = |νi 〉 and thus

Peβ ≈
∑

i, j

Ũ 0∗
ei Uβi Ũ

0
ejU

∗
β j e

−[γi j−iΔh̃i j ]t

=
∑

i

|Ũ 0
ei |2|Uβi |2

+ 2
∑

i< j

Re[Ũ 0∗
ei Uβi Ũ

0
ejU

∗
β j ]e−γi j t cos Δ̃i j

− 2
∑

i< j

Im[Ũ 0∗
ei Uβi Ũ

0
ejU

∗
β j ]e−γi j t sin Δ̃i j . (21)

Finally, for solar neutrinos observed at the Earth we obtain,
after averaging over the oscillating phase:

Peβ ≈
∑

i

|Ũ 0
ei |2|Uβi |2, (22)

which coincides with the standard result. In other words,
the decoherence effects encoded in γi j can not be bounded
by solar neutrino oscillation experiments. This is due to the
standard loss of coherence in the propagation from the Sun
to the Earth, which strongly suppresses the oscillating terms.
In a similar fashion high-energy astrophysical neutrinos at
IceCube are not sensitive to decoherence either, since these
neutrinos are produced in distant astrophysical sources and
thus the oscillations will have averaged out by the time they
reach the detector.

2.3 Neutrino propagation in non-uniform matter: layers of
constant density

In the atmospheric neutrino case, the matter profile can-
not be considered constant since the neutrinos propagate
through the Earth crust, mantle and core, which have dif-
ferent densities. The adiabaticity condition is not fulfilled
either. In this case, Eq. (6) should be solved including the
non-adiabatic terms, which give non-diagonal contributions.
Even though this can be done numerically, we will show that
dividing the matter profile into layers of constant density
considerably simplifies the analysis and reduces the com-
putational complexity of the problem. In particular, this is
crucial in the case of atmospheric neutrino oscillation exper-
iments, for which numerical studies are already computation-
ally demanding even in the standard three-family scenario.

Dividing the matter profile into layers of different constant
densities has proved to be a very good approximation in the
standard three-family scenario and, therefore, we expect the
same level of accuracy in presence of decoherence. Since the
matter is constant in each layer, the evolution equations can
be solved for each layer M as in Sect. 2.1:

ρM
αβ(tM ) = [Ũ M ρ̃M (tM )(Ũ M )†]αβ,

ρ̃M
i j (tM ) = ρ̃M

i j (tM,0) e
−[γi j−iΔh̃Mi j ]ΔtM , (23)

where ΔtM ≡ tM − tM,0, and tM,0 and tM denote the initial
and final times for the propagation along layer M , respec-
tively. Now the problem of computing the probability is just
reduced to performing properly the matching among the evo-
lution on the different layers. Let us first consider the simplest
case of two layers A and B. The oscillation probability when
the neutrino exits the second layer (at time tB) is given by

Pαβ = 〈νβ |ρ̂(α)(tB)|νβ〉
=

∑

i, j

Ũ B
βi Ũ

B∗
β j ρ̃B

i j (tB,0) e
−[γi j−iΔh̃ Bi j ]ΔtB . (24)

The key point here is that the matching should be done
between the solutions of Eq. (1) at the frontier between the
two layers and in the flavor basis, as

ρA
αβ(tA) = ρB

αβ(tB,0). (25)

After imposing the matching condition, the elements of the
density matrix in the second layer at tB,0 can be written in
the matter basis as:

ρ̃B
i j (tB,0) = [(Ũ B)†Ũ Aρ̃A(tA)(Ũ A)†Ũ B]i j

= Ũ B∗
δi Ũ A

δl ρ̃
A
ln(tA,0)e

−[γln−iΔh̃ A
ln ]ΔtAŨ A∗

γ n Ũ
B
γ j

= Ũ B∗
δi Ũ A

δl Ũ
A∗
αl Ũ

A
αne

−[γln−iΔh̃ A
ln ]ΔtAŨ A∗

γ n Ũ
B
γ j ,

(26)

where we have considered that the initial flux is made of να

as initial condition for the first layer. After substituting this
result into Eq. (24) we finally obtain

Pαβ =
∑

δ,γ,i, j,l,n

Ũ B
βi Ũ

B∗
δi Ũ B

γ j Ũ
B∗
β j e

−[γi j−iΔh̃ Bi j ]ΔtB

× Ũ A
δl Ũ

A∗
αl Ũ

A
αnŨ

A∗
γ n e

−[γln−iΔh̃ A
ln ]ΔtA . (27)

It can be easily checked that, in the limit γi j → 0, the stan-
dard oscillation probability is recovered. In the three-layer
case, following the same procedure we find

Pαβ =
∑

δ,γ,θ,φ,i, j,l,n,m,k

ŨC
βi Ũ

C∗
δi ŨC

γ j Ũ
C∗
β j e

−[γi j−iΔh̃Ci j ]ΔtC

× Ũ B
δl Ũ

B∗
θl Ũ

B
φnŨ

B∗
γ n e

−[γln−iΔh̃ Bln ]ΔtB

× Ũ A
θmŨ

A∗
αmŨ

A
αkŨ

A∗
φk e

−[γmk−iΔh̃ A
mk ]ΔtA . (28)
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The procedure can be easily generalized to an arbitrary num-
ber of layers. Indeed, under the approximation L ≈ t , and
defining

˜A M
αβγ δ ≡

∑

i, j

Ũ M
αi Ũ

M∗
βi Ũ M

γ j Ũ
M∗
δ j e−[γi j−i(Δm̃M

i j )
2/2E]ΔLM ,

(29)

the probabilities can be written in a more compact way as for
two layers

Pαβ =
∑

δ,γ

˜A B
βδγβ

˜A A
δααγ , (30)

for three layers

Pαβ =
∑

δ,γ,θ,φ

˜A C
βδγβ

˜A B
δθφγ

˜A A
θααφ, (31)

for N layers

Pαβ =
∑

δ,γ,θ,φ,...,ξ,ω,ϕ,ρ

˜A N
βδγβ

˜A N−1
δθφγ . . . ˜A B

ξϕρω
˜A A
ϕααρ.

(32)

3 Atmospheric oscillation probabilities with
decoherence

Atmospheric neutrino oscillations take place in a regime
where matter effects are significant and can even dominate
the oscillations. The relevance of matter effect increases
with neutrino energy and is very different for neutrinos and
antineutrinos, as the sign of the matter potential changes
between the two cases. Matter effects also depend strongly
on the neutrino mass ordering. In order to understand better
the numerical results shown in this paper, it is useful to derive
approximate expressions for the oscillations in the νμ → νμ

and ν̄μ → ν̄μ channels in the presence of strong matter
effects.

From the results obtained in Refs. [39,40], for neutrino
energies E � 15 GeV matter effects drive the effective mix-
ing angles in matter θ̃12 and θ̃13 to either 0 or π/2, depending
on the channel (neutrino/antineutrino) and the mass order-
ing. It is easy to show that, in this regime, the oscillation
probabilities in Eq. (16) can be approximated as:

PNO
μμ ≈ 1 − 1

2
sin2 2θ23(1 − e−γ21L cos Δ̃21) (33)

for neutrinos, and

PNO
μ̄μ̄ ≈ 1 − 1

2
sin2 2θ23(1 − e−γ32L cos Δ̃32) (34)

for antineutrinos, assuming a normal ordering (NO). For
inverted ordering (IO) we get instead

P IO
μμ ≈ 1 − 1

2
sin2 2θ23(1 − e−γ31L cos Δ̃31) (35)

for neutrinos,

P IO
μ̄μ̄ ≈ 1 − 1

2
sin2 2θ23(1 − e−γ21L cos Δ̃21) (36)

for antineutrinos. In the limit γi j = 0, Eqs. (33)–(36)
reassemble the standard neutrino oscillation probabilities
derived under the one-dominant mass-scale approxima-
tion [41]. From Eqs. (33)–(36) it is easy to see that the approx-
imated oscillation probabilities for an inverted mass ordering
can be obtained from the corresponding ones for normal mass
ordering, just performing the following transformation:

γ21, Δ̃21 → γ31, Δ̃31, (37)

γ32, Δ̃32 → γ21, Δ̃21. (38)

Moreover, note that since the three decoherence parameters
and the three mass splittings are related (see Eqs. (8) and
(14)), these two transformations automatically imply that

γ31, Δ̃31 → γ32, Δ̃32. (39)

Equations (33)–(36) illustrate why a proper consideration
of the matter effects in the context of three families is of
key importance in order to correctly interpret the bounds
extracted within a simplified two-flavour approximation (as
done in e.g. Ref. [7]). According to our analytical results,
which will be confirmed numerically below, the constraints
obtained from SK in a two-family approximation cannot be
simply applied toγ31 orγ32, contrary to the naive expectation.
In fact, the interpretation of such limits depends strongly on
the ordering of neutrino masses and on whether the sensitivity
is dominated by the neutrino or antineutrino channels: for
neutrinos the decoherence effects at high energies would be
mainly driven by γ21 (γ31) for normal (inverted) ordering.
Conversely, in the antineutrino channel decoherence effects
are essentially controlled by γ32 (γ21) for normal (inverted)
ordering. Therefore, we conclude that in order to avoid any
misinterpretation of the bounds from atmospheric neutrinos,
a three-family approach including matter effects should be
considered.

Figure 1 shows the numerically obtained νμ → νμ (top
panels) and νμ → νμ (bottom panels) oscillation probabili-
ties for NO (left panels) and IO (right panels), with and with-
out decoherence, as a function of the neutrino energy for a
three-layer model (details on the accuracy of our three-layer
model and the specific parameters used in our simulations
can be found in Appendix A). For the sake of simplicity, in
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Fig. 1 The νμ → νμ (top panels) and νμ → νμ (bottom panels)
oscillation probabilities with (n = 0) and without decoherence effects
as a function of the neutrino energy. The probabilities have been com-
puted for normal (left panels) and inverted (right panels) neutrino mass
ordering, using a three-layer model for the Earth matter density pro-

file, and correspond to the case in which the neutrinos cross the center
of the Earth. In this figure, in the cases where decoherence effects are
included we have set the parameters listed in the legend to the same
constant value γ = 2.3 × 10−23 GeV

this section we focus on the case n = 0, where the γi j do not
depend on the neutrino energy (the results for different val-
ues of n show a similar qualitative behavior). The standard
oscillation parameters have been fixed to the best-fit values
given in [4,5].

Figure 1 clearly shows how the decoherence tends to
damp the oscillatory behavior, in qualitative agreement with
Eq. (16) and the corresponding approximate expressions
given by Eqs. (33)–(36). Note that Eq. (16) has been obtained
under several approximations and, in particular, considering
only one layer with constant matter density. However, we
should stress that in our simulations the computation of the
probability has been done numerically, considering a three-
layer matter profile (see Appendix A for details).

Since the three γi j are not completely independent from
one another (see Eq. (8)), in view of Eqs. (33)–(36) and in
order to simplify the analysis, hereafter we will distinguish
three different representative cases, where the decoherence
effects are dominated by just one parameter:

(A) Atmospheric limit: γ21 = 0 (γ32 = γ31),

(B) Solar limit I: γ32 = 0 (γ21 = γ31),
(C) Solar limit II: γ31 = 0 (γ21 = γ32).

In Appendix B, we will show that the bounds derived in these
limits correspond to the most conservative bounds that can
be extracted in the general case. As a reference value for the
decoherence parameters, in this section we have considered
γ = 2.3 × 10−23 GeV, for each of the three limiting cases
listed above.

The results in Fig. 1 show that, for neutrinos with a NO
(top left panel), the impact of decoherence is essentially con-
trolled by γ21, in good agreement with Eq. (33): no significant
effects are seen in the atmospheric limit (A), while a similar
impact is obtained in the solar limits I (B) and II (C). Con-
versely, for IO (top right panel) the effects are dominated by
γ31 instead: no effect is observed for the solar limit II (C),
while in scenarios (A) and (B) the effect is very similar. This
can be qualitatively understood from the approximate prob-
ability derived in Eq. (35), which only depends on the deco-
herence parameter γ31. On the other hand, in the antineutrino
case for NO (bottom left panel) no observable decoherence
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effects take place in case (B), while cases (A) and (C) show a
similar behavior, in agreement with Eq. (34). Conversely, for
IO (bottom right panel) decoherence effects are essentially
controlled by γ21 as shown in Eq. (36): therefore, no signifi-
cant effects are observed in case (A) while a similar impact
is obtained for case (B) and (C).

Moreover, it should be pointed out that the transformations
listed in Eqs. (37)–(39) automatically imply the following
equivalence for the results obtained in the three limiting cases
listed above:

(A)NO ←→ (C)IO,

(B)NO ←→ (A)IO, (40)

(C)NO ←→ (B)IO.

This is also confirmed at the numerical level, as it can be
easily seen by comparing the different lines shown in the left
(NO) and right (IO) panels in Fig. 1 for the three limiting
cases.

It is also remarkable that, for both normal and inverted
mass orderings, even when the standard oscillations turn off
(at very high energies), there is still a large effect on the prob-
ability due to decoherence effects, that could potentially be
tested with neutrino telescopes like IceCube. In particular,
for E � 200 GeV one can approximate cos Δ̃i j ≈ 1, ∀i, j .
Therefore, in the standard case (with γi j = 0) the last three
terms in Eq. (16) approximately vanish, leading to Pμμ ≈ 1.
However, in presence of decoherence those terms will not
vanish completely, as e−γi j L cos Δ̃i j �= 1. This leads to a
depletion of Pμμ, which is no longer equal to 1 in this case.
The size of the effect will of course depend on the base-
line of the experiment. Since at high energies the oscillation
probability does no longer depend on the neutrino energy, at
oscillation experiments with a fixed baseline the effect may
be hindered by the presence of any systematic errors affect-
ing the normalization of the signal event rates. However, at
atmospheric experiments this effect can be disentangled from
a simple normalization error by comparing the event rates at
different nadir angles.

The dependence of the neutrino probabilities with the
zenith angle θz is illustrated in Fig. 2, assuming a normal
mass ordering and fixing the standard oscillation parameters
to the best-fit values given in [4,5]. The results are shown
as a neutrino oscillogram (see for instance [42]), which rep-
resents the oscillation probability in the Pμμ channel as a
function of neutrino energy and zenith angle θz (which can
be related to the distance traveled by the neutrino). Figure 2
shows the oscillation probability Pμμ in the three limiting
cases described above, comparing it to the results in the stan-
dard scenario (γi j = 0). As expected, the effects depend on
the direction of the incoming neutrino and they are more rele-
vant in the region −1 � cos θz � −0.4, this is, for very long
baselines. This was to be expected, since the decoherence

effects are driven by e−γi j L . In addition, the dependence of
the oscillation probability with the zenith angle at very high
energies (E > 100 GeV) is clearly visible in the bottom pan-
els of Fig. 2. As we will show in Sect. 5, this will lead to
an impressive sensitivity for the IceCube setup. Finally, note
that the results for inverted ordering show similar features to
those in Fig. 2, once the mapping in Eq. (40) is applied, and
are therefore not shown here.

4 IceCube/DeepCore simulation details and data set

The IceCube neutrino telescope, located at the South Pole, is
composed of 5160 DOMs (Digital Optical Module) deployed
between 1450 and 2450 m below the ice surface along 86
vertical strings [43]. In the inner core of the detector, a sub-
set of these DOMs were deployed deeper than 1750 m and
closer to each other than in the rest of IceCube. This subset
of strings is called DeepCore. Due to the shorter distance
between its DOMs, the neutrino energy threshold in Deep-
Core (∼ 5 GeV) is lower than in IceCube (∼ 100 GeV).
This allows DeepCore to observe neutrino events in the
energy region where atmospheric oscillations take place, see
Fig. 1, whereas IceCube only observes high-energy atmo-
spheric neutrino events.

As outlined in Sect. 2, for high energy astrophysical neu-
trinos the effect of non-standard decoherence in the prob-
ability would be completely erased by the time they reach
the detector. Therefore, in this work we will focus on the
observation of atmospheric neutrino events at both IceCube
and DeepCore, in the energy range ∼ 10 GeV to ∼ 1 PeV.
In particular, we have used the three-year DeepCore data on
atmospheric neutrinos with energies between ∼ 10 GeV and
∼ 1 TeV, taken between May 2011 and April 2014 [44], and
the 1-year IceCube data taken between 2011–2012 [45–47],
corresponding to neutrinos with energies between 200 GeV
and 1 PeV.

At IceCube and DeepCore, events are divided according
to their topology into “tracks” and “cascades” [48]. Tracks
are produced by the Cherenkov radiation of muons propagat-
ing in the ice. In atmospheric neutrino experiments, muons
are typically produced by two main mechanisms: (1) via
charged-current (CC) interactions of νμ with nuclei in the
detector, and (2) as decay products of mesons (typically pions
and kaons) originated when cosmic rays hit the atmosphere.
Conversely, cascades are created in CC interactions of νe
or ντ

4: in this case, the rapid energy loss of electrons as

4 Technically, a CC ντ event could be distinguished from a νe CC
event, e.g., by the observation of two separates cascades connected by
a track from the τ propagation [49]. However, for atmospheric neutrino
energies the distance between the cascades cannot be resolved by the
DOMs at IceCube/DeepCore, leaving in the detector a signal similar to
a single cascade.
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Fig. 2 Oscillograms for the neutrino oscillation probability Pμμ,
assuming normal mass ordering. The top left panel corresponds to the
case of no decoherence γi j = 0 whereas the rest of the panels corre-
spond to the three limiting cases mentioned in the text: (A) γ32 = γ31

(top right), (B) γ31 = γ21 (bottom left) and (C) γ32 = γ21 (bottom right).
In all cases, the size of the decoherence parameters that are turned on
is set to a constant value, γ = 2.3 × 10−23 GeV

they move through the ice is the origin of an electromagnetic
shower. At IceCube/DeepCore, cascades are also observed as
the product of hadronic showers generated in neutral-current
(NC) interactions for neutrinos of all flavors. Our analysis
considers only track-like events observed at both IceCube
and DeepCore although, as we will see, some small contam-
ination from cascade events can be expected (especially at
low energies).

4.1 IceCube simulation details

For IceCube, the observed event rates are provided in a grid of
10 × 21 bins [46], using 10 bins for the reconstructed energy
(logarithmically spaced, ranging from 400 GeV to 20 TeV),

and 21 bins for the reconstructed neutrino direction (linearly
spaced, between cos θrecz = −1.02 and cos θrecz = 0.24).
The muon energy is reconstructed with an energy resolution
σlog10(Eμ/GeV) ∼ 0.5 [45], while the zenith angle resolution
is in the range σcos θz ∈ [0.005, 0.015], depending on the
scattering muon angle.

The number of events in each bin is computed as:

Ni (E
rec, θrecz )=

∑

±

∫
dE d cos θz φatm

μ,±(E, θz)P
±
μμ(E, θz)

× Aeff
i,±,μ(E, θz, E

rec, θrecz )e−X (θz)σ
±(E),

(41)
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Fig. 3 Event distributions obtained for IceCube in our numerical simu-
lations as a function of the reconstructed value of the cosine of the zenith
angle, for neutrinos in different reconstructed energy ranges. The lines
have been obtained assuming a normal mass ordering, for the following
values for the decoherence parameters: γ21 = γ31 = 2.3 × 10−23 GeV

(solid blue line), γ21 = γ31 = 10−22 GeV (dot-dashed green line)
and without decoherence (dashed red line). The observed data points
[46] are represented by the black dots, and the error bars indicate the
statistical uncertainties for each bin

where E, θz denote the true values of energy and zenith angle,
while Erec, θrecz refer to their reconstructed quantities. Here,
φatm

μ,± is the atmospheric flux for muon neutrinos (+) and anti-
neutrinos (-), P±

μμ(E, θz) is the neutrino/antineutrino oscil-
lation probability given by Eq. (28), and Aeff

i,±,μ(E, θz) is
the effective area encoding the detector response in neutrino
energy and direction (which relates true and reconstructed
variables), the interaction cross section and a normalization
constant, and has been integrated over the whole data tak-
ing period. In our IceCube simulations, we have used the
unpropagated atmospheric flux (HondaGaisser) provided by
the collaboration [45,50], and for the effective area we have
used the nominal detector response from Refs. [45,50]. On
the other hand, the exponential factor takes into account the
absorption of the neutrino flux by the Earth, which increases
with the neutrino energy. Here, X (θz) is the column density
along the neutrino path and σ±(E) is the total inclusive cross
section for νμ or ν̄μ. Note that in Eq. (41) no contamination
from cascade events is considered since the mis-identification
rate is expected to be negligible at these energies [51]. Sim-
ilarly, the number of atmospheric muons that pass the selec-
tion cuts can also be neglected, given the extremely good
angular resolution at these energies [45].

Figure 3 shows the expected number of events for IceCube
from our numerical simulations including decoherence, for
γ21 = γ31 = 2.3 × 10−23 GeV (solid blue lines) and γ21 =
γ31 = 10−22 GeV (dot-dashed green lines), as a function of
cos θrecz , for events in different reconstructed energy ranges.
For simplicity, we have considered the n = 0 case (that is,
γi j independent of the neutrino energy). The expected result
without decoherence is also shown for comparison (dashed

Table 1 The most relevant systematic errors used in our analysis of
IceCube data, taken from Refs. [45,47,50]

Source of uncertainty Value

Flux – normalization Free

Flux – π/K ratio 10%

Flux – energy dependence as (E/E0)
η Δη = 0.05

Flux – ν̄/ν 2.5%

DOM efficiency 5%

Photon scattering 10%

Photon absorption 10%

red lines), while the observed data [46] are shown by the
black dots.

For the analysis of the IceCube data we have performed a
Poissonian log-likelihood analysis doing a simultaneous fit
on the following parameters: Δm2

32, θ23 and γi j . The rest
of the oscillation parameters have been kept fixed to their
current best-fit values from Refs. [4,5]. The most relevant
systematic errors used in the fit are summarized in Table 1,
and have been taken from Refs. [45,47,50]. For each sys-
tematic uncertainty a pull term is added to the χ2 following
the values listed in the table, except in the cases indicated
as “Free” (when the corresponding nuisance parameter is
allowed to float freely in the fit).

4.2 DeepCore simulation details

In the case of DeepCore, the observed event rates [44] are
provided in a grid of 8 × 8 bins, using 8 bins for the recon-
structed neutrino energy and 8 bins for the reconstructed neu-
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Fig. 4 Event distributions obtained for DeepCore in our numerical
simulations as a function of the reconstructed values of the cosine of
the zenith angle, for neutrinos in different reconstructed energy ranges.
The lines have been obtained assuming a normal mass ordering, for
the following values for the decoherence parameters: γ21 = γ31 =

2.3×10−23 GeV (solid blue line), γ21 = γ31 = 10−22 GeV (dot-dashed
green line) and without decoherence (dashed red line). The observed
data points [44] are represented by the black dots, and the error bars
indicate the statistical uncertainties for each bin

trino direction. The energy resolution σE/GeV is in the range
of 30–20% while the zenith angle resolution improves with
the energy, from σθz = 12◦ at Eν = 10 GeV to σθz = 5◦ at
Eν = 40 GeV [44].

In each bin, the number of events is computed as

Ni (E
rec, θrecz )

=
∑

±,α,β

∫
dE d cos θz φatm

α,±(E, θz) P
±
αβ(E, θz)

× Aeff
i,±,β(E, θz, E

rec, θrecz ) + Ni,μ(Erec, θrecz ). (42)

Unlike for IceCube, at DeepCore muon tracks can be pro-
duced from νμ → νμ and νe → νμ events.5 Moreover, the
track-like event distributions at DeepCore will also receive
partial contributions from cascades which are mis-identified
as tracks: hence the sum over β = e, μ, τ in Eq. (42). There-
fore, here φatm

α,± stands for the atmospheric flux for neutri-
nos/antineutrinos of flavor α (where we have used the fluxes
from Ref. [52]), and P±

αβ refers to the neutrino/antineutrino
oscillation probability in the channel να → νβ for neutri-
nos (+) (or ν̄α → ν̄β , for antineutrinos (−)). The rejec-
tion efficiencies for the contamination are included in the
detector response function Aeff

i,±,β , which now depends on
the flavor β of the interacting neutrino. Finally, an estimate
of the atmospheric muons that overcome the selection crite-
ria (taken from Refs. [44,50]) is also added for each bin in
reconstructed variables, Ni,μ.

5 The flux from ντ can be considered negligible at these energies.

Figure 4 shows the expected number of events for Deep-
Core obtained from our numerical simulations including
decoherence, for γ21 = γ31 = 2.3 × 10−23 GeV (solid blue
lines) and γ21 = γ31 = 10−22 GeV (dot-dashed green lines),
as a function of cos θrecz , for events in different reconstructed
energy ranges. For simplicity, we have considered the n = 0
case (that is, γi j independent of the neutrino energy). The
expected result without decoherence is also shown for com-
parison (dashed red lines), while the observed data [44] are
shown by the black dots.

In this work a Gaussian maximum likelihood is used to
analyze the DeepCore data, performing a simultaneous fit on
the following parameters: Δm2

32, θ23 and γi j . The rest of the
oscillation parameters have been kept fixed to their current
best-fit values from Refs. [4,5]. The systematics used in the
fit are those associated with the flux, the detector response
and the atmospheric muons given in Ref. [44] and are sum-
marized in Table 2. For each systematic uncertainty a pull
term is added to the χ2 following the values listed in the
table, except in the cases indicated as “Free” (when the cor-
responding nuisance parameter is allowed to float freely in
the fit). We have checked that our analysis reproduces the
confidence regions in the Δm2

32 − θ23 plane obtained by the
DeepCore collaboration in Ref. [44] to a very good level of
accuracy.

Finally, it should be noted that our fit does not include the
latest atmospheric data recently published by the DeepCore
collaboration [53]. The new analysis uses a different data set
(from April 2012 to May 2015) and a new implementation of
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Table 2 Systematic errors used in our analysis of DeepCore data, taken
from Refs. [44,48]

Source of uncertainty Value

Flux – normalization Free

Flux – energy dependence as (E/E0)
η Δη = 0.05

Flux – (νe + ν̄e)/(νμ + ν̄μ) ratio 20%

Background – normalization Free

DOM efficiency 10%

Optical properties of the ice 1%

systematic errors, which lead to smaller confidence regions in
the Δm2

32−θ23 plane. However, the detector response param-
eters and systematic errors used in the latest release have not
been published yet. In view of the better results obtained
for the standard three-family oscillation scenario, a simi-
lar improvement is to be expected if the analysis performed
in this work were to be repeated using the latest DeepCore
data.

5 Results

Following the procedure described in Sect. 4 we have
obtained the χ2 for every point in the parameter space.
Marginalizing over the relevant mixing and mass parame-
ters, namely, Δm2

32 and θ23, the sensitivity of the data to

γi j parameters is determined by evaluating the
√

Δχ2, with
Δχ2 ≡ χ2 − χ2

min, where χ2
min is the value at the global

minimum.
In this section we will only show the results obtained for

NO, since we have checked that extremely similar results are
obtained for IO after applying the mapping given in Eq. (40).
Nevertheless, in Sect. 6 we will also provide the 95% confi-
dence level (CL) bounds obtained in our numerical analysis
for the IO case. The bounds obtained are in very good agree-
ment with the mapping given in Eq. (40).

Figure 5 shows the obtained
√

Δχ2 as a function of γ0

for the three limiting cases defined in Sect. 3: (A) atmo-
spheric limit, γ0 = γ 0

32 = γ 0
31 (red curve); (B) solar limit

I, γ0 = γ 0
21 = γ 0

31 (green curve); and (C) solar limit II,
γ0 = γ 0

21 = γ 0
32 (blue curve). In all cases, the solid (dashed)

lines correspond to the results obtained from our analysis
of the IceCube (DeepCore) data, and each panel shows the
results obtained assuming a different energy dependence for
the decoherence parameters, see Eq. (14): n = 0 (top panel),
n = 1 (middle panel) and n = 2 (bottom panel). The shaded
regions are disfavored by previous analysis of SK [7] (90%
CL) and KamLAND [15] data (95% CL). As explained in
Sect. 3, the KamLAND constraints derived in [15] apply to
γ 0

12 (solar limits) while it is not clear to which γi j the bounds

from SK obtained in [7] would apply, since this depends on
the true neutrino mass ordering (which is yet unknown).

Note that the size of the atmosphere has been neglected in
our calculations (see Appendix A for details). This is a good
approximation for small values of the decoherence parame-
ters, but it starts to fail if the decoherence effects are large
enough to affect neutrinos with cos θz > 0. Therefore, in the
case of IceCube we have shown our results only in the region
where this approximation holds. In the case of DeepCore, due
to the smaller energies considered, our approximation has no
impact on the results even for large values of the decoherence
parameters. Therefore, the approximation has only an impact
on the IceCube results in a region of the decoherence param-
eter space which is already ruled out either by DeepCore or
other experiments.

Figure 5 shows that for both DeepCore and IceCube the
best sensitivity is achieved for the solar limits (B) and (C)
while the weakest limit is obtained in the atmospheric limit
(A). In particular, the strongest bound is obtained for (C).
This is in agreement with the behaviour of the oscillation
probability in presence of strong matter effects, discussed
in Sect. 3. On one hand, as shown in Sect. 3, for NO the
decoherence effects are mainly driven by γ21 in the neutrino
channel and γ32 in the antineutrino channel. On the other
hand, the number of antineutrino events is going to be sup-
pressed with respect to the neutrino case, due to the smaller
cross section and flux. Hence, the best sensitivity is expected
for case (C), where γ0 = γ 0

21 = γ 0
32, since both neutrinos

and antineutrinos are sensitive to decoherence effects. Con-
versely, in case (B), where γ0 = γ 0

21 = γ 0
31, only neutrinos

are sensitive to decoherence effects, and therefore some sen-
sitivity is lost with respect to the results for case (C). Finally,
in case (A), with γ0 = γ 0

32 = γ 0
31, the bounds come mainly

from the impact of decoherence on the antineutrino event
rates and, since these are much smaller than in the neutrino
case, the obtained bounds are much weaker when compared
to the results obtained in case (B).

Figure 5 shows a flat asymptotic feature of the Deep-
Core’s

√
Δχ2 for large values of γ0, where the sensitivity

becomes independent of γ0. Conversely, for IceCube there
is a decrease in sensitivity for values of γ above a certain
range: for example, for n = 0 the best sensitivity is achieved
for γ0 ∼ O(10−22) GeV while it decreases for higher val-
ues. This behaviour can be understood as follows. For the
neutrino energies observed at IceCube (above 100 GeV) the
oscillation phases do not develop and the probabilities do not
depend on the energy (cos Δ̃i j ≈ 1 in Eq. (16)). Therefore,
at IceCube the sensitivity to the decoherence effects comes
from the observation of a non-standard behaviour of the num-
ber of events with the zenith angle alone. Naively, Eq. (15)
gives the values of L and γ that yield a large effect. Consider-
ing n = 0, for example, where there is a one-to-one relation
between the two, we get that for γ0 ∼ 10−22 GeV the effect
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Fig. 5 Values of the
√

Δχ2 as a function of the decoherence parameter
for the Atmospheric limit (red), Solar limit I (green) and Solar limit II
(blue) defined in Sect. 3. The results obtained from our analysis of Ice-
Cube (DeepCore) data are denoted by the solid (dashed) lines. The three
panels have been obtained for NO, assuming a different dependence on

the neutrino energy: n = 0 (top panel), n = 1 (middle panel) and n = 2
(bottom panel). The shaded regions are disfavored by previous analysis
of SK [7] and KamLAND [15] data, see text for details. The horizontal
black line indicates the value of the

√
Δχ2 corresponding to 95% CL

for 1 degree of freedom

will be maximal for distances of the order L ∼ O(103) km.
This is the typical distance traveled by atmospheric neutrinos
crossing the Earth and therefore the sensitivity of IceCube is
maximized in this range. Conversely, for larger (smaller) val-
ues of γ0, only neutrinos coming from the most horizontal
(vertical) directions are affected, leading to a reduced impact
on the χ2.

From the comparison between the different panels in Fig. 5
we can see that the limits change considerably with the value
of n, which parametrizes the energy dependence of the deco-
herence parameters (see Eq. (14)). In particular, we observe
in Fig. 5 that the sensitivity improves with n and that, as
it is increased, the results for IceCube improve much faster
(compared to DeepCore) due to the much higher neutrino

energies considered in this case. The behaviour of the sen-
sitivities with the value of n is better appreciated in Fig. 6,
where we show the bounds obtained at 95% CL (for 1 degree
of freedom) as a (discrete) function of the power-law index
n, for n = −2,−1, 0, 1 and 2. The DeepCore bounds are
represented by solid circles while the IceCube constraints
are given by the solid triangles. The results seem to follow
the linear relation

ln(γ0/GeV) = constant − n ln(E0/GeV), (43)

where E0 � 2.5 TeV (30 GeV) for IceCube (DeepCore).
This can be understood as follows. Decoherence effects
enter the oscillation probabilities only through the factor
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Fig. 6 95% CL bounds on the decoherence parameters γ0, for NO, as
a (discrete) function of the power-law index n for the Atmospheric limit
(red), Solar limit I (green) and Solar limit II (blue). The solid circles
(triangles) correspond to the DeepCore (IceCube) analysis

γ L = γ0(E/GeV)nL , for any value of n. Naively, we expect
that the sensitivity limit is obtained for γ L ∼ O(1) (although
the precise value will eventually depend on the neutrino mass
ordering, on the particular γi j which drives the sensitivity,
and on the data set considered). Taking the logarithm of
γ0(E/GeV)nL = constant, we reproduce Eq. (43). At first
approximation, the value of E0 in Eq. (43) can be estimated
as the average energy of the IceCube and DeepCore event
distributions, 〈E〉, as

〈E〉 ≡

∫
dN

dE
EdE

∫
dN

dE
dE

, (44)

where dN/dE is the event number distribution. This leads to
〈E〉 � 4 TeV (40 GeV) for IceCube (DeepCore), which are
in the right ballpark although somewhat different from the
values of E0 giving the best fit to the data shown in Fig. 6.
Nevertheless, we find these to be in reasonable agreement,
given our naive estimation of E0 as the mean energy for each
experiment.

6 Summary and conclusions

In this work, we have derived strong limits on non-standard
neutrino decoherence parameters in both the solar and atmo-
spheric sectors from the analysis of IceCube and Deep-
Core atmospheric neutrino data. Our analysis includes matter
effects in a consistent manner within a three-family oscilla-
tion framework, unlike most past literature on this topic. In
Sect. 2 we have developed a general formalism, dividing the
matter profile into layers of constant density, which permits
to study decoherence effects in neutrino oscillations affected
by matter effects in a non-adiabatic regime. Our analysis
shows that the matter effects are extremely relevant for atmo-

spheric neutrino oscillations and their importance in order to
correctly interpret the two-family limits obtained previously
in the literature, as outlined in Sect. 3.

We have found that the sensitivity to decoherence effects
depends strongly on the neutrino mass ordering and on
whether the sensitivity is dominated by the neutrino or
antineutrino event rates. For neutrinos, the decoherence
effects at high energies are mainly driven by γ21 (γ31) for nor-
mal (inverted) ordering, while in the antineutrino case they
are essentially controlled by γ32 (γ21) for normal (inverted)
ordering. This means that, considering a three-family frame-
work including matter effects is essential when decoherence
effects in atmospheric neutrino oscillations are studied. Our
results are summarized in Table 3, together with the most rel-
evant bounds present in the literature. Table 3 provides the
95% CL bounds extracted from our analysis of DeepCore
and IceCube atmospheric neutrino data, for both normal and
inverted ordering, and for the three limiting cases considered
in this work: (A) atmospheric limit (γ21 = 0), (B) solar limit
I (γ32 = 0) and (C) solar limit II (γ31 = 0). In Appendix B
we show that the bounds derived in these limits correspond
to the most conservative results that can be extracted in the
general case.

In this work, we considered a general dependence of
the decoherence parameters with the energy, as γi j =
γ 0
i j (E/GeV)n with n = ±2, 0,±2. Our results improve over

previous bounds for most of the cases studied, with the excep-
tion of the n = −1 case. For n = −1, KamLAND gives the
dominant bound on γ21 while MINOS gives the strongest
constraints on γ31 and γ32

6 (indeed, both KamLAND and
MINOS are also expected to give the strongest bound for
n = −2, although to the best of our knowledge no analysis
has been performed for this case yet). We have found that
DeepCore considerably improves the present bounds in the
solar sector (γ21) for n = 0, 1, 2 and gives a constraint in
the atmospheric sector comparable to the SK limit, although
a factor 2 weaker, in the n = 0 case. Our results show that,
for n = 0 (which is the case most commonly considered in
the literature), IceCube improves the bound on γ31 and γ32

in (more than) one order of magnitude with respect to the
SK constraint, obtained in a simplified two-family approxi-
mation, and by more than one order (almost two orders) of
magnitude for NO (IO) with respect to the KamLAND con-
straint on γ21. In particular, we find that the reference value
for γ23 considered in Ref. [17] to explain the small tension
previously reported between NOvA and SK data is indeed
already excluded by IceCube data. Regarding the cases with
n = 1, 2, we find that the sensitivity of IceCube is particu-
larly strong. For instance, IceCube improves the bound from

6 Reactor experiments as Double Chooz, Daya Bay or RENO are also
expected to give a competitive bound in the atmospheric sector, as it
was shown in [21] for Daya Bay in the standard decoherence case.
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Table 3 DeepCore/IceCube bounds on γ 0
i j in GeV (γi j =

γ 0
i j (E/GeV)n), at the 95% CL (1 degree of freedom), for both nor-

mal and inverted ordering as indicated. Previous constraints are also

provided for comparison, and the dominant limit in each case is high-
lighted in bold face (notice that we considered the most conservative
bound from the two solar limits)

n = −2 n = −1 n = 0 n = 1 n = 2

Normal ordering

IceCube (this work)

Atmospheric (γ31 = γ32) 2.8 × 10−18 4.2 × 10−21 4.0 × 10−24 1.0 × 10−27 1.0 × 10−31

Solar I (γ31 = γ21) 6.8 × 10−19 1.2 × 10−21 1.3 × 10−24 3.5 × 10−28 1.9 × 10−32

Solar II (γ32 = γ21) 5.2 × 10−19 9.2 × 10−22 9.7 × 10−25 2.4 × 10−28 9.0 × 10−33

DeepCore (this work)

Atmospheric (γ31 = γ32) 4.3 × 10−20 2.0 × 10−21 8.2 × 10−23 3.0 × 10−24 1.1 × 10−25

Solar I (γ31 = γ21) 1.2 × 10−20 5.4 × 10−22 2.1 × 10−23 6.6 × 10−25 2.0 × 10−26

Solar II (γ32 = γ21) 7.5 × 10−21 3.5 × 10−22 1.4 × 10−23 4.2 × 10−25 1.1 × 10−26

Inverted ordering

IceCube (this work)

Atmospheric (γ31 = γ32) 6.8 × 10−19 1.2 × 10−21 1.3 × 10−24 3.5 × 10−28 1.9 × 10−32

Solar I (γ31 = γ21) 5.2 × 10−19 9.2 × 10−22 9.8 × 10−25 2.4 × 10−28 9.0 × 10−33

Solar II (γ32 = γ21) 2.8 × 10−18 4.2 × 10−21 4.1 × 10−24 1.0 × 10−27 1.0 × 10−31

DeepCore (this work)

Atmospheric (γ31 = γ32) 1.4 × 10−20 5.8 × 10−22 2.2 × 10−23 7.5 × 10−25 2.3 × 10−26

Solar I (γ31 = γ21) 8.3 × 10−21 3.6 × 10−22 1.4 × 10−23 4.7 × 10−25 1.3 × 10−26

Solar II (γ32 = γ21) 5.0 × 10−20 2.3 × 10−21 9.4 × 10−23 3.3 × 10−24 1.2 × 10−25

Previous bounds

SK (two families) [7] 2.4 × 10−21 4.2 × 10−23 1.1 × 10−27

MINOS (γ31, γ32) [32] 2.5 × 10−22 1.1 × 10−22 2 × 10−24

KamLAND (γ21) [15] 3.7 × 10−24 6.8 × 10−22 1.5 × 10−19

KamLAND on γ21 by almost 9 (8) orders of magnitude for
n = 1 and NO (IO), while for n = 2 the bound on γ31 and
γ32 is improved in 4 (5) orders of magnitude with respect to
the SK limit for NO (IO).
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Appendix A: Computation of oscillation probabilities in
three layers

The simulation of atmospheric neutrino experiments is com-
putationally demanding in the standard three-family sce-
nario, and even more if decoherence effects are included in
the analysis. Therefore, due to the cost of implementing a
large number of layers for the PREM profile density, in this
work we consider a simplified three-layer model for the Earth
matter density profile assuming a core and Earth radii of 3321
and 6371 km, respectively. The values of the matter densities
of the inner layer (core) and the outer layer (mantle) are taken
to be around ρ = 12 and 4.6 g/cm3, respectively. However,
their values are slightly adjusted depending on the distance
traveled by the neutrinos to match as close as possible the pro-
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Fig. 7 Oscillograms for Pμμ without decoherence, considering our three-layer approximation (left panel) and the PREM model (right panel) for
the Earth matter density profile

file of the PREM model [54]. Note that, in our simulations,
we have not considered the atmosphere as an additional layer.
This is a good approximation for neutrinos going upwards
in the detector (cos θz < 0), but is not a valid approximation
in the region cos θz > 0. This has only an impact on the
IceCube results for extremely large values of the decoher-
ence parameters, which are already ruled out either by other
experiments or by DeepCore.

In Fig. 7 we compare the results obtained for the oscillation
probability for our modified three-layer approximation (left
panel) against the exact numerical results using the full Pre-
liminary Reference Earth Model (PREM) profile [54] (right
panel), which divides the Earth into eleven layers where the
matter density in each layer is given by a polynomial func-
tion of the distance traveled. In this figure, the results are
shown for the standard three-family scenario with no deco-
herence, in order to illustrate the accuracy of our three-layer
approximation. The results are shown as a neutrino oscil-
logram, which represents the oscillation probability in the
Pμμ channel in terms of energy and the zenith angle θz of
the incoming neutrino. In this figure, a normal mass ordering
was assumed, together with the following input values for
the oscillation parameters [4,5]: Δm2

21 = 7.4 × 10−5 eV2,
Δm2

31 = 2.515 × 10−3 eV2, θ12 = 33.62◦, θ13 = 8.54◦,
sin2 θ23 = 0.51, and δ = 234◦.

As can be seen from the comparison between the two
panels, some small differences take place but only in a
restricted range of values of energy and zenith angle. There-
fore, we conclude that the agreement between the proba-
bilities obtained using the exact PREM model (right) and
our approximate three-layer model (left) is sufficiently good
for the purposes of this work. We have also checked that,

using our simplified three-layer model applied to the stan-
dard case without decoherence, we are able to reproduce up
to a very good approximation the DeepCore oscillation fit for
the atmospheric parameters θ23 and Δm2

32 [44].

Appendix B: Five-dimensional analysis

The γi j are not completely independent parameters, see
Eq. (8). In order to simplify the analysis, in this work we have
focused on three different representative cases: (A) Atmo-
spheric limit, γ21 = 0 (γ32 = γ31); (B) Solar limit I, γ32 = 0
(γ21 = γ31); and (C) Solar limit II, γ31 = 0 (γ21 = γ32).
Considering these one-γi j -dominated cases is expected to be
a very good approximation in view of Eqs. (33)–(36). Never-
theless, in this appendix we will show that the results obtained
in these simplified scenarios also apply to the more general
case in which the three γi j are different from zero.

Let us assume that just one Dm matrix contributes to the
decoherence term of the evolution equations given by Eq. (2).
In such a case, one of the γi j parameters is a function of the
other two γi j . Without loss of generality, if we choose γ21

and γ31 as our free parameters, γ32 is then given by

γ32 = (√
γ21 ± √

γ31
)2

. (B.1)

In order to understand how general are the results presented
in Sect. 5, we have performed a five-dimensional analysis
varying γ21, γ31, θ23 and Δm2

32 in the fit, and imposing the
constraint given by the equation above. In Fig. 8 we show the√

Δχ2 obtained from the five-dimensional DeepCore analy-
sis as a function of γ21 (dashed green curve) and γ31 (dashed
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Fig. 8
√

Δχ2 obtained from the five-dimensional DeepCore analysis
as a function of γ21 (dashed green curve) and γ31 (dashed red curve),
marginalizing over the rest of the free parameters, for n = 0 and NO.

The
√

Δχ2 for the Atmospheric (solid red curve), Solar I (solid green
curve) and Solar II (solid blue curve) limits is also shown

red curve), marginalizing over the rest of the free parameters,
for the n = 0 case (the same conclusions apply to the other
cases studied in this work). For the sake of comparison, the√

Δχ2 associated to the atmospheric (solid red curve), solar
I (solid green curve) and solar II (solid blue curve) limits is
also included in the same figure. NO was assumed but the
results can be easily extrapolated to the IO case using the
mapping given in Eq. (40).

Figure 8 shows that the five-dimensional
√

Δχ2 distri-
bution projected into γ31 coincides with the Atmospheric
limit one, while when it is projected into γ21 resembles the
most conservative of the two solar limits. This is due to the
marginalization over the parameters which are not shown.
For instance, in the case of γ21 the marginalization selects,
between the two solar limits, the most conservative result.
We conclude therefore that our analysis distinguishing the
three limits (A), (B) and (C), provides the most conservative
bounds that can be applied to the general case in which the
three γi j are different from zero.
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