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Abstract The aim of this paper is to probe the features of
the bouncing cosmology with the current observational data.
Basing on bounce inflation model, with high derivative term,
we propose a general parametrization of primordial power
spectrum which includes the typical bouncing parameters,
such as bouncing time-scale, and energy scale. By apply-
ing Markov Chain Monto Carlo analysis with current data
combination of Planck 2015, BAO and JLA, we report the
posterior probability distributions of the parameters. We find
that, bouncing models can well explain CMB observations,
especially the deficit and oscillation on large scale in TT
power spectrum.

1 Introduction

The question of what happened in the most beginning of our
universe has always been the focus of cosmological research,
and in recent years, the high precision measurements on
the Cosmic Microwave Background (CMB) as well as other
observations provided possibilities for the detailed explo-
ration of the early universe. For instance, the Planck full
mission temperature and large scale polarization data mea-
sure the spectral index of primordial curvature perturbations
to be ns = 0.968 ± 0.006 (1σ) [1], which favors a nearly
scale-invariant power spectrum with a slightly red tilt. Com-
paring the theoretical predictions of inflationary models with
the observational constraints on the primordial power spectra,
it is found that many inflation models still survive today, but
some popular inflation models have been explicitly excluded
by the current observations; for the details see the reports
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of Planck [1] and BICEP/Keck [2] (see also [3–5]), and for
relevant theoretical studies see e.g. [6].

It is also noted that, at large scales of CMB temperature
power spectrum measured by the Planck satellite mission (see
the Planck 2015 results [1]), there are deficits at both � � 10
and � ∼ 30, which is already mentioned in WMAP [7,8]
and Planck 2013 [9,10]. Moreover, the data points show
obvious oscillation trend, although not statistically signifi-
cant because of the large cosmic variance [10]. It is diffi-
cult to interpret these phenomena within the standard frame-
work of “slow-roll inflation”, indicating that there might be
new physics at the early stage of the universe, probably even
before inflation. There are several early universe scenarios
that can be either supplements or alternatives of the inflation
scenario, e.g., the Pre-Big-Bang (PBB) scenario [11–15], the
matter bounce scenario [16–21], the ekpyrotic scenario [22–
27], the bounce inflation scenario [28–33,43–46], and so
on. Although theoretically the motivation of these scenar-
ios is to avoid the notorious Big-Bang Singularity [47–50],
phenomenologically these scenarios can also give features
on large scales, because the primordial fluctuations can be
generated in pre-inflationary phase. In this paper, we will
focus on the bounce inflation scenario, which is easy to
realize/understand in 4D classical Einstein gravity, without
resorting to theories of extra-dimensional spacetime such as
string/M-theory, or quantum gravity.

It is not a smooth way at all to build healthy bounce/bounce
inflation models. In the original idea of (nonsingular) bounce,
one has to make the universe contract to some minimum
volume (H < 0) and then expand again (H > 0), thus a
positive time derivative of the Hubble parameter is needed
which, according to the Friedmann Equation, violates the
Null Energy condition (NEC) [51]. The NEC violation will
generally cause the notorious ghost instability problem [52,
53], and things didn’t get improved until the work of [54] (see
also [55]) making use of Galileon/Hordeski theory, which

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-018-6085-5&domain=pdf
mailto:nishulei@mails.ccnu.edu.cn
mailto:hongli@ihep.ac.cn
mailto:qiutt@mail.ccnu.edu.cn
mailto:zhengwei@ihep.ac.cn
mailto:zhangxin@mail.neu.edu.cn


608 Page 2 of 15 Eur. Phys. J. C (2018) 78 :608

contains higher derivative terms but makes the additional
degree of freedom non-dynamical [56–62]. Moreover, it has
been found since 1998 [16] (see also [17] in 2002) that for
single field in contracting phase, the scale-invariant spectrum
of primordial perturbations required by the observations can
only come out when the equation of state (EoS) in contracting
phase is zero, however in that case, as proved in [63–66],
the universe will suffer from the anisotropy problem, which
cannot be solved unless the EoS of contracting universe is
larger than unity. In Refs. [67] and [33], the authors discussed
two possibilities of reconciling this contradiction by building
models with large EoS in contracting phase, and generate
scale-invariant power spectrum using curvaton field and a
sequencing inflation period, respectively. Thus, in this paper,
our theoretical analysis will be based on a bounce inflation
model within the framework of Horndeski theory [33].

The evolution of primordial perturbations in bounce infla-
tion scenario will be as follows: Initially, the primordial fluc-
tuations are assumed to be generated in the adiabatic vacuum
in the contracting phase. Since the Hubble horizon at that
time can be large, all the fluctuation modes reside deeply
inside the horizon. If the equation of state in contracting
phase is larger than −1/3, the horizon will shrink in con-
tracting phase, therefore the fluctuations with larger wave-
lengths will gradually exit the horizon. If the equation of
state in contracting phase is larger than 0, the fluctuations
will get blue-shifted, while those with smaller wavelengths
remain inside the horizon. At the bouncing phase when the
Hubble parameter passes through 0, the horizon approaches
infinity, all the fluctuations will reenter the horizon again. At
the inflationary phase, the fluctuations will exit horizon as in
normal inflation scenario, and reenter the horizon after the
end of inflation, thus can be observed by us today. Although
in inflationary phase the perturbations do not differ much
from the normal inflation case, the pre-inflationary evolu-
tions will be imprinted in the perturbations and encoded in
the CMB map, and these information will help us study the
pre-inflationary era of the universe, and distinguish between
different early universe scenarios. See [28–33,43,68,69] for
pioneering works.

The aim of this paper is to try to find the evidence of
the bounce inflation scenario with the current observations.
After the theoretical discussion for providing guidance for
parametrization, we will perform the data fitting analysis
starting from the typical primordial power spectrum, which
contains the characteristics of the evolution of bounce infla-
tion. It is worth pointing out that, in view of the spectral struc-
ture of the bounce inflation scenario, the conventional scale
invariant spectral parameterization method can not give an
efficient diagnosis. Unlike the usual scale invariant spectrum,
bounce inflation will provide the primordial curvature per-
turbation spectrum with characteristic structure, such as an
anomalous depression at large scales and oscillatory behav-

ior at the bounce scale. Numerically, the primordial spectrum
of curvature perturbations is more complicated than a power
law form, however, artificially it can usually be decomposed
into an inflationary inherent power law spectrum, and the
part related to the evolution of the contracting phase, i.e. a
polynomial combination of lots of parameters, which is usu-
ally in front of the amplitude. In this paper, by adopting the
Planck full temperature map released in 2015, as well as the
observations of baryon acoustic oscillations (BAO) and type
Ia supernovae (SN), we determine the posterior distributions
and the best-fit values of model parameters, and show their
correlations. Moreover, with the best fit values of the param-
eters, we plot the CMB TT power spectrum to see whether
our model is consistent with the anomalies indicated in the
observational data.

The rest of the paper is organized as follows: In Sect. 2
we analyze the evolution of background and perturbation of
bouncing inflation model. In Sect. 3.1 we dissect the typical
characters in primordial spectrum of bounce inflation model.
In Sect. 4, we study the effects of background parameters
on primordial spectrum. In Sect. 5 we perform a global fit
analysis on the parameters introduced in Sect. 2, and make
some discussions about the results. Conclusion is given in
Sect. 6. The explicit model realization of bounce inflation
is introduced in Appendix A, and for a side check of our
model, we also roughly analysis the tensor-scalar-ratio r and
the nonlinearity parameter f equilN L in Appendix B and C.1

2 Bouncing inflation model

2.1 Starting point: theoretical construction

We start from a general bounce inflation model in Horndeski
theory. The Lagrangian is as follows:

L =
5∑

i=2

Li , (1)

where

L2 = K(φ, X) ,

L3 = −G3(φ, X)�φ ,

L4 = G4(φ, X)R + G4,X [(�φ)2 − (∇μ∇ν)
2] ,

L5 = G5(φ, X)Gμν∇μ∇νφ

− G5,X

6
[(�φ)3 − 3(�φ)2 + 2(∇μ∇ν)

3] , (2)

In above action, the K and Gi depend on the scalar φ,
�φ ≡ gμν∇μ∇νφ, Gi,X ≡ ∂Gi/∂X , X ≡ −gμν∂μ∂νφ/2

1 We thank the referee for pointing this to us.
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Fig. 1 Left The sketch plot of the bounce inflation model described
by Eq. (5). The universe contracts very slowly at first, and then bounce
takes place, after which the universe experiences a fast, inflationary

expansion. Right The scale factor for the bounce solution with param-
eter values: k0 = 0.6, κ1 = 15, t0 = 15, κ2 = 10, γ = 1 × 103, λ1 =
λ2 = 10, V0 = 0.7M4

p, c = √
20,
 = 1.5 × 10−2Mp, v = 10Mp

is the kinetic energy, R is the Ricci scalar and Gμν is the
Einstein tensor.

In the flat FLRW universe, the metric can be given by

ds2 = −dt2 + a(t)2δi j dx
i dx j , (3)

and the Friedmann equations and the equation of motion of
φ are given by

K(φ)X + 3T (φ)X2 + 3GX H φ̇3 − 2GφX + V(φ) − 3H2 = 0 ,

K(φ)X + 2T (φ)X2 + 3

2
GX H φ̇3 − 2GφX − GX φ̈X + Ḣ = 0 ,

[K(φ) + 6T (φ)X + 6GX H φ̇ + 6HGXX φ̇ − 2(Gφ + GXφX)]φ̈
+ 3H [K(φ) + 2T (φ)X − 2(Gφ − GXφX)]φ̇
+ [2K(φ) + 4Tφ(φ)X + 6Gφ(Ḣ + 3H2) − 2Gφφ]X
− Kφ(φ) − Tφ(φ)X2 + Vφ(φ) = 0 .

(4)

An explicit model based on the above action is given
in [33]. In order to remind the readers without occupying
the pages of context, we put the detailed analysis is in the
Appendix A.

2.2 Background: parametrization of the model

Although one can realize bounce inflation in concrete models
as shown above, in order to grasp the spirit of bounce inflation
without being trapped in model, we parametrize the scale
factor in the bounce inflation scenario as follows:

a(η) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

acon(η̃B− − η)
1

εc−1 for η < ηB− ,

aB
[
1 + α

2 (η − ηB)2
]

for ηB− ≤ η ≤ ηB+ ,

aexp(η̃B+ − η)
1

εe−1 for η > ηB+ ,

(5)

where η̃B± is defined as η̃B− ≡ ηB− − [(εc − 1)Hcon]−1,
η̃B+ ≡ ηB+ − [(εe − 1)Hcon]−1, where ηB− (ηB+) is the
beginning (ending) time of the bouncing phase, ηB is the
bouncing point, aB is the scale factor at ηB ,Hcon (Hexp) is the
conformal Hubble parameter (H ≡ aH ) at ηB− (ηB+), with
H representing the energy scale at the moment, and εc (εe) is
the slow-roll parameters in contracting (inflationary) phase.
The above parameterization contains all the three (contract-
ing/bouncing/expanding) phases of the bouncing inflation
scenario, which we will dub as “three-phase model”. We
require εc to be no less than 3 (equation of state no less than
unity) in order to avoid the anisotropy problem. Moreover, εe
must be close to 0 as it works in inflationary phase. A sketch
plot of this case is drawn in Fig. 1.

3 Cosmological perturbation

3.1 Scalar perturbations

In order to connect with the observations, in this subsec-
tion, we discuss the evolution of perturbation generated in
bounce inflation scenario given by Eq. (5) (For similar anal-
ysis, see [28,31,68,69]). The FLRW metric in an ADM form
is:

ds2 = −N 2dt2 + hi j (dx
i + Nidt)(dx j + N jdt) , (6)
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where N = 1+A is the lapse function, Ni = ∂iϕ(i = 1, 2, 3)

is the shift vector, and hi j = a2(t)e2ζ δi j is the induced 3-
metric. We can rewrite Eq. (6)

ds2 = −[(1 + A)2 − a(t)−2e−2ϕ(∂ζ )2]dt2

+ 2∂iζdtdx
i + a(t)2e2ϕdx2 (7)

and define the curvature perturbation as

R ≡ ζ + H

φ̇
δφ . (8)

The quadratic action of the curvature perturbation R is

S(2) = 1

2

∫
dηd3xa2 Q

c2
s
[R′2 − c2

s (∂R)2] (9)

where ′ is the derivative with respect to conformal time η ≡∫
a−1(t)dt , and

Q = 2M4
p X

(M2
pH − GX X φ̇)2

[
K(φ) + 2T (φ)X

+ 2(GX + GXX X)φ̈ + 4HGX φ̇ − 2G2
X X

2

M2
p

]
,

c2
s = (M2

pH − GX X φ̇)2

2M4
p X

[
K(φ) + 6T (φ)X

+ 6H(GX + GXX X)φ̇ + 6G2
X X

2

M2
p

]
Q .

(10)

Therefore, we can get the equation of motion of the primor-
dial perturbation in contracting phase:

u′′
k +

(
c2
s k

2 − z′′

z

)
uk = 0 , uk ≡ zR , z ≡ a

√
Q

cs
.

(11)

The scale factor evolves according to Eq. (5) for η < ηB−.
First of all, we assume that the perturbations are generated in
the adiabatic vacuum, which resides deep inside the horizon.
The solution is the well-known plane-wave solution:

uk ∼ 1√
2k

e−ikη . (12)

For simplicity, we assume Q � 2M2
pεc and c2

s � 1 in
contracting phase. As has been shown in the Appendix A,
although we need higher derivative term to trigger the
bounce, for the regions far away from the bounce, it is pos-
sible to make those terms quite suppressed, and the universe
behaves like it was driven by a canonical single field. There-
fore

z′′

z
� a′′

a
� H2

con

(1 + 2Hcon(η − ηB−))2 . (13)

Substituting into Eq. (11) one can get the solution:

uk = √−(η − η̃B−)
{
c1H

(1)
ν− [−k(η − η̃B−)]

+ c2H
(2)
ν− [−k(η − η̃B−)]

}
, ν− ≡ (εc − 3)

2(εc − 1)
,

(14)

where H (1)
ν− and H (2)

ν− are the first and second kind Hankel
functions of ν− order. Matching Eq. (14) with the vacuum
solution Eq. (12) one has

c1 =
√

π

2
ei

π
2 (ν−+ 1

2 ) , c2 = 0 , (15)

and Eq. (14) can be rewritten as:

uk =
√

−π(η − η̃B−)

4
ei

π
2 (ν−+ 1

2 )H (1)
ν− [−k(η − η̃B−)] .

(16)

Unlike the contracting phase, during bouncing phase the
higher-order derivative terms get involved, making the whole
equation of motion much more complicated. Moreover, Null
Energy Condition has to be violated to get the bounce. To
be specific but without losing generality, we follow [33] to
write down the equation of motion of the perturbations in
bouncing phase as:

u′′
k + [c̄2

s k
2 − (α − χ)a2

B]uk = 0, (17)

where c̄s is effective sound speed during bouncing phase, and
χ is the field-dependent parameter introduced in [33]. The
above equation has following solution:

uk = c3 cos[l(η − ηB)] + c4 sin[l(η − ηB)], (18)

where l2 = c̄2
s k

2+(α−χ)a2
B is a small number, with c̄s2 � 0

and α � χ . The solution implies that all the perturbation
modes are the oscillation modes, i.e., the modes are inside
the horizon, which is because during the bouncing phase,
H → 0 and the horizon (∼ H−1) approaches to infinity.
Moreover, we require that the solution continuously transits
from contracting phase to bouncing phase, namely, the solu-
tion Eq. (18) should be continuously matched to the solution
Eq. (14) at the transition time point ηB−. Making uk and its
derivative continuous at ηB−, the coefficients in the solution
in bouncing phase Eq. (18) are:

c3 = 1 + i

4l

√
π

{√

− 1

Hcon
kH (1)

1

[
− k

2Hcon

]
sin
[
l(ηB − ηB−)

]

+ H (1)
0

[
− k

2Hcon

]{√

− 1

Hcon
l cos

[
l(ηB − ηB−)

]

−
√

−Hcon sin
[
l(ηB − ηB−)

]
}}

,
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Fig. 2 Left: The evolution of physical Hubble horizon in this model.
In the contracting phase, 1/H decreases so as the fluctuations with large
wavelengths can exit the horizon in this period. Around the bounce time
when H = 0, the horizon diverges and all the modes will reenter into
the horizon. In the inflationary phase, the horizon becomes flat since H

is close to a constant, so most of the modes will exit the horizon and
become classical perturbations. Right: The evolution of the comoving
curvature perturbation for various scales. Large scale modes (small k)
remain unchanged across the bounce, while at small scale (large k), the
curvature perturbation has obvious oscillation

c4 = 1 + i

4l

√
π

{
−
√

− 1

Hcon
kH (1)

1

[
− k

2Hcon

]
cos

[
l(ηB − ηB−)

]

+ H (1)
0

[
− k

2Hcon

]{√
−Hcon cos

[
l(ηB − ηB−)

]

+
√

− 1

Hcon
l sin

[
l(ηB − ηB−)

]
}}

. (19)

After the bounce, the universe will enter into an inflation-
ary expanding phase. The equation of motion of the pertur-
bation is basically the same as Eq. (11), except that εc in z
is replaced with εe, and the scale factor evolves according
to Eq. (5) for η > ηB+. As in the contracting phase, it is
also useful to simplify the perturbation equations by setting
Q � 2M2

pεe and c2
s � 1. Then we have

z′′

z
� a′′

a
� H2

exp

(1 − Hexp(η − ηB+))2 . (20)

Substituting into Eq. (11) we get the solution:

uk = √−(η − η̃B+)
{
c5H

(1)
ν+ [−k(η − η̃B+)]

+ c6H
(2)
ν+ [−k(η − η̃B+)]

}
, ν+ ≡ (εe − 3)

2(εe − 1)
. (21)

Requiring the continuity of the solution at the transition from
bouncing phase to inflationary phase leads to the matching
of the solution Eqs. (21) and (18) at the transition time point
ηB+, giving rise to the explicit expressions of c5 and c6:

c5 = 1

8k2 e
i π

4 − ik
Hexp π

√

− k

Hcon

× 1

l
(H2

exp − iHexpk − k2)

{
kH (1)

1

[
− k

2Hcon

]

+ H (1)
0

[
− k

2Hcon

]
[l cos(l�ηB ) + Hcon sin(l�ηB )]

}

+ (Hexp + ik)

{
−kH (1)

1

[
− k

2Hcon

]
cos(�ηB)

+ H (1)
0 [l sin(l�ηB ) − Hcon cos(l�ηB )]

}
,

c6 = 1
√

2
(

k
Hexp

)3/2

(
1 + i

8

)
e

ik
Hexp

(
k

Hexp

)3/2

π

× 1

l
(H2

exp − iHexpk − k2)

{√

− 1

Hcon
k sin(l�ηB)H (1)

1

[
− k

2Hcon

]

+ H (1)
0

[
− k

2Hcon

][√

− 1

Hcon
l cos(l�ηB ) −

√
−Hcon sin(l�ηB )

]}

+ (Hcon − ik)

{
−
√

− 1

Hcon
k cos(l�ηB )H (1)

1

[
− k

2Hcon

]

+ H (1)
0

[
− k

2Hcon

][√
−Hcon cos(l�ηB )+

√

− 1

Hcon
l sin(l�ηB )

]}
.

(22)

where �ηB = ηB− − ηB+.
The numerical evolution of the curvature perturbation R

is shown in Fig. 2. From the left panel we can see that in
bounce inflation scenario, the small scale modes will exit
the horizon after the bounce, which is same as in standard
inflation scenario, while the large scale modes will exit the
horizon in contracting phase, which may blueshift the power
spectrum. The right panel shows evolution of the curvature
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= 0.0003,Hexp = 7.0 Hcon = 7.0,Hexp = 7.0 Hcon = 7.0, = 0.0003(a) (b) (c)

Fig. 3 Primordial power spectra of curvature perturbations with different Hcon , |�ηB | and Hexp

perturbation with different wave numbers k in the range
10−2 ∼ 10−8 with respect to t . While the large scale modes
(k = 10−6, 10−7, 10−8) behave like a constant, the small
scale modes (k = 10−2, 10−3, 10−4) present rapid oscilla-
tions [41,42].

The solution (21) in the inflationary phase corresponds
to the power spectrum that we could observe. The power
spectrum of curvature perturbation is defined as:

PR = k3

2π2 |R|2 . (23)

From the solution Eq. (21), we have

PR = �2
R|c5 − c6|2 , (24)

where

�2
R ≡ H2

8π2M2
Pεe

,

|c5 − c6|2 ∼

⎧
⎪⎨

⎪⎩

k
2εc

εc−1 , for small k ,

1+trigonometric functions , for large k ,

(25)

where the corrections of trigonometric functions is of sine
or cosine type.2 This can cause the oscillation behavior in
primordial power spectrum, which comes from the bouncing
process, however, it can be averaged to zero for large k and
will not effect the amplitude and the spectral index in leading
order.

One can parameterize this spectrum (24) as

PR = AsIII

(
k

k0

)nsIII−1

, (26)

2 For simplicity and illustration, here we chose different matching con-
ditions as in Ref. [33], therefore the result will be somehow different.
The similar treatment can be found in e.g. [28,31,68].

thus the primordial spectrum Eq. (24) can be described by
five free parameters, i.e., Hcon, Hexp, �ηB , nsIII, and AsIII.
The parameters Hcon and Hexp describe energy of inflation
phase and contracting phase, �ηB describes the time interval
of bouncing process, all the five parameters are necessary.

4 Effects of background parameters on primordial
spectrum

In this section, we analyze the typical characters of primor-
dial power spectrum given by the bounce inflation model.
We plot primordial power spectrum in Fig. 3 with differ-
ent background parameters, i.e. Hcon, Hexp and �ηB , and in
each plot of Fig. 3, we only change one bouncing parameter
while fix the others in order to highlight the effect from the
parameter. Fig. 3a gives the effect from Hcon, and from that
we find Hcon can modulate the spectrum not only on ampli-
tude, but also the locations of wave peaks and troughs, and
it is understandable theoretically, since Hcon determines the
energy scale of the bounce phase. Fig. 3b shows the effect
from �ηB , which determines the duration of bounce, and
we see that once �ηB is small, the modulation effect can be
neglected. Fig. 3c presents the effect come from Hexp which
is the energy scale of the following expansion period, which
mainly tilts the amplitude.

Based on the discussions above, we can see that Hcon,
Hexp and �ηB are the parameters introduced by bounc-
ing process and they characterize the features of primor-
dial power spectrum on large scales. With modulation from
those parameters, primordial power spectrum will have a cut
off and oscillation in very large scales, which can lead to a
depress in CMB TT power spectrum with oscillation, favored
by the current Planck data [1]. In next section, we will discuss
the observational constraints on parameters of the bounce
inflation model.
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Table 1 The block above the
middle line shows the basic
parameters in the standard

CDM model, and the block
below the line includes the
derived parameters in the
three-phase model and the
two-phase model

Parameter Description Prior range

�bh2 Physical baryon density today [0.005,0.1]

�dmh2 Physical dark matter density today [0.01,0.99]

� 100 times angular size of sound horizon [0.5,10]

τ Re-ionization optical depth [0.01,0.8]

Three-phase model/two-phase model(no �ηB )

ln(−Hcon) Conformal Hubble parameter at the end of contracting phase [− 12,− 7]

ln(Hexp) Conformal Hubble parameter at the onset of inflation phase [− 12,− 7]

�ηB Conformal time length of the bouncing phase [− 0.2,0]

nsIII Scalar spectral index at ks0 = 0.05Mpc−1 [0.8,1.2]

ln(1010AsIII) Amplitude of the primordial curvature perturbations [2.7,4.0]

at ks0 = 0.05Mpc−1

5 Observational data diagnosis

For observational data diagnosis, we mainly consider CMB
temperature power spectrum data [1]. CMB is a powerful
probe for studying the physics of early universe, which can
provide temperature and polarization information about the
microwave background photons in the full sky released at the
last scattering surface. It measures the angular power spectra
of temperature and polarization of CMB photons. We use the
Planck 2015 CMB high-� (30 ≤ � ≤ 2508) temperature and
low-� (2 ≤ � ≤ 29) temperature-polarization power spectra
data. In order to get better constraints on the background
parameters, we adopt BAO data, 6DF, SDSS, WiggleZ and
SNIa data of JLA sample in our global fitting [70–74].

We employ the modified CosmoMC program package to
perform the global fitting analysis on the bounce inflation
model. In combination with basic cosmological parameters
of 
CDM, the full parameter sets for our model are summa-
rized in Table 1. In our global fitting analysis, we take Hcon,
Hexp as the free parameters, and vary them as other cos-
mological parameters encoded in MCMC sampling method
which adopted by CosmoMC program. We fix �ηB = 0,
since it will not affect the primordial power spectrum a lot in
a short term bounce phase [31]. The model with �ηB = 0
is dubbed as “two-phase model” hereafter. The final con-
straints on primordial power spectrum parameters are listed
in Table 2.

We get constraints as As = 2.113+0.012
−0.022, ns =

0.9676+0.0154
−0.0155, Hcon < −7.00(2σ) and Hexp < −7.51(2σ).

The best fit values of bounce parameters Hcon and Hexp are
Hcon = −7.00 and Hexp = −7.51. We find that the best
fits of ln(−Hcon) and ln(Hexp) get very similar values in
this case, which indicates that a symmetric bounce process is
favored. Theoretically, a symmetric bounce inflation model
can be easily achieved, as shown in [31]. For comparison, we
also constrain the standard inflation model with the primor-
dial power spectrum of the power-law form by using the same

Table 2 Constraints on the standard inflation model and the two-phase
bounce inflation model by using the current Planck+BAO+SN data

Parameters Standard model Two-phase model

ln (−Hcon) − < −7.00

ln (Hexp) − < −7.51

109AsII 2.176+0.099
−0.100 2.113+0.012

−0.022

nsII 0.9668+0.0185
−0.0143 0.9676+0.0154

−0.0155

χ2
min 11978.60 11973.65

Table 3 Constraints on the standard inflation model and the three-phase
bounce inflation model by using the current Planck+BAO+SN data

Parameters Standard model Three-phase model

ln (−Hcon) − < −5.72

ln (Hexp) − < −7.65

�ηB − > −0.0071

109AsIII 2.176+0.099
−0.100 2.117+0.020

−0.011

nsIII 0.9668+0.0185
−0.0143 0.9700+0.0155

−0.0145

χ2
min 11978.60 11973.35

observational data, and the fitting results are also shown in
Table 3. Comparing the two models, we find that the bounce
inflation model can fit the data better. since we get much
smaller χ2 than the normal 
CDM �χ2 = 5.25, based on
AIC of Bayesian statics for two additional parameters involv-
ing in the fitting, which leads to �χ2/�dof = 2.625 larger
than 1, meaning that two additional parameters do not lead to
overfit. Obviously, introducing bounce parameters is worthy
to be paid statistically. For the constraints of the parameters
As and ns , the two cases are very similar.

With the best fit values given in Table 2, we plot the
primordial power spectrum of curvature perturbations for
the bounce inflation model in Fig. 4. From the plot we
can see that, at large scales (smallest k) the spectrum of
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Fig. 4 Primordial power spectra of curvature perturbations(solid black
line) and the CMB temperature angular power spectrum(solid blue line)
for the bounce inflation model and the standard inflation model accord-

ing to the best fits to the current observational data. The red points show
the Planck 2015 TT spectrum data with 1σ errors

Fig. 5 One dimensional
marginalized posterior
distributions for Hcon,�ηB and
Hexp from the current
Planck+BAO+SN data
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bounce inflation has an obvious suppression, with the cut-
off scale k ∼ 0.0005 Mpc−1 [75–77]. Such a suppression
will eventually lead to deficit of the angular power spectrum
of temperature at large scales. This is because fluctuations
with large scale wavelengths will exit horizon in contracting
phase, and will get blue-tilted from the solution (14). After
the primordial perturbation evolves to the bounce scenario,
the primordial power spectrum has a damped oscillation at
0.0005 Mpc−1 < k < 0.005 Mpc−1 [76–79], which is due to
the fact that all the fluctuation modes will reenter the horizon
around the bounce point. The oscillations within the bounc-
ing scenario might explain the anomalous behavior of the
CMB spectrum at 20 < l < 40. When k > 0.005 Mpc−1,
the universe bounces into standard inflation phase that has a
nearly scale-invariant power spectrum with a slightly red tilt.

We also plot the CMB temperature angular power spec-
trum for the bounce model comparing with the standard infla-
tion model according to their best-fit values, and the obser-
vational data at all scales. We see that the bounce inflation
model can realize suppression and oscillations of C� spec-

trum at large scales, and can fits the data well with the oscil-
lating modulation. We also try to free �ηB in global fitting
analysis, and we get an upper limit on �ηB , the best fit value
is consist with 0, indicating that the bouncing process dura-
tion can be very short. If the bouncing phase is short enough,
namely |�ηB | → 0 [31], as shown in Fig. 5. We also plot the
2D posterior distribution contours for the parameters in the
AsI I − Hcon, ns I I − Hcon, AsI I − Hexp and ns I I − Hexp

planes in Fig. 6. During our calculation, we find freeing �η

will not decrease χ2 a lot, i.e. �χ2 = χ2
3 − χ2

2 = −0.3,
comparing with freeing H− and H+. Thus, we need more
observational data for tighter constraints.

6 Conclusion

Standard cosmological scenario of Big-Bang and inflation
has achieved great success. However, some other scenarios
are still not excluded. Especially, to explain the anomalies
in CMB observation as well as to solve theoretical problems
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Fig. 6 Two dimensional joint marginalized constraints (68% and 95% confidence levels) on Hcon, Hexp, AsII and nsII from the current
Planck+BAO+SN data

such as singularity, it is interesting to take the alternative
theories into account.

In this paper, we study the scenario in which a bounce
happened before inflation. We consider the “three-phase” (or
“two-phase” after setting �ηB = 0) parameterized bounce
inflation models, which can be modeled by the Horndeski
theory. We derived the primordial power spectra for the
model in a rather general form, and showed that the results
are determined by the parameters Hcon,Hexp, ns, As (two-
phase model), and an additional parameter, �ηB (three-phase
model). Using the data combination of Planck 2015, BAO
and JLA, we placed the observational constraints on these
parameters, and determined their 1D posterior distributions
and 2D posterior contours. Using the best fit values, we plot-
ted the primordial power spectrum and the CMB TT spec-
trum, and showed that the suppression of the spectrum at
large scales and the oscillation behavior at mediate scales
can well explain the anomalies in the CMB observational
data, which is a support for the bounce inflation scenario.
We also roughly calculate the tensor-scalar-ratio r and the
nonlinearity parameter f equilN L . Moreover, we found that the
correlation between the comoving Hubble parameter (during
the costracting phase or inflation phase) and ns and As are
weak.

The results of the “two-phase model” and “three-phase
model” don’t differ too much, and the addition of �ηB can-
not give better constraints for the current observational data,

which means that we still cannot make further probe to the
bounce process itself, or distinguish between the two models.
In order to do so, we need to expect more precise observa-
tional data, especially on large scales, in the future.
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Appendix A: an explicit bounce inflation model

In this section, we review how the parameterization of Eq. (5)
can be realized by a realistic model. Ref. [33] provide an
interesting example of such a realization, the Lagrangian of
which is:
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Fig. 7 Plots of functions K(φ), T (φ) and X−1G(φ) in Eq. (A3). In such a choice, all the three functions have nontrivial value only around the
bouncing point, which is useful to trigger the bounce

Fig. 8 Plots of functions V(φ) and φ(t)

L = K(φ)X + T (φ)X2 − G(X, φ)�φ − V(φ) , (A1)

where X ≡ −∇μφ∇μφ/2, � ≡ ∇μ∇μ, and we have made
use of the mechanism of Galileon theories in order to get rid
of the ghost instability problem [54–59]. The shape functions
K(φ), T (φ), G(X, φ) and the potential V(φ) are chosen to
be:

K(φ) = 1 − 2k0

[1 + 2κ1(φ/Mp)2]2 ,

T (φ) = 1

M4
p

t0
[1 + 2κ2(φ/Mp)2]2 ,

G(X, φ) = 1

M3
p

γ X

[1 + 2κ2(φ/Mp)2]2 , (A2)

V(φ) =
[

1 − tanh

(
λ1

φ

Mp

)]
V con(φ)

+
[

1 + tanh

(
λ2

φ

Mp

)]
V in f (φ) ,

V con(φ) = −V0e
cφ/Mp , V in f (φ) = 
4

(
1 − φ2

v2

)2

,

(A3)

where k0, κ1, t0, κ2, γ , λ1, λ2, V0, c, 
, and v are con-
stants, and V con and V in f are the part of potential in
contracting phase and inflationary phase, respectively. In
order to find out the bounce inflation in detail, we plot
K(φ), T (φ), X−1G(X, φ), V(φ) and φ(t) numerically in
Figs. 7 and 8. From the Fig 8 we can see that the shape of the
potential shares the same shapes of V con(φ) for negative φ

while that of symmetry breaking inflation potential V in f (φ)

for positive φ. We will see below that φ = 0 is almost the
division of contracting and expanding phases. The param-
eters are chosen as k0 = 0.6, κ1 = 15, t0 = 5 κ2 = 10,
γ1 = 1 × 10−3, λ1 = λ2 = 10, V0 = 0.7M4

p, c = √
20,


 ≈ 1.5 × 10−2, 10Mp. By such a choice, at the region
far from the bounce (where we set as |φ/Mp| � 1), K(φ)

goes to unity while T (φ) and G(X, φ) are turned off, and
the Lagrangian reduces to that of two-stage canonical single
field:

Lcon = X − V con(φ) , Lin f = X − V in f (φ) , (A4)

the former of which is just the Lagrangian of the ekpyrotic
model with wc ≥ 1 (εc ≥ 3), while the latter is just the
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Lagrangian of the symmetry breaking inflation model with
wc ≥ 1 (εc ≥ 3), giving rise to the parameterization of Eq. (5)
for η < ηB− (η > ηB+). On the other hand, at the region near
the bounce (|φ/Mp| 
 1) where the higher-order derivative
terms take part in, it is difficult to have reduced Lagrangian
and equation of motion. However, from the numerical plot
in [33] one can mimic the Hubble parameter with the func-
tion H = αt with positive coefficient α, which can get the
parametrization of Eq. (5) for ηB− ≤ η ≤ ηB+.

As has explained in the introduction (and see also [33]), by
making use of Galileon form, this model has no ghost prob-
lem. Moreover, the anisotropy problem is also gone because
of large wc, while the scale-invariant power spectrum could
be obtained at inflationary stage. Although recently peo-
ple find that the such kind of Galileon bounce models has
the problem of gradient instability [80], this usually hap-
pens round bounce region which, as has been shown before,
will not have much effects to the whole phenomenologi-
cal picture. Moreover, this instability can be cured by some
operators which can come from the Effective Field The-
ory [68,69,81] (see also discussions in [33]). Models which
contains these operators in a covariant way is presented in
the following works of [82,83].

Appendix B: tensor perturbations

Primordial gravitational waves are gravitational perturba-
tions that are produced by the vacuum fluctuations of grav-
ity. The linear tensor perturbations can be written as gμν =
a2(τ )(ημν + hμν). As a theoretical study, we briefly discuss
the tensor perturbations generated in our model. The action
of the perturbations can be expressed as

S2
T = 1

2

∑

s=+,×

∫
dηd3xa2

[
h′2
s − (∂hs)

2
]

, (B1)

where hs = h+ or h×, representing two independent states.
It is convenient to calculate the perturbations with rescaled
variables v ≡ ah+,×/2. From Eq. (B1), and working in the
momentum space, we can obtain

v′′
k +

(
k2 − a′′

a

)
vk = 0 . (B2)

We follow the same method as what we did in 3.1. For
the initial condition of h, we also choose the Bunch-Davies
vacuum, so the solution of the tensor perturbation at the initial
time is:

vk = 1√
2k

eikη . (B3)

Substituting Eq. (5) into Eq. (B2), we can get the solution at
constraint phase:

vk = √−(η − η̃B−)
{
cT1 H (1)

ν− [−k(η − η̃B−)]

+ cT2 H (2)
ν− [−k(η − η̃B−)]

}
, ν− ≡ (εc − 3)

2(εc − 1)
,

(B4)

and considering the initial conditions, we can get the coeffi-
cients:

cT1 =
√

π

2
, cT2 =

√
π

2
. (B5)

Unlike the scalar perturbations, the so called Q and c2
s func-

tions will be trivial in the case of tensor perturbations, even
in the bouncing phase. So we can get the equation of vk :

v′′
k + (k2 − αa2

B) = 0 (B6)

and the solution is:

vk = cT3 a
−1
B cos[l ′(η − ηb)] + cT4 a

−1
B sin[l ′(η − ηB)] , k >

√
αaB

vk = cT3 e
l ′(η−ηB ) + cT4 e

−l ′(η−ηB ) , k <
√

αaB

(B7)

where l ′2 ≡ |k2 −αa2
B |. In the inflationary expanding phase,

the solution of Eq. (B2)

vk = √−(η − η̃B+)
{
cT5 H (1)

ν+ [−k(η − η̃B+)]

+ cT6 H (2)
ν+ [−k(η−η̃B+)]

}
, ν+ ≡ (εe − 3)

2(εe − 1)
. (B8)

According to the continuity of vk , we can get the values of
cT3 , cT4 , cT5 and cT6 .

cT3 = 1 + i

4l ′
√

π

{√

− 1

Hcon
kH (1)

1

[
− k

2Hcon

]
sin
[
l ′(ηB − ηB−)

]

+ H (1)
0

[
− k

2Hcon

]{√

− 1

Hcon
l ′ cos

[
l ′(ηB − ηB−)

]

− √−Hcon sin
[
l ′(ηB − ηB−)

]}}
,

cT4 = 1 + i

4l ′
√

π

{
−
√

− 1

Hcon
kH (1)

1

[
− k

2Hcon

]
cos

[
l ′(ηB − ηB−)

]

+ H (1)
0

[
− k

2Hcon

] {√−Hcon cos
[
l ′(ηB − ηB−)

]

+
√

− 1

Hcon
l ′ sin

[
l ′(ηB − ηB−)

]
}}

.

(B9)
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cT5 = 1

8k2 e
i π

4 − ik
Hexp π

√

− k

Hcon

× 1

l ′
(H2

exp − iHexpk − k2)

{
kH (1)

1

[
− k

2Hcon

]

+ H (1)
0

[
− k

2Hcon

] [
l ′ cos(l ′�ηB ) + Hcon sin(l ′�ηB )

]}

+ (Hexp + ik)

{
−kH (1)

1

[
− k

2Hcon

]
cos(�ηB )

+ H (1)
0

[
l ′ sin(l ′�ηB ) − Hcon cos(l ′�ηB )

]}
,

cT6 = 1
√

2
(

k
Hexp

)3/2

(
1 + i

8

)
e

ik
Hexp

(
k

Hexp

)3/2

π

× 1

l ′
(H2

exp − iHexpk − k2)

{√

− 1

Hcon
k sin(l ′�ηB )H (1)

1

[
− k

2Hcon

]

+ H (1)
0

[
− k

2Hcon

][√

− 1

Hcon
l ′ cos(l ′�ηB ) − √−Hcon sin(l ′�ηB )

]}

+ (Hcon − ik)

{
−
√

− 1

Hcon
k cos(l ′�ηB )H (1)

1

[
− k

2Hcon

]

+ H (1)
0

[
− k

2Hcon

][√−Hcon cos(l ′�ηB ) +
√

− 1

Hcon
l ′ sin(l ′�ηB )

]}
.

(B10)

The solution Eq. (B8) in the inflationary phase corre-
sponds to the power spectrum that we could observe, and
from the Eqs. (B9) and (B10), the power spectrum of curva-
ture perturbation can be written as:

PT ≡ 2
k3

2π2 |hk |2 = �2+,×|cT5 − cT6 |2 (B11)

where

�2+,× = 2H2

π2M2
pεe

,

|cT5 − cT6 |2 ∼

⎧
⎪⎨

⎪⎩

k
2εc

εc−1 , for small k ,

1 + trigonometric functions , for large k .

(B12)

According to the result for scalar and tensor perturba-
tions, we can calculate the tensor-scalar-radio r , convention-
ally defined as r ≡ PT /PR. From Eqs. (24) as well as (B11),
one gets

r = �2+,×
�2

R

|cT5 − cT6 |2
|c5 − c6|2 = 16εe × O(1) , (B13)

where in the last step, we made use of the fact that the mod-
ulation in scalar and tensor spectrum behaves in the same
way. Therefore the tensor/scalar ratio is roughly the same as
that in slow-roll inflation. For the recent constraints on the
tensor/scalar ratio from the Planck data is about r < 0.07
at 2σ C. L. [84], the r in Eq. (B13) is acceptable provided
εe � O(10−3). As a side remark, this can also be applicable

to the large scale region, although there is a blue tilt in both
tensor and scalar power spectrum.

Appendix C: non-gaussianites

In the above subsection, we studied the linear perturbation
theory of the universe. However, non-Gaussianities also plays
a crucial role in cosmological perturbations. Recent observa-
tions provided us a precise measurement of primordial non-
Gaussianities, which implies a tight constraint of f localN L =
0.8±5.0, f equilN L = −4±43, f orthoN L = −26±21 (combined
temperature and polarization data, 68% CL, statistical) [34].
Therefore, non-Gaussianities can also be treated as a power-
ful criteria to justify the early universe models. In this section,
we discuss about the (equilateral) non-Gaussianities gener-
ated in the bounce inflation scenario.

In order to express the action Eq. (1) up to third order,
we need to introduce an auxiliary filed ξ to eliminate the
perturbation parameter ϕ in Eq. (7). Follow the same lines of
Ref. [35,36], the ξ satisfies:

ϕ = − M2
p

M2
pH − φ̇XGX

ζ+ a2

M2
p
ξ , where ∂2ξ = Qζ̇ , (C1)

where the value of Q is different in the different evolution
periods.

And now, we can take a approximate analysis for the
sake of simplicity. When the universe is far away from the
bounce point, i.e., |φ/Mp| � 1, we can get the Lagrangian
as Eq. (A4). In this case, we have Q � 2M2

pε (ε = εc for
contracting phase, ε = εe for inflation phase) and c2

s � 1.
The cubic action can be written:

S(3) =
∫

dtd3x

{
a3Z1M

2
pζ ζ̇ 2 + aZ2M

2
pζ(∂ζ )2 + a3Z3ζ̇ (∂i ζ )(∂i ξ)

+ a3(Z4/M
2
p)∂

2ζ(∂ξ)2

− 2
[
∂kζ∂kξ − ∂−2∂i∂ j (∂i ζ∂ j ξ) − ζ̇ ζ

− (∂ζ )2 − ∂−2∂i∂ j (∂i ζ∂ j ζ )

4a2

] [
2
d

dt
(a3M2

pεζ̇ ) − a∂2ζ

]}

(C2)

where the coefficients Zi (i = 1, 2, 3, 4) are

Z1 = ε − ε̇

Hε

Z2 = ε + ε̇

Hε
− 2

ċ2
s

H

Z3 = ε2

2
− 2ε

Z4 = 1

4
ε

(C3)
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The last term of Eq. (C2) survives only at second order in
ζ , and we will neglect its contribution to non-Gaussian. The
ζ(k) is primordial quantum perturbation in the early universe,
we can obtain the vacuum expectation value of ζ(k) for three-
point operator by using the interaction picture.

< ζ(k1)ζ(k2)ζ(k3) >

= −i
∫ ηe

ηi

dηa < 0|[ζ(ηe, k1)ζ(ηe, k2)ζ(ηe, k3),Hint (η)]|0 >

(C4)

where Hint (η) is the interaction Hamiltonian which is equal
to the Lagrangian of the cubic action [37,38]. After going
over to Fourier space, one finds that

< ζ(k1)ζ(k2)ζ(k3) >

= (2π)3δ3(k1 + k2 + k3)(PR)2Fζ (k1, k2, k3) (C5)

where PR is the power spectrum of perturbation in the con-
tracting or inflationary phase and the parameter Fζ can be
defined as

Fζ (k1, k2, k3) = (2π)4

�3
i=1

Aζ (k1, k2, k3) (C6)

where

Aζ = 1

4ε
(S1Z1 + S2Z2) + 1

8
S3Z3 + ε

4
S4Z4 (C7)

in which S1,S2,S3 and S4 are the shape functions with the
relations

S1 = 2

K

∑

i> j

k2
i k

2
j − 1

K

∑

i �= j

k2
i k

2
j ,

S2 = 1

2

∑

i

k3
i + 2

K

∑

i> j

k2
i k

2
j − 1

K 2

∑

i �= j

k2
i k

3
j

S3 =
∑

i

k3
i − 1

2

∑

i �= j

ki k
2
j − 2

K 2

∑

i �= j

k2
i k

3
j ,

S4 = 1

K 2

⎡

⎣
∑

i

k5
i + 1

2

∑

i �= j

ki k
4
j − 3

2

∑

i �= j

k2
2k

2
j − k1k2k3

∑

i> j

ki k j

⎤

⎦

(C8)

where K = k1 + k2 + k3.
In general, the non-linear parameter fN L , characterizing

the amplitude of non-Gaussian, can be defined as [39,40]

fN L = 10

3

Aζ∑3
i=1 k

3
i

. (C9)

As the model containing higher derivative term, the equi-
lateral shape of the non-Gaussianity where k1 = k2 = k3 = k
will be the most significant. The non-Gaussian parameter of
equilateral bispectrum Eq. (C7)

f equilN L = 55

36
εe + 5ε̇e

12Hεe
for large k . (C10)

As one can see that, since we assume that we can only observe
the perturbations of large k modes, f equilN L will be suppressed
according to εe. For εe � O(0.01), the non-Gaussianity is
quite within the observational constraints.
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