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Abstract In the present work, we study the general sur-
rounded Vaidya solution by the various cosmological fields
and its nature describing the possibility of the formation of
naked singularities or black holes. Motivated by the fact that
real astrophysical black holes as non-stationary and non-
isolated objects are living in non-empty backgrounds, we
focus on the black hole subclasses of this general solution
describing a dynamical evaporating-accreting black holes
in the dynamical cosmological backgrounds of dust, radi-
ation, quintessence, cosmological constant-like and phan-
tom fields, the so called “surrounded Vaidya black hole”.
Then, we analyze the timelike geodesics associated with the
obtained surrounded black holes and we find that some new
correction terms arise relative to the case of Schwarzschild
black hole. Also, we address some of the subclasses of the
obtained surrounded black hole solution for both dynami-
cal and stationary limits. Moreover, we classify the obtained
solutions according to their behaviors under imposing the
positive energy condition and discuss how this condition
imposes some severe and important restrictions on the black
hole and its background field dynamics.

1 Introduction

Nowadays, we know that black holes are not just a mathemat-
ically possible solution to Einstein’s field equations, rather
they seem to be some realistic astrophysical objects. It is more
than a decade that we have obtained good evidences indicat-
ing that most of the galaxies, as our Milky Way, host many
stellar active black holes, as well as a super-massive active
black hole, in their centers. On the other hand, due to black
hole evaporation [1,2] and accretion–absorbtion processes
[3,4], it is accepted that the mass and other parameters of
black holes are not fixed, and should change with time. There-
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fore, generally speaking, real black holes are non-stationary,
and the stationary black holes such as Schwarzschild and
Reissner–Nordström are only ideal models. Thus, the study
of non-stationary black holes is meaningful and so motivat-
ing in the exploration of real black holes. There are a lot of
research works on general dynamical black holes and their
properties, see the works of Ashtekar and Krishnan [5,6]
and Hayward [7] as instances. Actually, studying black holes
from astrophysical point of view and by astrophysicists has
been originated in recent decades due to the dramatic increase
in the number of black hole candidates from the sole candi-
date Cygnus X-1. This study needs a deeper understanding of
the black hole physics and especially the black hole radiation
by astrophysicists and relativists. Hawking used a quantum
field theoretical approach to explore the black hole radiation,
for the first time [1,2]. Afterwards, some models to describe
the classical essence of this radiation in a language which is
free from the usual quantum field theoretic tools and is more
familiar to the astrophysicists and relativists, have been intro-
duced. For instance, the Vaidya solution [8–10] has provided
a simple classical model for the black hole radiation and has
been vastly investigated in this regard [11–17], see also [18–
29] for more studies. In fact, the Vaidya solution is one of the
non-static solutions of the Einstein field equations and can be
regarded as a generalization of the static Schwarzschild black
hole solution. This solution is characterized by a dynamical
mass function depending on the retarded time coordinate u,
i.e m = m(u) and an ingoing/outgoing flow σ(u, r). Thus,
it can be implemented as a classical model for a dynami-
cal black hole which is effectively evaporating or accreting,
regarding its effective flow direction. On the other hand, the
Vaidya solution has been used for studying the process of
spherical symmetric gravitational collapse and as a testing
ground for the cosmic censorship conjecture [30–33], see
also [34] where a possible astrophysical application of the
model for describing the energy source of gamma-ray bursts
is discussed. These studies also are motivated by the time
dependant mass parameter of this solution along with its out-
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going radiation flow during the collapse ending by a naked
singularity or a black hole. It is shown that if the outgoing
flux diverges, the back-reaction will prevent the formation of
naked singularity [35]. The observable sign of the formation
of a naked singularity, by the collapse process, appears to be
the burst of a radiation possessing a non-thermal spectrum, as
the Cauchy horizon is approached [36]. Indeed, this is in con-
trast to the slow evaporation of a black hole via black-body
spectrum of the Hawking radiation [1,2]. Then, it would be
important to carefully investigate Vaidya solution to better
understanding of real dynamical black holes or the typical
signs of naked singularities and to explore if there are any
astrophysical objects whose properties resemble those of a
naked singularity [36]. The Vaidya solution was generalized
to the charged case known as the Bonnor–Vaidya solution
[37], see also its application for example in [38–42]. Also,
a generalisation of the Vaidya solution is introduced in [43].
This generalisation is based on the fact that the total sup-
porting energy–momentum tensor of spacetime, constructed
from type I and type II energy–momentum tensors [44], is
linear in term of the mass function. Consequently, any lin-
ear superposition of particular solutions to the Einstein field
equations will also a solution. Then, using this approach, we
can construct more general solutions such as the Bonnor–
Vaidya [37], Vaidya–de Sitter [45], radiating dyon solution
[46], Bonnor–Vaidya–de Sitter [40,47–49] and the Husain
solution [50].

On the other hand, a new exact static solution to Ein-
stein field equations has been recently introduced by Kiselev
[51]. Actually, the Kiselev solution is nothing but the static
generalization of the Schwarzschild solution to include a
non-empty cosmological background, especially well known
for the quintessence background. This generalization is well
motivated by the fact that black holes in real world are not
isolated and are not embedded in empty backgrounds. The
black hole solutions coupled to matter fields, such as Kiselev
solution, are of interest in studying astrophysical distorted
black holes [52–55], as well as in exploring the no hair the-
orems [56–59]. Indeed, a crucial assumption for the no-hair
theorem is that the black hole is isolated, i.e., the spacetime is
asymptotically flat and contains no other sources. However,
in real world astrophysical situations this requirement is not
fulfilled, for examples, for black holes in binary systems, for
black holes surrounded by plasma, or black holes having an
accretion disk or jets in their vicinity. All these situations
indicate that a black hole may put on different types of wigs.
For these cases, the standard no-hair theorem for the isolated
black holes can be questioned, see for examples [57,60]. In a
recent research, the authors of [61] discussed on distinguish-
ing rotating Kiselev black hole from naked singularity using
spin precession of test gyroscope. In general, since black
holes possess strong gravitational attraction such that their
nearby matter, even light, cannot escape from their gravita-

tional field, they cannot be observed directly and there are
some different ways to detect them in binary systems as well
as at the centers of their host galaxies. The most promising
way is the accretion process. In the language of astrophysics,
the accretion is defined as the inward flow of matter fields sur-
rounding a compact object, such as black holes and neutron
stars, due to the gravitational attraction. Then, the process
of accretion into black holes is one of the most interesting
research fields in relativistic astrophysics [62–66]. This pro-
cess may be described by a perfect fluid coupled to general
relativity representing a plasma which obeys the equations
of ideal or resistive magnetohydrodynamics or a fluid cou-
pled to radiation. Such accretion processes along with their
detailed physical descriptions, can be found in [67] and ref-
erences therein, see also [68–75]. On the other hand, there
are also other kind of accretion processes related to the black
holes surrounded by exotic matter fields as potential models
of dark energy, whose existence and features are motivated by
the problems in the standard model of cosmology. A number
of theoretical and observational studies confirmed that our
universe in its early stages experienced an inflation process
while it is undergoing an accelerated expansion in the late
time. In order to explain these events, an energy component,
known as the dark energy, is required to be introduced to the
framework of general theory of relativity. The cosmological
constant is a leading candidate for dark energy while there are
other proposals including the dynamical scalar fields such as
quintessence and phantom fields. In the Bousso’s work [76],
one finds that “Q-space exhibits thermodynamic properties
similar to those of the de Sitter horizon. The horizon radius in
Q-space grows linearly with time, and consequently the tem-
perature slowly decreases. We find that this behavior is con-
sistent with the first law of thermodynamics: the temperature
and entropy respond appropriately to the flux of quintessence
stress-energy across the horizon”, for a cosmological setup,
where “Q-space” stands for quintessence-space. This impor-
tant result along with the observational data confirming a
dark energy fluid responsible for the accelerating expansion
of Universe with the equation of state parameter ω < − 1/3,
has motivated the community to study in detail the black hole
solutions in the quintessence background. For some recent
studies of Kiselev black holes, see [77] for its generalization
to rotating case, [78–80] for quasinormal modes and Hawk-
ing radiation, [81–84] for thermodynamical studies, [85–90]
for trajectories and particle dynamics around this black hole,
[91] for accretion process and [92] for gravitational lens-
ing among the others. One should also note that the Kiselev
solution can be implemented for more generic backgrounds
of dust, radiation, quintessence, cosmological constant and
phantom fields as well as for any realistic combination of
these cosmological fields. Then, by the presence of such
fields around the black holes, one may have interest to explore
some interesting facts such as whether black holes have hair
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or scalar wigs [93], how black holes affect these cosmologi-
cal surrounding fields and what are the consequences or what
are the influences of these surrounding fields on the features,
behaviors and abundance of black holes. In this regard, one
may find the reference [94] as a good review including vari-
ous scenarios of accretion process into black holes, see also
[69,95] for charged black hole accretion. Among the all of
the accretion processes, the most interesting one are related
to those that the accretion of the surrounding fields enforcing
a black hole to shrink. These surrounding field include the
scalar fields or fluid violating the weak energy condition, i.e
ρ > 0 and ρ + p > 0 [94]. Specific scenarios involving the
accretion of phantom energy have shown that the black-hole
area decreases with the accretion [96–99]. For example, in
[96], it is shown that black holes will gradually vanish as the
universe approaches a cosmological big rip state. The big rip
scenario for a cosmos occurs when its filling dark energy is
the phantom energy with p < −ρ. In this scenario, the cos-
mological phantom field disrupts finally all bounded objects
of the universe up to sub-nuclear scales. For the test-field
approximation, one may find the accretion process of a scalar
field violating the energy conditions leading the decrease in
the black holes area in [98,100]. Moreover, the shrink of the
black hole area through the accretion of a phantom scalar
field has been confirmed in full nonlinear general relativ-
ity [101,102]. In this regard, the shrink of the black hole
area by the accretion of a potentially surrounding field is an
interesting phenomena in the sense that it can be an alterna-
tive process for black hole evaporation through the Hawking
radiation or even be an auxiliary for speeding up it. One
physical explanation for a black hole mass diminishing may
be is that accreting particles of a phantom scalar field have
a total negative energy [103]. Similar particles possessing
negative energies are created through the Hawking radiation
process and also in the energy extraction process from a black
hole by the Penrose mechanism. The effect of phantom-like
dark energy onto a charged Reissner–Nordström black hole
is studied in [104] and it is found that accretion is possible
only through the outer horizon. On the other hand, for scalar
fields regarding the energy conditions, there is a possibility
indicating that the accretion of a scalar field can be partial
such that the amount of accreted scalar field depends on fea-
tures of the incident wave packet, i.e. the wave number and
the width of the packet. This has been studied both in the
test-field approximation [105] and in full general relativity
[101,102]. In this line, some studies in the test-field limit
indicate that a scalar field can also be sustained by a black
hole without being accreted [106].

In the present work, following the approach of [51,107]
introduced for the static black holes, and motivated by the
facts that real astrophysical black holes are neither station-
ary nor isolated and are not embedded in empty backgrounds,
we wish to find a more realistic dynamical solution for the

classical description of the evaporating-accreting black holes
in generic dynamical backgrounds. The organization of the
paper is as follows. In Sect. 2, we introduce the general sur-
rounded Vaidya solution, its nature describing the possibility
of the formation of naked singularities or black holes, inter-
action of its possible black holes with their backgrounds as
well as its timelike geodesic analysis in the general form.
Then, in Sects. 3–7, we investigate in detail the special classes
of this solution as the surrounded Vaidya black hole by the
dust, radiation, quintessence, cosmological constant-like and
phantom fields, respectively. The paper ends with a conclu-
sion, in Sect. 8.

2 The general surrounded Vaidya solutions

In this section, we are looking for the general surrounded
Vaidya solutions by the approach of [51,107]. Then, we con-
sider the general spherical symmetric spacetime metric in the
form of

ds2 = − f (u, r)du2 + 2εdudr + r2d�2, ε = ±1, (1)

where d�2 = dθ2 + sin2θdφ2 is the two dimensional unit
sphere and f (u, r) is a generic metric function depending
on both of the advanced/retarded time coordinate u and the
radial coordinate r . The cases, ε = −1 and ε = +1 represent
the outgoing and ingoing flows corresponding to the effec-
tively evaporating and accreting Vaidya black hole solutions,
respectively. Using the metric (1), we obtain nonvanishing
components of the Einstein tensor as

G0
0 = G1

1 = εG01 = εG10 = 1

r2 ( f ′r − 1 + f ),

G1
0 = εG00 + f G01 = − ḟ

r
,

G2
2 = 1

r2 G22 = 1

r2

(
r f ′ + 1

2
r2 f ′′

)
,

G3
3 = 1

r2sin2θ
G33 = 1

r2

(
r f ′ + 1

2
r2 f ′′

)
, (2)

where dot and prime signs represent the derivatives with
respect to the time coordinate u and the radial coordinate
r , respectively. Then, the total energy–momentum support-
ing this spacetime should have the following non-diagonal
form

Tμ
ν =

⎛
⎜⎜⎝
T 0

0 0 0 0
T 1

0 T 1
1 0 0

0 0 T 2
2 0

0 0 0 T 3
3

⎞
⎟⎟⎠ , (3)

where also must obey the symmetries in Einstein tensor Gμ
ν .

With respect to the field equations in (2), the equalitiesG0
0 =
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G1
1 and G2

2 = G3
3 require T 0

0 = T 1
1 and T 2

2 = T 3
3,

respectively. Then, for the nature of the Vaidya solution in
the presence of a dynamical background, one can consider a
total energy–momentum tensor supporting the Einstein field
equations in the following form

Tμ
ν = τμ

ν + T μ
ν, (4)

where τμ
ν is the energy–momentum tensor associated to the

Vaidya null radiation-accretion as

τμ
ν = σkμkν, (5)

such that σ = σ(u, r) is the measure of the energy flux or the
energy density of the outgoing radiation-ingoing accretion
flow [108] and kμ = δ0

μ is a null vector field whileT μ
ν is the

energy–momentum tensor of the surrounding fluid defined as
in [51]

T 0
0 = −ρs(u, r),

T i
j = −ρs(u, r)α

[
−(1 + 3β)

rir j

rnrn
+ βδi j

]
, (6)

where subscript “s” stands for the surrounding field which
can be a dust, radiation, quintessence, cosmological con-
stant, phantom field or even any complex field constructed
by the combination of these fields.1 This form of energy–
momentum for the surrounding fluid is implying that the
spatial profile of the Vaidya solution surrounding energy–
momentum tensor is proportional to the time component,
describing the dynamical energy density ρs(u, r), with the
arbitrary constant parameters α and β depending the internal
structure of the surrounding fields. The isotropic averaging
over the angles results in [51]

〈T i
j 〉 = α

3
ρs(u, r)δi j = ps(u, r)δi j , (7)

since we considered 〈r ir j 〉 = 1
3δi j rnrn . Then, we have the

barotropic equation of state for the surrounding field as

ps(u, r) = ωsρs(u, r), ωs = 1

3
α, (8)

where ps(u, r) and ωs are the dynamical pressure and the
constant equation of state parameter of the surrounding field,
respectively.2 Thus, regarding the Einstein tensor compo-
nents in (2) and the total energy–momentum tensor given

1 In the Sects. 3–7, we will use the subscripts “d, r, q, c” and “p”,
instead of the general subscript “s”, for denoting the surrounding dust,
radiation, quintessence, cosmological constant-like and phantom fields,
respectively.
2 One should note that the fluid in Eq.(6) is not a perfect fluid. Actually,
the effective “averaged” energy–momentum as Tμ

ν = (−ρ, 〈T i
j 〉)

where 〈T i
j 〉 = α

3 ρs(u, r)δi j = ps(u, r)δi j , can be treated as an effec-
tive perfect fluid.

by the Eqs. (3)–(6), we have T 0
0 = T 1

1 and T 2
2 = T 3

3.
These exactly provide the so called principle of additivity
and linearity considered in [51] in order to determine the
free parameter β of the energy momentum-tensor T μ

ν of
the surrounding field as

β = −1 + 3ωs

6ωs
. (9)

Then, by substituting α and β parameters in (8) and (9)
into (6), the non-vanishing components of the surrounding
energy–momentum tensor T μ

ν will be

T 0
0 = T 1

1 = −ρs(u, r),

T 2
2 = T 3

3 = 1

2
(1 + 3ωs) ρs(u, r). (10)

Now, by having the Einstein tensor components and the cor-
responding total energy–momentum tensor Tμ

ν , one can
obtain the associated field equations. Then, the G0

0 = T 0
0

and G1
1 = T 1

1 components of the Einstein field equations
give the following differential equation

1

r2 ( f ′r − 1 + f ) = −ρs . (11)

Similarly, the G1
0 = T 1

0 component leads to

− ḟ

r
= εσ, (12)

and G2
2 = T 2

2 and G3
3 = T 3

3 components read as

1

r2 (r f ′ + 1

2
r2 f ′′) = 1

2
(1 + 3ωs)ρs . (13)

Thus, we see that there are three unknown dynamical func-
tions f (u, r), σ(u, r) and ρs(u, r) which can be determined
analytically by the above three differential equations. Simul-
taneous solving the differential equations (11) and (13), one
obtains the following solution for the metric function

f (u, r) = 1 − 2M(u)

r
− Ns(u)

r3ωs+1 , (14)

with the energy density ρs(u, r) of the surrounding field in
the form of

ρs(u, r) = −3ωs Ns(u)

r3(ωs+1)
, (15)

where M(u) and Ns(u) are integration coefficients represent-
ing the Vaidya dynamical mass and the surrounding dynam-
ical field structure parameter, respectively.

On the other hand, respecting to the weak energy condition
imposing the positivity of any kind of energy density of the
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surrounding field, i.e ρs ≥ 0, demands

ωs Ns(u) ≤ 0. (16)

This implies that for the surrounding field with a positive
equation of state parameter ωs , it is needed to have Ns(u) ≤
0 and conversely for a negative ωs , it is required to have
Ns(u) ≥ 0. Then, this condition determines the gravitational
nature of the term associated to surrounding field in the metric
function f (u, r).

Regarding the metric function (14), the spacetime metric
(1) reads as

ds2 = −
(

1 − 2M(u)

r
− Ns(u)

r3ωs+1

)
du2 +2εdudr+r2d�2,

(17)

representing an effectively evaporating-accreting Vaidya
spacetime in a dynamical background. One may realize the
following distinct subclasses of this general solution as

• The solution by setting f = f (u, r) and ρs = ρs(r) in
the field equations (11)–(13).
These considerations lead to M = M(u) and Ns =
constant in the metric function f (u, r) and σ �= 0 for
the black hole’s radiation density. In this case, there is no
dynamics in the surrounding field and consequently there
is no accretion to the black hole. Indeed, this case rep-
resents an evaporating black hole solution with ε = −1
in a static background. Then, the evaporating black hole
in an empty background, i.e ρs = 0 [8,9], and (anti)-de
Sitter space, i.e ρs = ρ� = constant [45,109,110], are
special subclasses of our general solution. Some interest-
ing physical features of these solutions can be found in
the references [11,12,31,42,111–119].

• The solution by setting f = f (r) and ρs = ρs(r) in
the field equations (11)–(13).
These considerations lead to M = constant , Ns =
constant in the metric function and σ = 0 for the
radiation-accretion density. This case represents a non-
dynamical back hole in a static background and con-
sequently, there are no accretion and evaporation. The
Schwarzschild black hole as well as its generalization to
(anti)-de Sitter background are two special subclasses of
our general solution. For a general background, not just
the (anti)-de Sitter background, it is interesting that using
the following coordinate transformation

du = dt + εdr

1 − 2M
r − Ns

r3ωs+1

, (18)

one can obtain the general static solution of the
Schwarzschild black hole surrounded by a surrounding
field as

ds2 = −
(

1 − 2M

r
− Ns

r3ωs+1

)
dt2+ dr2

1 − 2M
r − Ns

r3ωs+1

+r2d�2,

(19)

which was found by Kiselev [51]. Then, the Kiselev solu-
tion also can be obtained as a subclass of our general
dynamical solution (17) in the stationary limit.

• The solution for ε = +1 with changing the back-
ground field parameters as ωs → 1

3 (2k − 1) and

Ns(u) → − 2g(u)
2k−1 .

By this considerations, we recover the Husain solution
describing a null fluid collapse [50] as

ds2 = −
(

1 − 2M(u)

r
+ 2g(u)

(2k − 1)r2k

)
du2+2εdudr+r2d�2,

(20)

with the energy density

ρs(u, r) = 2g(u)

r2k+2 . (21)

This solution and it various applications are widely studied
in the literature, see for instances [120,121] and [122,123]
where a barotropic equation of state is considered for the
collapse study. There is a difference in the method obtaining
the solutions in the present work and in [50] as well as in
the other mentioned works. The solution (20), as in [50], is
obtained by the “pre-imposed” equation of state p = kρa ,
whereas in our approach, the effective equation of state is
resulting from the isotropic averaging over the angles for
the surrounding field distribution. Our approach is motivated
by the present anisotropy in the Einstein tensor components
(2) and the corresponding total energy–momentum tensor
(3), such that the surrounding fluid behaves effectively as a
perfect fluid with the effective (averaged) equation of state
ps(u, r) = ωsρ(u, r), see (7). As the advantage of this aver-
aging method, one can substitute for ωs the same known
cosmological field equation of state parameters 1

3 , 0,−1,− 2
3

and − 4
3 for the radiation, dust, cosmological, quintessence

and phantom fields, respectively, when the black hole is
embedded in these cosmological backgrounds. Substituting
the same values of cosmological parameters for k, through
p = kρa even for a = 1, in (20) gives different solutions
with respect to (17) for the general dynamical case as well
as for the known static solution in [51] in the stationary
limit, by doing a similar transformation to (18). For exam-
ple, throwing a bunch of dust with the mass of Mdust (= g)
to the black hole with mass M , one expects a resulting met-
ric for the final black hole as f (r) = 1 − 2Mef f

r where
Mef f = M + Mdust , whereas substituting k = 0 in the
metric (20) gives f (r) = 1 − 2M

r − 2Mdust which seems
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to be incorrect due to the gravitational potential form of the
final black hole and also the dimensional consideration. One
also realizes that, as we will see in the next sections of the
paper, there is a possibility of the formation of both the naked
singularities and black holes in different backgrounds for the
solution with ε = −1.

2.1 The analysis of naked singularity or black hole
formations

In order to investigate the formation of naked singularity
or black hole associated to the obtained solution (17), we
follow the approach of [123]. The equation for the radial null
geodesics using the metric (1), or (17), can be obtained by
setting ds2 = 0 and d�2

2 = 0 as

du

dr
= 2ε

f (u, r)
. (22)

This system has a singularity at r = 0, u = 0. Defining the
function X as X = u

r gives us the possibility of studying the
limiting behavior of X as we approach the singularity located
at r = 0, u = 0, along the radial null geodesics. Denoting
this limiting value of X by X0, we have

X0 = limX
u → 0
r → 0

= lim u
r

u → 0
r → 0

= lim du
dr

u → 0
r → 0

= lim 2ε
f (u,r) .

u → 0
r → 0

(23)

Using the metric function (14) in (23), we obtain

2ε
X0

= lim
(

1 − 2M(u)
r − Ns (u)

r3ωs+1

)
.

u → 0
r → 0

(24)

Now, following the method of [123] for our case, we consider
M(u) = mu and Ns(u) = nu3ωs+1, where m and n are
constants. Thus, using (24), we obtain the following algebraic
equation in terms of X0

nX3ωs+2
0 + 2mX2

0 − X0 + 2ε = 0. (25)

A black hole will be formed if one obtains only non-positive
solutions of this equation. However, if we find a positive real
root for (25), then this system describes a naked singularity
and consequently provides counterexamples for the cosmic
censorship conjecture by Penrose [30]. It is difficult to find
exact solutions for X0 in (25) for the generic values of n,m, ε

and ωs parameters. However, as a result, one can find that
there are possibilities of the formation of both the naked
singularities and black holes for the various backgrounds of
dust, radiation, quintessence, cosmological constant-like and
phantom backgrounds for some particular ranges of m and n
parameters. We postpone the detailed study of this equation
for the mentioned backgrounds, to the Sects. 3–7.

2.2 The analysis of the black hole-background field
interactions

Because in this work, we are mainly interested in the pos-
sible interactions between a dynamical black hole and its
surrounding background, hence regarding the possibility of
formation of black holes as mentioned in the previous sub-
section and as we will see in the Sects. 3–7, here we consider
only the case that black holes are formed and we analyze
in detail the general radiation-accretion profile for the corre-
sponding systems and classify the possible situations under
the positive energy condition.

Substituting the metric function (14) in the Eq. (12) gives
the radiation-accretion density of the effectively evaporating-
accreting black hole as

σ(u, r) = ε

(
2Ṁ(u)

r2 + Ṅs(u)

r3ωs+2

)
, (26)

where the first and second terms in RHS are the radiation-
accretion density corresponding to the mass change of the
black hole and the dynamics of the surrounding field, respec-
tively. This shows that for construction of a realistic effec-
tively evaporating-accreting black hole model, one needs
to implement such a solution including a dynamical black
hole in a dynamical background described by the energy–
momentum (10). Considering (26), the following points can
be realized.

• By turning off the background field dynamics, i.e.
Ṅs(u) = 0, we recover the energy flux associated to
the mass change of the central black hole correspond-
ing to the original Vaidya solution [8,9]. See [108] for
more discussion on the properties of the original Vaidya
solution.

• For the background field possessing ωs > 0, if Ṁ(u) and
Ṅs(u) have a same order of magnitude, the surrounding
background field contribution to the total density σ(u, r)
is dominant near the black hole while at far distances
from the black hole it decreases faster than the contribu-
tion of the black hole mass changing term. In contrast, for
the background field possessing ωs < 0, the surrounding
background field contribution is dominant at large dis-
tances while the black hole contribution is dominant near
the black hole itself. Then, from the astrophysical point
of view, the detected amount of the radiation-accretion
density by the observer not only depends on the distance
from the black hole but also depends on the nature of
background field.

Considering the positive energy density condition (by the
weak energy condition) on the total radiation-accretion den-
sity σ(u, r) in (26) requires
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ε

(
2Ṁ(u)

r2 + Ṅs(u)

r3ωs+2

)
≥ 0. (27)

This inequality confines the dynamical behaviours of the
black hole and its background field at any time and distance
(u, r). In the case of a static background, as in the Vaidya’s
original solution [8,9], it is required that ε and Ṁ(u) have the
same signs to have positive energy density. This shows that
for a radiating black hole with Ṁ(u) < 0 we have ε = −1
which represents the outgoing null flow, while for an accret-
ing black hole it is required to have ε = +1, representing the
ingoing null flow. In the presence of the background dynam-
ics, it is not mandatory that ε and Ṁ(u) take the same signs
and the satisfaction of the positive energy density condition
can be achieved even by their opposite signs depending on
the background field parameters Ṅs(u) and ωs . Based on
the relation (27), the dynamical behaviour of the background
field is governed by

⎧⎪⎨
⎪⎩
Ṅs(u) ≤ −2 r3ωs Ṁ(u), ε = −1,

Ṅs(u) ≥ −2 r3ωs Ṁ(u), ε = +1.

(28)

Then, at any distance r from the black hole, the background
field must obey the above conditions. One astrophysical
importance of such a physical constraint is that the observer
knows the dynamical range of the background field at any
distance and that, prior to any observation, he knows how
to include or remove the background field contribution if he
is only interested in black hole’s contribution, or vice versa.
Interestingly, for the special case of Ṅs(u) = −2 r3ωs Ṁ(u),
there is no pure radiation-accretion density, i.e σ(u, r) = 0.
This case corresponds to two possible physical situations.
The first one is related to the situation where for any partic-
ular distance r0, the background Ṅ (u) and black hole Ṁ(u)

behave such that their contributions cancel out each others
leading to σ(u, r0) = 0. The second situation is related to
the case that for the given dynamical behaviors of the black
hole and its background, one can always find the particular
time dependent distance

r∗(u) =
(

− Ṅs(u)

2Ṁ(u)

) 1
3ωs

, (29)

possessing zero energy density σ(u, r∗(u)). For the case of
constant rates of Ṅs(u) and Ṁ(u), the distance r∗ is fixed
to a particular value. To have a particular distance at which
the density σ(u, r∗) is zero, the positivity of r∗ also requires
that Ṁ(u) and Ṅs(u) have opposite signs. For the cases in
which r∗ is not positive, the lack of a positive real value radial
coordinate is interpreted as follows: the radiation-accretion
density σ(u, r) never and nowhere vanishes.

In the case of being the positive radial coordinate r∗, for
the given radiation-accretion behaviors of the black hole and
its surrounding field, i.e Ṁ(u) and Ṅs(u), it is possible to
find a distance at which we have no any radiation-accretion
energy density contribution. In other words, it turns out that
the rate of outgoing radiation energy density of the black hole
is exactly balanced by the rate of ingoing absorption rate of
surrounding field at the distance r∗ and vice versa. Beyond or
within this particular distance, the various general situations
can be realized in the Tables 1 and 2 for the black hole (BH)
and its surrounding field (SF). One practical importance of
(29) for an astrophysicist is that a particle detector at this
distance will detect vanishing radiation-accretion density.

Then, regarding these tables and Eq. (27), we find the
following results.

• The cases possessing negative values of r∗ (the cases I,
IV, V and VIII) mean that the radiation-accretion density
does not vanish somewhere and forever. Among these
cases, the ones which have positive σ(u, r) are only phys-
ical, i.e the cases IV and VIII for ε = −1, and I and V
for ε = +1. Then, one realizes that how the weak energy
condition causes in practice the nonphysical events to be
hidden to an astrophysicist aiming to investigate a black
hole and his surrounding field.

• The remaining positive values of r∗, corresponding to
a zero radiation-accretion density, are physically viable
and their corresponding physical processes are listed in
the last column. These properties are determined accord-
ing to the behaviours of the parameters ε, ωs , and quanti-
ties Ṁ(u), Ṅs(u), and σ(u, r). Those values of r∗ corre-
sponding to the negative energy density σ(u, r) represent
no physical situation about the evaporation–absorption or
accretion. The real features of those regions are hidden
by the weak energy condition. Then, it is physically rea-
sonable to do any astrophysical experiment in the regions
respecting the energy condition.

• For ωs > − 2
3 , the particular distance r∗, where σ(u, r)

vanishes, corresponds to two possible cases as r∗(u) =(
− Ṅs (u)

2Ṁ(u)

) 1
3ωs and r∗ = ∞. In the first case, for − 2

3 <

ωs < 0 with |Ṅs(u)| � |Ṁ(u)| and for ωs ≥ 0 with
|Ṁ(u)| � |Ṅs(u)|, we have r∗ → ∞. This means that
the first situation indicates that black hole evolves very
faster than its background while the second indicates
that black hole evolves very slow relative to its back-
ground. By satisfaction of these dynamical conditions to
hold r∗ → ∞, the positive energy density is respected
everywhere in the spacetime. Then, in practice, an astro-
physical observer can detect a radiation-accretion den-
sity resulting from the interaction of the black hole with
its surrounding field even at far distances, in which for
− 2

3 < ωs < 0 and ωs ≥ 0 the main contribution in
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Table 1 General BH and SF parameters for ε = −1

ε ωs Ṁ Ṅ r∗ σ(r < r∗) σ (r = r∗) σ (r > r∗) Physical effect

I − 1 + + + − − − − Not physical

II − 1 + − + + − 0 + Absorbtion of BH’s radiation by SF

III − 1 + + − + + 0 − Accretion of SF by BH

IV − 1 + − − − + + + Accretion/decay of SF by evaporating/vanishing BH

V − 1 − + + − − − − Not physical

VI − 1 − − + + + 0 − Absorbtion of BH’s radiation by SF

VII − 1 − + − + − 0 + Accretion of SF by BH

VIII − 1 − − − − + + + Accretion/decay of SF by evaporating/vanishing BH

Table 2 General BH and SF parameters for ε = +1

ε ωs Ṁ Ṅ r∗ σ(r < r∗) σ (r = r∗) σ (r > r∗) Physical process

I + 1 + + + − + + + Accretion of BH and SF

II + 1 + − + + + 0 − Absorbtion of BH’s radiation by SF

III + 1 + + − + − 0 + Accretion of SF by BH

IV + 1 + − − − − − − Not physical

V + 1 − + + − + + + Accretion of BH and SF

VI + 1 − − + + − 0 + Absorbtion of BH’s radiation by SF

VII + 1 − + − + + 0 − Accretion of SF by BH

VIII + 1 − − − − − − v Not physical

the detected radiation-accretion density belongs to the
black hole and surrounding field, respectively. In other
cases, the positive energy density will be respected in
some regions while violated beyond those regions.

• For ωs ≤ − 2
3 , the particular distance r∗ is given as

r∗(u) =
(
− Ṅs (u)

2Ṁ(u)

) 1
3ωs . Then, for a rapidly evolving

black hole relative to its background, i.e |Ṅs(u)| �
|Ṁ(u)|, we have r∗ → ∞. This case implies an evolv-
ing black hole in an almost static background in which
the positive energy condition is respected everywhere in
this spacetime. Then, for ωs ≤ − 2

3 representing a dark
energy fluid, an astrophysicist finds that it is the black
hole which has the main contribution in the radiation-
accretion density.

2.3 Timelike geodesics for the surrounded black holes

The geodesics for our metric (1), or (17), will all lie on a
plane due to the spherical symmetry in which for the sake of
simplicity, one can choose θ = π/2. The geodesic equations
for the above spacetime metric can be derived by varying the
following action

I =
∫

Ldτ = 1

2

∫ (
− f (u, r)

∗
u

2 + 2ε
∗
u

∗
r + r2 ∗

ϕ
2
)
dτ,

(30)

where the star sign denotes the derivative with respect to the
proper time τ . Then, we have the following three equations

∗
ϕ = L

r2 , (31)

and

−1

2
f ′ ∗u

2 + r
∗
ϕ

2 − ε
∗∗
u = 0, (32)

and

ε
∗∗
r = 1

2
ḟ

∗
u

2 + f
∗∗
u + f ′ ∗u∗

r , (33)

for ϕ, r and u variables respectively, where L is the conserved
angular momentum per unit mass and dot and prime signs
denote the derivative with respect to u and r , respectively.3

Using (31) in (32), one finds

f
∗∗
u = ε f

L2

r3 − 1

2
ε f f ′ ∗u

2
. (34)

3 One can also reach at these equations using the geodesic equation
d2xμ

dτ 2 − �
μ
αβ

xμ

dτ
xν

dτ
= 0 where xμ and �

μ
αβ represent the adopted coor-

dinates in the metric (1) and the corresponding Christoffel symbols,
respectively.
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On the other, using the timelike geodesics condition as
gμν ẋμ ẋν = −1, one finds

f ′∗r ∗
u = −1

2
ε f ′ + 1

2
ε f f ′ − 1

2
ε f ′ L2

r2

∗
u

2
, (35)

where the Eq. (31) has been used. Then, by substituting (34)
and (35) in (33), we arrive at the following general equation of
motion in term of the metric function for the radial coordinate

∗∗
r = 1

2
ε ḟ

∗
u

2 − 1

2
f ′ − 1

2
f ′ L2

r2 + f
L2

r3 . (36)

Then, using the metric function f (u, r) = 1− 2M(u)
r − Ns (u)

r3ωs+1 ,
this equation takes the following form

∗∗
r = −M(u)

r2 + L2

r3 − 3M(u)L2

r4

− (3ωs + 1)N (u)

2r3ωs+2 − 3(ωs + 1)N (u)L2

2r3ωs+4

+1

2
ε ḟ

∗
u

2
. (37)

Then, one realizes the following three interesting points.

1. The terms in the first line are exactly the same as that of
the standard Schwarzschild black hole in which the first
term represents the Newtonian gravitational force, the
second term represents a repulsive centrifugal force and
the third term is the relativistic correction of the Einstein
GR which accounts for the perihelion precession.

2. The terms in the second line are new correction terms due
to the presence of the background field which surrounds
the Vaidya black hole, in which its first term is similar to
the term of gravitational potential in the first line, while
its second term is similar to the relativistic correction of
GR. Then, regarding (37) one realizes that for the more
realistic non-empty backgrounds, the geodesic equation
of any object depends strictly not only on the mass of the
central object of the system and the conserved angular
momentum of the orbiting body, but also on the back-
ground field nature. The new correction terms may be
small in general in comparison to their Schwarzschild
counterparts (the first and third terms in the first line).
However, one can show that there are possibilities that
these terms are comparable to them. Then, in order to
find a situation where these forces are comparable to the
Newtonian gravitational force and the GR correction term
in (37), we define the distances Ds1 and Ds2 which sat-
isfy | as1aN

| � 1 and | as2aL
| � 1, respectively, where aN , aL

are the Newtonian and the relativistic correction acceler-
ations, respectively, and as1 and as2 are defined as

as1 = (3ωs + 1)N (u)

2r3ωs+2 , as2 = 3(ωs + 1)N (u)L2

2r3ωs+4 .

(38)

Then, the distances Ds1 and Ds2 will be given by

D3ωs
s1

=
( |(3ωs+1)Ns(u)|

2M(u)

)
, D3ωs

s2
=

( |(ωs+1)Ns(u)|
2M(u)

)
.

(39)

We give the detailed study of these particular distances for
the various cosmological backgrounds, in the Sects. 3–7.

3. The new correction term in the third line is also a
non-Newtonian gravitational force originated from the
dynamics of black hole and its surrounding field. It is
associated with the radiation-accretion power of the black
hole and its surrounding field.4 Calling this accelera-
tion as the induced acceleration ai , where the subscript
i stands for “induced”, we have

ai = 1

2
ε ḟ

∗
u

2 = −ε

(
Ṁ(u)

r
+ Ṅ (u)

2r3ωs+1

)
∗
u

2
, (40)

in which, following Lindquist et al. [124], one can
define the generalized “total apparent flux” as AF =
ε
(
Ṁ(u) + Ṅ (u)

2r3ωs

) ∗
u

2 = L + N
2r3ωs where L and N are

the apparent fluxes associated to the black hole and its
surrounding field radiation-accretion rates, respectively.
Using these definitions (40), takes the following form

ai = −L

r
− N

2r3ωs+1 . (41)

As mentioned in [124], this new correction term may be
small in general in comparison to the Newtonian term.
However, one can show that there are possibilities that
these two terms are comparable. Then, in order to find a
situation where this induced force is comparable to the
Newtonian gravitational force in (37), we define the dis-
tance R which satisfies ai � aN , where aN is the New-
tonian gravitational acceleration. Then, this distance will
be given by the solutions of the following equation for
different values of M , ωs and apparent fluxes L and N as

LR3ωs + 1

2
N � MR3ωs−1. (42)

Finding the general solutions to this equation in terms
of the generic L,N, M and ωs parameters is not simple.
However, one can find that there are possible solutions for
the various backgrounds of dust, radiation, quintessence,
cosmological constant-like and phantom fields for some
particular ranges of the parameters. We give the detailed

4 In the stationary limit, where there is no dynamics for the black hole
and its surrounding field, this term vanishes while the terms in the first
and second lines in (37) still exist.
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study of this equation for the mentioned backgrounds, in
the Sects. 3–7.

3 Evaporating-accreting Vaidya black hole surrounded
by the dust field

3.1 Naked singularity or black hole formation analysis

For this case, the Eq. (25) takes the following form

(n + 2m)X2
0 − X0 + 2ε = 0. (43)

Then, one can obtain the following set of solutions to (43)

X01 = 1 − √
1 + 16m + 8n

2(2m + n)
,

X02 = 1 + √
1 + 16m + 8n

2(2m + n)
, ε = −1,

X01 = 1 − √
1 − 16m − 8n

2(2m + n)
,

X02 = 1 + √
1 − 16m − 8n

2(2m + n)
, ε = +1. (44)

Thus, one finds that some particular conditions on the param-
eters m and n are required for having positive or negative
solutions. In Fig. 1, we have plotted the solutions of (43) for
some typical ranges of m and n parameters. Then, regarding
this figure, one realizes the possibility of the formation of
both naked singularities and black holes in the dust back-
ground depending on the value of parameters.

3.2 Black hole-dust background field interactions

For the dust surrounding field, we set the equation of state
parameter of the dust field as ωd = 0 [51,126]. Then, the
metric (17) takes the following form

ds2 = −
(

1 − 2M(u) + Nd(u)

r

)
du2 + 2εdudr + r2d�2,

(45)

where Nd(u) denotes the normalization parameter for the
dust field surrounding the back hole, with the dimension of
[Nd ] = l where l denotes the length. It is seen that the effec-
tively radiating-accreting black hole in the dust background
appears as an effectively radiating-accreting black hole with
an effective mass Mef f (u) = 2M(u) + Nd(u). In this case,
the presence of new mass term changes the thermodynamics,
causal structure and Penrose diagrams just up to a re-scaling
in the original Vaidya solution.

The radiation-accretion density in the dust background is
given by

σ(u, r) = ε

(
2Ṁ(u) + Ṅd(u)

r2

)
. (46)

For the Vaidya’s original solution in an empty background, i.e
Nd(u) = 0, or even in a static background, i.e Ṅd (u) = 0, the
positive energy density condition, i.e σ(u, r) ≥ 0, requires
that ε and Ṁ(u) always have the same signs. This means that
for ε = + 1, M(u) is a monotone increasing mass function
while for the case of ε = − 1, M(u) is a monotone decreas-
ing mass function. In our general solution for the Vaidya
black hole in the dust background, the condition σ(u, r) ≥ 0
imposed on (46) is satisfied for more general situations indi-
cated in the Table 3.

Interestingly, for the special case of Ṅd(u) = − 2Ṁ(u),
there is no pure radiation-accretion density, i.e σ(u, r) = 0,
and the energy–momentum tensor (4) will be diagonalized.
This means that the black hole and its surrounding back-
ground completely cancel out the effects of each others. For
Ṅd(u) �= − 2Ṁ(u), regarding (46), we find that for r∗ → ∞,
the radiation-accretion density vanishes, i.e σ(u, r) → 0.
This means that for the effective emission case, the out going
radiation can penetrate through the dust background so far
from the black hole and for the effective accretion case by
the black hole, the black hole affect its so far surrounding
objects. Regrading the conditions in the Table 3 for ε = −1
and ε = +1, the behaviour of radiation-accretion density σ

in (46) is plotted for some typical values of Ṁ and Ṅd in
the Fig. 2. Using these plots, one can compare the radiation-
accretion density values for the various situations.

3.3 Timelike geodesics for the black hole in the dust field
background

For this case, we have Ds1 = Ds2 and both the particular
situations associated with | as1aN

| � 1 and | as2aL
| � 1 are met

for M(u) = |Nd (u)|
2 in the whole spacetime. In Fig. 3, we have

plotted the possibility of being these particular situations for
some typical ranges of M(u) and Nd(u) parameters. Then,
one realizes the possibility of equality of the Newtonian force
as well as GR correction terms to the corresponding dust
background field contributions.

Also, for this case, the Eq. (42) associated with ai � aN
takes the following form

L + 1

2
N � MR−1. (47)

One can find the following solution to (47)

R � 2M

2L + N
. (48)
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Fig. 1 The variation X0 versus typical values of the m and n parameters in (43) for the dust background

Table 3 BH and its surrounding
dust field parameters for
ε = ±1. For these cases, the
positive energy condition is
satisfied everywhere in
spacetime

ε Ṁ Ṅd Condition Physical process

− 1 − − No condition Accretion/decay of SF by Evaporating/vanishing BH

− 1 + − |Ṅd (u)| ≥ |2 Ṁ(u)| Accretion of SF by BH

− 1 − + |Ṅd (u)| ≤ |2 Ṁ(u)| Absorbtion of BH’s radiation by SF

+1 + − |Ṅd (u)| ≤ |2 Ṁ(u)| Accretion of SF by BH

+1 − + |Ṅd (u)| ≥ |2 Ṁ(u)| Absorbtion of BH’s radiation by SF

+1 + + No condition Accretion of BH and SF

Fig. 2 Left figure: The radiation-accretion density σ versus the dis-
tance r for some typical constant values of Ṁ and Ṅd for ε = −1 in the
dust background. The four upper cases and the four lower cases corre-
spond to the conditions |Ṅd (u)| ≥ |2 Ṁ(u)| and |Ṅd (u)| ≤ |2 Ṁ(u)|,
respectively. By these conditions, it is clear that σ(r) is a decreasing
function but is positive, and consequently the positive energy condi-
tion is satisfied everywhere in spacetime. Right figure: the radiation-

accretion density σ versus the distance r for some typical constant
values of Ṁ and Ṅd for ε = + 1 in the dust background. The four
upper cases and the four lower cases correspond to the conditions
|Ṅd (u)| ≤ |2 Ṁ(u)| and |Ṅd (u)| ≥ |2 Ṁ(u)|, respectively. By these
conditions, it is clear that σ(r) is a decreasing function but is positive,
and consequently the positive energy condition is satisfied everywhere
in spacetime

Then, one realizes that how this particular distance depends
on the parameters L,N and M . In the Fig. 4, we have plot-
ted the solutions of (47) for some typical ranges of L and N

parameters. This figure indicates that depending the parame-
ter values, there are locations where the induced force, result-
ing from the radiation-accretion phenomena in the dust back-
ground, is equal to the Newtonian gravitational force.

4 Evaporating-accreting vaidya black hole surrounded
by the radiation field

4.1 Naked singularity or black hole formation analysis

For this case, the Eq. (25) takes the following form

nX3
0 + 2mX2

0 − X0 + 2ε = 0. (49)
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Fig. 3 The variation of Ds1 and Ds2 versus typical values of the M(u)

and Nd (u) parameters for the dust background

Fig. 4 The variation of R versus typical values of the L and N param-
eters in (47) for the dust background. We have set M = 1 without loss
of generality

Then, we obtain the following solutions to (49)

X01 = −2m

3n
− −4m2 − 3n

3n�
+ �

3n
,

X02 = −2m

3n
+ (1 + i

√
3)(−4m2 − 3n)

6n�
− (1 − i

√
3)�

6n
,

X03 = −2m

3n
+ (1 − i

√
3)(−4m2 − 3n)

6n�
− (1 + i

√
3)�

6n
,

(50)

where � is given by

� = �− =
(

− 8m3 − 9mn + 27n2

+3
√

3
√

−m2n2 − 16m3n2 − n3 − 18mn3 + 27n4

) 1
3

, ε = −1,

� = �+ =
(

− 8m3 − 9mn − 27n2

+3
√

3
√

−m2n2 + 16m3n2 − n3 + 18mn3 + 27n4

) 1
3

, ε = +1.

(51)

Then, one finds that some particular conditions are needed on
the parameters m and n for having positive or negative solu-
tions. In Fig. 5, we have plotted the solutions of (49) for some
typical ranges of m and n parameters. This figure indicates
the possibility of the formation of both the naked singulari-
ties and black holes in the radiation background depending
on the value of parameters.

4.2 Black hole-radiation background field interactions

For the radiation surrounding field, we set the equation of
state parameter of the radiation field as ωr = 1

3 [51,126].
Then, the metric (17) takes the following form

ds2 = −
(

1 − 2M(u)

r
− Nr (u)

r2

)
du2 + 2εdudr + r2d�2,

(52)

where Nr (u) is the normalization parameter for the radia-
tion field surrounding the black hole, with the dimension of
[Nr ] = l2. Regarding the positive energy condition on the
surrounding radiation field, represented by the relation (16),
it is required that Nr (u) � 0. Then, by defining the positive
parameter Nr (u) = −Nr (u), we have

ds2 = −
(

1 − 2M(u)

r
+ Nr (u)

r2

)
du2 + 2εdudr + r2d�2.

(53)

This metric looks like a radiating charged Vaidya black,
namely the Bonnor–Vaidya black hole [37], with the dynam-
ical charge Q(u) = √

Nr (u), see also [46] for the radiating
dyon solution. This result can be interpreted as the positive
contribution of the characteristic feature of the surrounding
radiation field to the effective charge term of the Vaidya black
hole with the 1

r2 gravitational contribution. The appearance
of an effective charge in the black hole solution changes the
causal structure and Penrose diagrams of this black hole solu-
tion in comparison to the neutral Vaidya black holes. A sim-
ilar effect in the causal structure of spacetime happens when
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Fig. 5 The variation of X0 versus typical values of the m and n parameters in (49) for the radiation background

Table 4 BH and its surrounding radiation field parameters for ε = ±1.
For these cases, the positive energy condition is satisfied everywhere in
spacetime. For any other behaviour of the Ṁ(u) and Ṅr (u) parameters,
the positive energy condition will be violated

ε Ṁ Ṅr Physical process

− 1 − + Absorbtion of BH’s radiation by SF

+1 + − Accretion of SF by BH

one adds charge to the static Schwarzschild black hole lead-
ing to Reissner–Nordström black hole. Then, turning off the
background radiation field which surrounds the dynamical
Vaidya black hole is equal to turning off the charge in the
static Reissner–Nordström case.

In this case, the total radiation-accretion density is given
by

σ(u, r) = ε

(
2Ṁ(u)

r2 − Ṅr (u)

r3

)
. (54)

Then, we see that there is no positive r∗(u) for Ṁ(u) and
Ṅr (u) having opposite signs, and consequently σ(u, r) never
vanishes except at infinity. But as r∗ → ∞, the radiation-
accretion density again vanishes, i.e σ(u, r∗) → 0. This
means that for the emission case, the out going radiation
can penetrate through the radiation background so far from
the black hole and for the accretion case by the black hole,
the black hole affects its so far surrounding radiation filed.
The positivity condition of σ(u, r) is satisfied everywhere
for the situations present in the Table 4.

Regrading the Table 4, the behaviour of radiation-accretion
density σ in (54) is plotted for some typical values of Ṁ
and Ṅr in Fig. 6. Using these plots, one can compare the
radiation-accretion densities for the various situations.

4.3 Timelike geodesics for the black hole in the radiation
field background

For this case, the distances Ds1 and Ds2 associated with
| as1aN

| � 1 and | as2aL
| � 1, respectively, will be given by

Ds1 = |Nr (u)|
M(u)

, Ds2 = 2|Nr (u)|
3M(u)

. (55)

In Fig. 7, we have plotted the location of these particular
distances versus some typical ranges of M(u) and Nr (u)

parameters. Then, one realizes the possibility of equality of
the Newtonian force and GR correction terms to the corre-
sponding radiation background field contributions.

Moreover, for this case, the Eq. (42) associated with ai �
aN takes the following form

LR + 1

2
N � M. (56)

Then, one can find the following solution to (56)

R � 2M − N

2L
. (57)

It is seen that how this particular distance depends on the
parameters L,N and M . In Fig. 8, we have plotted the solu-
tions of (56) for some typical ranges of L and N parameters.
This figure shows that depending the parameter values, there
are locations where the induced force, resulting from the
radiation-accretion phenomena in the radiation background,
is equal to the Newtonian gravitational force.
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Fig. 6 Left figure: the radiation-accretion density σ versus the distance
r for some typical constant Ṁ and Ṅr values for ε = −1 in the radi-
ation background. Here, σ(r) is a decreasing function but is positive,
and consequently the positive energy condition is satisfied everywhere
in spacetime. Right figure: the radiation-accretion density σ versus the

distance r for some typical constant Ṁ and Ṅr values for ε = +1
in the radiation background. Here, σ(r) is a decreasing function but
is positive, and consequently the positive energy condition is satisfied
everywhere in spacetime

Fig. 7 The variation of Ds1 (yellow plot) and Ds2 (red plot) versus
typical values of the M(u) and Nr (u) parameters for the radiation back-
ground

5 Evaporating-accreting vaidya black hole surrounded
by the quintessence field

5.1 Naked singularity or black hole formation analysis

For this case, the Eq. (25) takes the following form

n + 2mX2
0 − X0 + 2ε = 0. (58)

Then, one can find the solutions as

X01 = 1 − √
1 + 16m − 8mn

4m
,

X02 = 1 + √
1 + 16m − 8mn

4m
, ε = −1,

Fig. 8 The variation of R versus typical values of the L and N param-
eters in (47) for the radiation background. We have set M = 1 without
loss of generality

X01 = 1 − √
1 − 16m − 8mn

4m
,

X02 = 1 + √
1 − 16m − 8mn

4m
, ε = +1. (59)

Similarly, some particular conditions are required on the
parameters m and n for having positive or negative solu-
tions. In Fig. 9, we have plotted the solutions of (58) for
some typical ranges of m and n parameters. Then, regarding
this figure, one realizes the possibility of the formation of
both naked singularities and black holes in the quintessence
background depending on the value of parameters.
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Fig. 9 The variation X0 versus typical values of the m and n parameters in (9) for the quintessence background

5.2 Black hole-quintessence background field interactions

In the cosmological context, the quintessence filed is known
as the simplest scalar field dark energy model without hav-
ing theoretical problems such as Laplacian instabilities or
ghosts. The energy density and the pressure profile of the
quintessence filed are generally considered to vary with time
and depend on the scalar field and the potential, which are
given by ρ = 1

2 φ̇2 + V (φ) and p = 1
2 φ̇2 − V (φ), respec-

tively. Then, the associated equation of state parameter for
quintessence field lies in the range −1 < ωq < − 1

3 . The
static Schwarzschild black hole solution surrounded by a
quintessence field was found by Kiselev [51]. This solution
was generalized to the charged case and studied in [136–139].

For the quintessence surrounding field, we set the equation
of state parameter of quintessence field as ωq = − 2

3 [51,
126]. Then, the metric (17) takes the following form

ds2 = −
(

1 − 2M(u)

r
− Nq(u)r

)
du2 +2εdudr+r2d�2,

(60)

where Nq(u) is the normalization parameter for the
quintessence field surrounding the black hole, with the
dimension of [Nq ] = l−1. This result shows a non-trivial
contribution of the characteristic feature of the surrounding
quintessence field to the metric of the Vaidya black hole.
The presence of the background quintessence filed changes
the causal structure and Penrose diagrams of this black hole
solution in comparison to the black hole in an empty back-
ground. A rather similar effect happens when one immerses
an static Schwarzschild in a (anti)-de Sitter background with
the difference that here the spacetime tends asymptotically
to quintessence rather than (anti)-de Sitter asymptotics.

Regarding the positive energy condition for the
quintessence background, represented by the relation (16),
it is required to have Nq(u) � 0. The radiation density is
given by

σ(u, r) = ε

(
2Ṁ(u)

r2 + Ṅq(u)

)
. (61)

Then, the dynamical behaviour of the background
quintessence field is governed by

⎧⎪⎨
⎪⎩
Ṅq(u) ≤ − 2

r2 Ṁ(u), ε = −1,

Ṅq(u) ≥ − 2
r2 Ṁ(u), ε = +1.

(62)

Consequently, at any distance r from the black hole, the sur-
rounding quintessence field must obey the above conditions.

Interestingly, for the special case of Ṅq(u) = − 2Ṁ(u)

r2 , there
is no pure radiation-accretion density, i.e σ(u, r) = 0. This
case corresponds to two possible physical situations. The first
one is related to the situation where observer can be located
at any distance r such that the quintessence background’s
and black hole’s contributions cancel out each others lead-
ing to σ(u, r) = 0 for a moment or even a period of time.
Then, it is required that for an evaporating black hole, we
have an equal absorbing quintessence background or for an
accreting black hole we have an equal accreted quintessence
background. The second situation is related to the case that
for the given dynamical behaviors of the black hole and its
quintessence background, one can find the particular dis-

tance r∗ =
√

− 2Ṁ(u)

Ṅq (u)
possessing zero energy density. For

|Ṅq(u)| � |Ṁ(u)|, we have r∗ → ∞. This indicates that
for an evolving black hole in an almost static quintessence
background, the positive energy condition is satisfied every-
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Table 5 BH and its surrounding quintessence field parameters for ε = ±1. For the quintessence background, the positive energy condition may
be completely or partially respected regarding to the above situations

ε Ṁ Ṅq r∗ σ(r < r∗) σ (r = r∗) σ (r > r∗) Physical process

− 1 − − Imaginary + + + Accretion/decay of SF by evaporating/vanishing BH

− 1 + − + − 0 + Accretion of SF by BH

− 1 − + + + 0 − Absorbtion of BH’s radiation by SF

+1 − + + − 0 + Absorbtion of BH’s radiation by SF

+1 + − + + 0 − Accretion of SF by BH

+1 + + Imaginary + + + Accretion of BH and SF

Fig. 10 Left figure: the radiation-accretion density σ versus the dis-
tance r for some typical constant Ṁ and Ṅq values for ε = −1 in
the quintessence background. In the four upper cases, the accretion
density is an increasing function from negative to the positive values.
In the four lower cases, the radiation density is a decreasing function
decreases from positive values to negative values. Then, for a dynam-
ical quintessence background, if the condition |Ṅq (u)| � |Ṁ(u)| is
not met, the positive energy condition is violated in some regions of

spacetime. Right figure: the radiation-accretion density σ versus the
distance r for some typical constant Ṁ and Ṅq values for ε = +1
in the quintessence background. In the upper panel, the accretion den-
sity is a decreasing function from positive to the negative values. In
the lower panel, the radiation density is an increasing function from
negative values to positive values. Then, for a dynamical quintessence
background, if the condition |Ṅq (u)| � |Ṁ(u)| is not met, the positive
energy condition is violated in some regions of spacetime

where. Also, the positivity of r∗ also requires that Ṁ(u) and
Ṅq(u) have opposite signs. Then, if one realize the black and
its surrounding quintessence filed behaviors, i.e Ṁ(u) and
Ṅq(u) values, he can find a distance at which we have no
any radiation-accretion energy density contribution. Based
on these possibilities, the various situations in the Table 5
can be realized.

Then, regarding this table, the positive values of r∗ are
physically viable and their corresponding physical processes
are listed in the last column. These properties are determined
according to the behaviours of the parameters ε, ωq , and
quantities Ṁ(u), Ṅq(u), and σ(u, r). Those values of r∗ cor-
responding to the negative energy density σ(u, r) represent
no physical situation about the evaporation–absorption or
accretion. The real features of those regions are hidden by the
weak energy condition. In the reference [125], the accretion
into a static Kiselev black hole with a static exterior space-
time surrounded by a quintessence field without the back-
reaction effect is studied. The obtained results in [125] are
implying that the accretion rate and the critical points depend
on the background quintessence parameter Nq . Then, these
features deserve to be incorporated in astrophysical studies
of the accretion processes.

Regrading the Table 5, the behaviour of radiation-accretion
density σ in (61) is plotted for some typical values of Ṁ
and Ṅq in Fig. 10. Using these plots, one can compare the
radiation-accretion densities for the various situations.

5.3 Timelike geodesics for the black hole in the
quintessence field background

For this case, the distances Ds1 and Ds2 associated with
| as1aN

| � 1 and | as2aL
| � 1, respectively, are given as

D2
s1

= 2M(u)

| − Nq(u)| , D2
s2

= 6M(u)

|Nq(u)| . (63)

In Fig. 11, we have plotted the location of these particular
distances versus some typical ranges of the black hole mass
M(u) and background quintessence field Nq(u) parameters.
Then, one finds that there are possibilities for the equality of
the Newtonian force and GR correction terms to the corre-
sponding quintessence background field contributions.
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Fig. 11 The variation of Ds1 (yellow plot) and Ds2 (red plot) versus
typical values of the M(u) and Nq (u) parameters for the quintessence
background

The Eq. (42) associated with ai � aN for this case takes
the following form

LR−2 + 1

2
N � MR−3. (64)

Then, we obtain the following solutions

R1 � − 2L

3
1
3

(
9MN2 + √

3
√

8L3N3 + 27M2N4
) 1

3

+
(

9MN2 + √
3
√

8L3N3 + 27M2N4
) 1

3

3
2
3 N

,

R2 � (1 + i
√

3)L

3
1
3

(
9MN2 + √

3
√

8L3N3 + 27M2N4
) 1

3

−
(1 − i

√
3)

(
9MN2 + √

3
√

8L3N3 + 27M2N4
) 1

3

2 × 3
2
3 N

,

R3 � (1 − i
√

3)L

3
1
3

(
9MN2 + √

3
√

8L3N3 + 27M2N4
) 1

3

−
(1 + i

√
3)

(
9MN2 + √

3
√

8L3N3 + 27M2N4
) 1

3

2 × 3
2
3 N

.

(65)

Thus, one finds that the location of this particular distance
depends on the parameters L,N and M . In Fig. 12, we
have plotted the solutions of (64) for some typical ranges

Fig. 12 The variation of R versus typical values of theL andN param-
eters in (47) for the quintessence background. We have set M = 1
without loss of generality

of L and N parameters. This figure shows that depending
the parameter values, there are locations where the induced
force, resulting from the radiation-accretion phenomena in
the quintessence background, is equal to the Newtonian grav-
itational force.

6 Evaporating-accreting vaidya black hole surrounded
by the cosmological constant

6.1 Naked singularity or black hole formation analysis

For this case, the Eq. (25) takes the following form

nX−1
0 + 2mX2

0 − X0 + 2ε = 0. (66)

Then, one can find the following solutions to (66)

X01 = 1

6m
− −1 − 12m

3 × 2
2
3 m�

+ �

6 × 2
1
3 m

,

X02 = 1

6m
+ (1 + i

√
3)(−1 − 12m)

6 × 2
2
3 m�

− (1 − i
√

3)�

12 × 2
1
3 m

,

X03 = 1

6m
+ (1 − i

√
3)(−1 − 12m)

6 × 2
2
3 m�

− (1 + i
√

3)�

12 × 2
1
3 m

,

(67)

where � is given by

� = �− =
(

2 + 36m − 108m2n
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+
√

4(−1 − 12m)3 + (2 + 36m − 108m2n)2
) 1

3
, ε = −1,

� = �+ =
(

2 − 36m − 108m2n

+
√

4(−1 + 12m)3 + (2 − 36m − 108m2n)2
) 1

3
, ε = +1.

(68)

Then, one see that some particular conditions on the param-
eters m and n are required for having positive or negative
solutions. In Fig. 13, we have plotted the solutions of (66)
for some typical ranges of m and n parameters. Then, regard-
ing this figure, one realizes the possibility of the formation
of the both the naked singularities and black holes in the cos-
mological constant-like background depending on the value
of parameters.

6.2 Black hole-cosmological background field interactions

For the cosmological constant-like surrounding field, we set
the equation of state parameter of the cosmological field as
ωc = −1 [51,126]. Then, the metric (17) takes the following
form

ds2 = −
(

1 − 2M(u)

r
− Nc(u)r2

)
du2+2εdudr+r2d�2,

(69)

where Nc(u) is the normalization parameter for the cosmo-
logical field surrounding the black hole, with the dimension
of [Nc(u)] = l−2. This result indicates the non-trivial contri-
bution of the characteristic feature of the surrounding cosmo-
logical constant to the metric of the Vaidya black hole. The
presence of the background cosmological field changes the
causal structure and Penrose diagrams of this black hole solu-
tion in comparison to the black hole in an empty background.
This is similar to the case of the static Schwarzschild black
hole in a static de Sitter background such that the Penrose dia-
gram changes from Schwarzschild to Schwarzschild-(anti)
de Sitter. Then, in our case, the Penrose diagram changes
from Vaidya to Vaidya–de Sitter case with dynamical cos-
mological causal boundaries.

Regarding the positive energy condition for this case, rep-
resented by the relation (16), it is required to have Nc(u) � 0.
In this case, Nc(u) plays the role of a positive dynamical
cosmological constant. Then, this case may describes the
dynamical black holes in more general cosmological sce-
narios considering a time varying cosmological term, which
have been recently proposed in the literature. The main pur-
pose of these cosmological models is to provide an explana-
tion for the recent accelerating phase of the universe [127–
135]. These models are well known as the �(t), where t is
the cosmic time. For the case of Nc = constant = �, we
recover the solution of the Vaidya black hole embedded in a

de Sitter space obtained in [45]. The evolutionary behaviour
of such an evaporating black hole including the structures,
locations and dynamics of the apparent and event horizons
are studied in [109].

In this case, the radiation-accretion density is given by

σ(u, r) = ε

(
2Ṁ(u)

r2 + Ṅc(u)r

)
. (70)

Then, the dynamical behaviour of the background cosmolog-
ical constant-like field is governed by

⎧⎪⎨
⎪⎩
Ṅc(u) ≤ − 2

r3 Ṁ(u), ε = −1,

Ṅc(u) ≥ − 2
r3 Ṁ(u), ε = +1.

(71)

Consequently, at any distance r from the black hole, the
surrounding cosmological field must obey the above con-
ditions. Similar to the previous solution, for the special case

of Ṅc(u) = − 2Ṁ(u)

r3 , there is no pure radiation-accretion den-
sity, i.e σ(u, r) = 0. This case corresponds to two possible
physical situations. The first one is related to the situation
where observer can be located at any distance r such that
the cosmological background’s and black hole’s contribu-
tions cancel out each others leading to σ(u, r) = 0 for a
moment or even a period of time. Then, it is required that for
a radiating black hole, we have an equal absorbing cosmo-
logical background or for an accreting black hole we have an
equal accreted cosmological background field. The second
situation is related to the case that for the given dynamical
behaviors of the black hole and its cosmological background,

one can find the particular distance r∗ =
(
− 2Ṁ(u)

Ṅc(u)

) 1
3

pos-

sessing zero energy density. For |Ṅc(u)| � |Ṁ(u)|, we have
r∗ → ∞. This indicates that for an evolving black hole in an
almost static cosmological background, the positive energy
condition is respected everywhere. Here also, the positivity
of r∗ also guarantees that Ṁ(u) and Ṅc(u) have opposite
signs. Then, if one realize the black and its surrounding cos-
mological filed behaviors, i.e Ṁ(u) and Ṅc(u) values, he can
find a distance at which we have no any radiation-accretion
energy density contribution. Based on these possibilities, the
various situations in the Table 6 can be realized.

Regrading the Table 6, the behaviour of radiation-accretion
density σ in (70) is plotted for some typical values of Ṁ
and Ṅc in Fig. 14. Using these plots, one can compare the
radiation-accretion densities for the various situations.
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Fig. 13 The variation X0 versus typical values of the m and n parameters in (66) for the cosmological constant-like background

Table 6 BH and its surrounding cosmological field parameters for ε = ±1. For the cosmological background, the positive energy condition may
be completely or partially respected regarding to the above situations

ε Ṁ Ṅc r∗ σ(r < r∗) σ (r = r∗) σ (r > r∗) Physical process

− 1 − − − + + + Accretion/decay of SF by evaporating/vanishing BH

− 1 + − + − 0 + Accretion of SF by BH

− 1 − + + + 0 − Absorbtion of BH’s radiation by SF

+ 1 − + + − 0 + Absorbtion of BH’s radiation by SF

+ 1 + − + + 0 − Accretion of SF by BH

+ 1 + + − + + + Accretion of BH and SF

Fig. 14 Left figure: the radiation-accretion density σ versus the dis-
tance r for some typical constant values Ṁ and Ṅc values for ε = −1
in the cosmological background. In the four upper cases, the accretion
density is an increasing function from negative to positive values. In
the four lower cases, the radiation density is a decreasing function from
positive values to negative values. Then, for a dynamical cosmological
background, if the condition |Ṅc(u)| � |Ṁ(u)| is not met, the posi-
tive energy condition is violated in some regions of spacetime. Right

figure: the radiation-accretion density σ versus the distance r for some
typical constant values Ṁ and Ṅc values for ε = + 1 in the cosmo-
logical background. In the four upper cases, the accretion density is a
decreasing function from positive to negative values. In the four lower
cases, the radiation density is an increasing function from negative to
positive values. Then, for a dynamical cosmological background, if the
condition |Ṅc(u)| � |Ṁ(u)| is not met, the positive energy condition
is violated in some regions of spacetime
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Fig. 15 The variation of Ds1 versus typical values of the M(u) and
Nc(u) parameters for the cosmological constant-like background

6.3 Timelike geodesics for the black hole in the
cosmological constant-like field background

For this case, the distances Ds1 and Ds2 associated with
| as1aN

| � 1 and | as2aL
| � 1, respectively, read as

D3
s1

= M(u)

| − Nq(u)| , Ds2 → ∞. (72)

The case of Ds2 → ∞ is resulting from the fact that, in
contrast to black hole itself, the cosmological constant-like
field does not couple to angular momentum L , see as2 in (38).
This shows that there is no similar effect to the GR correction
term for the cosmological constant-like field. In Fig. 15, we
have plotted the location of the particular distance Ds1 for
some typical ranges of the black hole mass M(u) and back-
ground cosmological constant-like field Nc(u) parameters.
Then, one finds that there are possibilities for the equality
of the Newtonian force to the corresponding cosmological
constant-like background field contributions.

For this case, the Eq. (42) associated with ai � aN takes
the form of

LR−3 + 1

2
N � MR−4. (73)

Then, we arrive at the following solutions

R1 � 1

2
�

1
2 − 1

2

√
−� − 4L

N�
1
2

,

Fig. 16 The variation of R versus typical values of theL andN param-
eters in (47) for the cosmological constant-like background. We have
set M = 1 without loss of generality

R2 � 1

2
�

1
2 + 1

2

√
−� − 4L

N�
1
2

,

R3 � −1

2
�

1
2 − 1

2

√
−� + 4L

N�
1
2

,

R4 � −1

2
�

1
2 + 1

2

√
−� + 4L

N�
1
2

, (74)

where � is

� = − 4 × 2
2
3 M

3
1
3

(
9L2N + √

3
√

27L4N2 + 128M3N3
) 1

3

+
2

1
3

(
9L2N + √

3
√

27L4N2 + 128M3N3
) 1

3

3
2
3 N

. (75)

Again, we see that how the solutions of this particular dis-
tance depends on the parameters L,N and M . In Fig. 16, we
have plotted the solutions of (73) for some typical ranges of
L and N parameters. This figure shows that depending the
parameter values, there are locations where the induced force,
resulting from the radiation-accretion phenomena in the cos-
mological background, is equal to the Newtonian gravita-
tional force.
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7 Evaporating-accreting Vaidya black hole surrounded
by the phantom field

7.1 Naked singularity or black hole formation analysis

For this case, the Eq. (25) takes the following form

nX−2
0 + 2mX2

0 − X0 + 2ε = 0. (76)

Then, one can find the following solutions to this equation

X01 = 1

8m
− 1

2
�

1
2 − 1

2

√
3

16m2 + 6

3m
− � −

1
8m3 − 2

m2

4�
1
2

,

X02 = 1

8m
− 1

2
�

1
2 + 1

2

√
3

16m2 + 6

3m
− � −

1
8m3 − 2

m2

4�
1
2

,

X03 = 1

8m
+ 1

2
�

1
2 − 1

2

√
3

16m2 + 6

3m
− � +

1
8m3 − 2

m2

4�
1
2

,

X04 = 1

8m
+ 1

2
�

1
2 + 1

2

√
3

16m2 + 6

3m
− � +

1
8m3 − 2

m2

4�
1
2

,

(77)

where � is given by

� = �− = 1

16m2 + 2

3m

+ 2 × 2
1
3 (1 + 6mn)

3m
(
−16+27n+288mn+√

(−16+27n+288mn)2 −4(4+24mn)3
) 1

3

+
(
−16+27n+288mn+√

(16+27n+288mn)2−4(4+24mn)3
) 1

3

6 × 2
1
3 m

, ε = −1,

� = �+ = 1

16m2 − 2

3m

+ 2 × 2
1
3 (1 + 6mn)

3m
(

16+27n−288mn+√
(16+27n−288mn)2−4(4+24mn)3

) 1
3

+
(

16+27n−288mn+√
(16+27n−288mn)2−4(4+24mn)3

) 1
3

6 × 2
1
3 m

, ε = +1.

(78)

Then, similar to the previous cases, some particular condi-
tions on the parameters m and n are required for having pos-
itive or negative solutions. In Fig. 17, we have plotted the
solutions of (76) for some typical ranges of m and n param-
eters. Regarding this figure, we find the possibility of the
formation of the both the naked singularities and black holes
in the phantom background depending on the value of param-
eters.

7.2 Black hole-phantom background field interactions

For the phantom surrounding field, we set the equation of
state parameter of phantom field as ωp = − 4

3 [126]. Then,

the metric (17) takes the following form

ds2 = −
(

1 − 2M(u)

r
− Np(u)r3

)
du2+2εdudr+r2d�2,

(79)

where Np(u) is the normalization parameter for the phan-
tom field surrounding the black hole, with the dimension of
[Np(u)] = l−3. Similarly, this result is interpreted as the
non-trivial contribution of the characteristic feature of the
surrounding phantom field to the metric of the Vaidya black
hole. The presence of the background phantom filed changes
the causal structure and Penrose diagrams of this black hole
solution in comparison to the Vaidya black hole in an empty
background.

Regarding the weak energy condition for this case, repre-
sented by the relation (16), it is required to have Np(u) � 0.
In this case, the radiation-accretion density is given by

σ(u, r) = ε

(
2Ṁ(u)

r2 + Ṅp(u)r2
)

. (80)

Then, the dynamical behaviour of the background field is
governed by

⎧⎪⎨
⎪⎩
Ṅp(u) ≤ − 2

r4 Ṁ(u), ε = −1,

Ṅp(u) ≥ − 2
r4 Ṁ(u), ε = +1.

(81)

Consequently, at any distance r from the black hole, the
surrounding phantom field must obey the above conditions.
Similar to the previous solutions, for the special case of

Ṅp(u) = − 2Ṁ(u)

r4 , there is no pure radiation-accretion den-
sity, i.e σ(u, r) = 0. This case corresponds to two possible
physical situations. The first one is related to the situation
where observer can be located at any distance r such that the
phantom background’s and black hole’s contributions cancel
out each others leading to σ(u, r) = 0 for a moment or even
a period of time. Then, it is required that for a radiating black
hole, we have an equal absorbing phantom background or
for an accreting black hole we have an equal accreted phan-
tom background. The second situation is related to the case
that for the given dynamical behaviors of the black hole and
its phantom background, one can find the particular distance

r∗ =
(
− 2Ṁ(u)

Ṅp(u)

) 1
4

possessing zero energy density. Similarly,

for |Ṅp(u)| � |Ṁ(u)|, we have r∗ → ∞. This indicates
that for an evolving black hole in an almost static phantom
background, the positive energy condition is satisfied every-
where. Also, the positivity of r∗ also requires that Ṁ(u) and
Ṅp(u)must have opposite signs. Then, if one realize the black
and its surrounding phantom filed behaviors, i.e Ṁ(u) and
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Fig. 17 The variation X0 versus typical values of the m and n parameters in (76) for the phantom background

Ṅp(u) values, he can find a distance at which we have no
any radiation-accretion energy density contribution. Based
on these possibilities, the various situations in the Table 7
can be realized.

Specific scenarios involving the accretion of phantom
energy and resulting in the area decrease of black hole [96–
99] are related to the first case in the above table. For example,
in [96], it is shown that the black holes will gradually van-
ish as the universe approaches a cosmological big rip state
with a phantom field. One should note that the astrophysi-
cally “observed” infall of quintessence/phantom fields onto
black holes are not detected till now. In the present work, we
have just introduced a new dynamical solution to the Einstein
field equations which can provide a classical model for the
“possible” black hole accretion and evaporation (presumably
very tiny) in different cosmological backgrounds. Such the-
oretical studies of the accretion of exotic fields to the black
holes are well motivated by cosmology in which these exotic
fields can be responsible for the current accelerating expan-
sion of the universe. Regrading the Table 7, the behavior of
radiation-accretion density σ in (80) is plotted for some typ-
ical values of Ṁ and Ṅp in Fig. 18. Using these plots, one
can compare the radiation-accretion densities for the various
situations.

7.3 Timelike geodesics for the black hole in the phantom
field background

For this case, the distances Ds1 and Ds2 associated with
| as1aN

| � 1 and | as2aL
| � 1, respectively, are given as

D4
s1

= 2M(u)

3| − Np(u)| , D4
s2

= 6M(u)

| − Np(u)| . (82)

In Fig. 19, we have plotted the location of these particular dis-
tances for some typical ranges of the black hole mass M(u)

and background phantom field Np(u) parameters. Then, one
realizes the possibilities of the equality of the Newtonian
force and GR correction terms to the corresponding phan-
tom background field contributions.

Moreover, the Eq. (42) for this case takes the following
form

LR−4 + 1

2
N � MR−5. (83)

Then, we see that this produces a fifth order equation in which
finding its analytical solutions is not simple. However, in
Fig. 20, we have shown that there are numerical solutions to
(83) for some typical ranges of L and N parameters. This
figure indicates that depending the parameter values, there
are locations where the induced force, resulting from the
radiation-accretion phenomena in the phantom background,
is equal to the Newtonian gravitational force.

8 Conclusion

In this work, we have studied the general surrounded Vaidya
solution with the cosmological fields of dust, radiation,
quintessence, cosmological constant-like and phantom, and
investigated its nature describing the possibility of the forma-
tion of naked singularities or black holes. We have obtained
the general equation describing the nature of the solution
under a collapse, and have shown that depending on the
parameter values, the formation of both naked singularity
and black hole as the end state of the collapse are possi-
ble. We have given the corresponding analytical solutions as
well as some plots indicating these possibilities. Then, moti-
vated by the fact that real astrophysical black holes as non-
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Table 7 BH and its surrounding phantom field parameters for ε = ±1. For the phantom background, the positive energy condition may be
completely or partially respected regarding to the above situations

ε Ṁ Ṅp r∗ σ(r < r∗) σ (r = r∗) σ (r > r∗) Physical process

− 1 − − Imaginary + + + Accretion/decay of SF by evaporating/vanishing BH

− 1 + − + − 0 + Accretion of SF by BH

− 1 − + + + 0 − Absorbtion of BH’s radiation by SF

+ 1 − + + − 0 + Absorbtion of BH’s radiation by SF

+ 1 + − + + 0 − Accretion of SF by BH

+ 1 + + Imaginary + + + Accretion of BH and SF

Fig. 18 Left figure: the radiation-accretion density σ versus the dis-
tance r for some typical constant Ṁ and Ṅp values for ε = − 1 in
the phantom background. In the four upper cases, the accretion density
is an increasing function from negative to positive values. In the four
lower cases, the radiation density is a decreasing function from positive
to negative values. Then, for a dynamical phantom background, if the
condition |Ṅp(u)| � |Ṁ(u)| is not met, the positive energy condition
is violated in some regions of spacetime. Right figure: the radiation-

accretion density σ versus the distance r for some typical constant Ṁ
and Ṅp values for ε = + 1 in the phantom background. In the four
upper cases, the accretion density is a decreasing function from pos-
itive to negative values. In the four lower cases, the radiation density
is an increasing function from negative to positive values. Then, for a
dynamical phantom background, if the condition |Ṅp(u)| � |Ṁ(u)|
is not met, the positive energy condition is violated in some regions of
spacetime

Fig. 19 The variation of Ds1 (yellow plot) and Ds2 (red plot) versus
typical values of the M(u) and Np(u) parameters for the phantom back-
ground Fig. 20 The variation of R versus typical values of theL andN param-

eters in (83) for the phantom background. We have set M = 1 without
loss of generality
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stationary and non-isolated objects are living in non-empty
backgrounds, we have focused on the black hole subclasses
of the obtained general solution, namely the “surrounded
Vaidya black hole”, describing a dynamical evaporating-
accreting black holes in the mentioned dynamical cosmo-
logical backgrounds. In the following, we summarize some
of our obtained results for this solution.

• Some of the subclasses of the obtained general solution
for both the dynamical and stationary limits have been
addressed. In particular, we have shown that the original
Vaidya solution can be recovered by turning off the back-
ground field, and that the Kiselev static solution can be
obtained in the stationary limit with an appropriate coor-
dinate transformation. Also, the Schwarzschild solution
can be obtained in the stationary limit with a turned off
background.

• We have shown that for the background field possessing
ωs > 0, if Ṁ(u) and Ṅs(u) have a same order of mag-
nitude, the surrounding background field contribution to
the total density σ(u, r) is dominant near the black hole
while at far distances from the black hole it decreases
faster than the contribution of the black hole mass chang-
ing term. In contrast, for the background field possessing
ωs < 0, the surrounding background field contribution
is dominant at large distances while the black hole con-
tribution is dominant near the black hole itself. Then,
from astrophysical point of view, the detected amount of
the radiation-accretion density by the observer not only
depends on the distance from the black but also depends
on the nature of background field.

• We have discussed that positive energy condition for the
surrounding field is met by the constraint ωs Ns(u) ≤ 0,
which determines the gravitational nature of the term
associated to surrounding field in the metric function
f (u, r). The positive energy condition for the radiation-
accretion density is met by the constraints Ṅs(u) ≤
− 2 r3ωs Ṁ(u) and Ṅs(u) ≥ − 2 r3ωs Ṁ(u) at any dis-
tance r for ε = − 1 and ε = + 1, respectively. One
astrophysical importance of such physical constraints is
that the observer knows the dynamical range of the back-
ground field at any distance and then prior to any observa-
tion, he knows how to include or remove the background
field contribution, if he is only interested in black hole’s
contributions, or vice vera.

• We have addressed the solutions of the black hole in
the dust (ωs = 0), radiation (ωs = 1

3 ), quintessence
(ωs = − 2

3 ), cosmological constant-like (ωs = −1) and
phantom (ωs = − 4

3 ) fields in detail. We have found that
the effectively evaporating-accreting black hole in the
dust background appears as an effectively evaporating-
accreting black hole with an effective mass Mef f (u) =

2M(u) + Nd(u). Then, the presence of new mass term
changes the causal structure just up to a re-scaling in the
original Vaidya solution. For the radiation background,
the spacetime metric looks like the Bonnor–Vaidya and
radiating dyon solutions with the dynamical charge
Q(u) = √

Nr (u). A similar effect in the causal struc-
ture of spacetime here happens when one adds charge to
the static Schwarzschild black hole leading to Reissner–
Nordström black hole. For the black hole in the dust and
radiation backgrounds, the spacetime metrics are asymp-
totically flat while for the the quintessence, cosmological-
like and phantom backgrounds, spacetime metrics are
asymptotically non-flat quintessence, de Sitter-like and
phantom, respectively. Consequently, the causal structure
of these three latter spacetimes are quite different from
the original Vaidya spacetime where the background is
turned off.

• Regarding the obtained radiation-accretion density
σ(u, r), we have found that there are particular dis-
tances r∗ where σ(u, r) vanishes, i.e σ(u, r∗) = 0.

These distances are given by r∗(u) =
(
− Ṅs (u)

2Ṁ(u)

) 1
3ωs and

r∗ = ∞. Then, one realizes that in the first case, for
(i) − 2

3 < ωs < 0 with |Ṅs(u)| � 2|Ṁ(u)| and for (ii)
ωs ≥ 0 with 2|Ṁ(u)| � |Ṅs(u)|, we have r∗ → ∞. This
means that for (i), the black hole evolves very faster than
its background while for (ii), the black hole evolves very
slow relative to its background. Also, for (iii) ωs ≤ − 2

3
with |Ṅs(u)| � 2|Ṁ(u)|, representing a rapidly evolving
black hole relative to its background, we have r∗ → ∞.
Then, by satisfaction of these dynamical conditions to
hold r∗ → ∞, the positive energy density is respected
everywhere in the spacetime. The case (ii) includes the
black hole surrounded by the rapidly evolving dust and
radiation fields while the cases (i) and (iii) imply an
evolving black hole in an almost static cosmological
backgrounds (quintessence, cosmological constant-like
or phantom fields) responsible for the accelerating expan-
sion of the universe. In practice, an astrophysical observer
detects a radiation-accretion density resulting from the
interaction of the black hole with its surrounding field
even at far distances, in which for (ii) the main contribu-
tion in the detected radiation-accretion density belongs
to surrounding field while for (i) and (iii), it is the black
hole which has the main contribution in the radiation-
accretion density.

• In the case that there is a real, positive and finite value
for r∗, the positive energy condition is violated in some
regions of spacetime such that real features of those
regions are hidden by the weak energy condition. Then,
it is physically reasonable to do any astrophysical experi-
ments in the regions respecting the energy condition. For
the cases in which r∗ is not positive and real, the inter-
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pretation is as follows: the radiation-accretion density
σ(u, r) never and nowhere vanishes.

• We have classified the possible situations respecting or
violating the energy condition for all the solutions of
black hole in dust, radiation, quintessence, cosmological
constant-like and phantom backgrounds in the Tables 1,
2, 3, 4, 5, 6 and 7. It is shown that there are cases for
all the backgrounds in which the positive energy con-
dition is respected in whole spacetime under the deter-
mined behaviors of black hole and its surrounding field.
Also, we have given some plots for radiation-accretion
density versus some typical values of black hole and its
surrounding fields in Figs. 1, 2, 3, 4 and 5. Using these
plots, one realizes for the dust and radiation backgrounds,
although the radiation-accretion density is a decreasing
function but is always positive, and consequently the pos-
itive energy condition is satisfied everywhere in space-
time. This is while for the quintessence, cosmological
constant-like and phantom backgrounds, if the condition
|Ṅq,c,p(u)| � |Ṁ(u)| is not met, the positive energy con-
dition is violated in some regions of spacetime. Compar-
ing the plots with common values of the parameters, we
observe that the radiation-accretion density σ(r) for the
radiation background is larger than the dust background
at any distance r , i.e σr (r) > σd(r). Similarly, for the
quintessence, cosmological constant-like and phantom
backgrounds, we have σq(r) < σc(r) < σp(r) for the
radiation-accretion density.

• We have analyzed the timelike geodesics associated with
the obtained surrounded black holes and have found that
two kinds of new correction terms arise relative to the case
of Schwarzschild black hole. The first kind of corrections
are due to the presence of the background fields which
surround the Vaidya black hole. This corrections include
two terms in which its first term is similar to the term of
Newtonian gravitational potential, while its second term
is similar to the relativistic correction of GR. For the
various background fields, we have discussed that there
are possibilities for the equality of Newtonian and GR
correction terms to the corresponding background fields
contributions. We have given some plots denoting these
possibilities for each case. The second kind of correc-
tions is also a non-Newtonian correction resulting from
the dynamics of black hole and its surrounding field. We
have shown that depending on the dynamical features
of black hole and its background, there are also possi-
bilities that dynamical correction terms can be equal to
the Newtonian case. Some plots representing these situ-
ations are given for each case. Then, one realizes that for
the more realistic non-empty and non-static backgrounds,
the geodesic equation of any object depends strictly not
only on the mass of the central object of the system and
the angular momentum of the orbiting body, but also on

the (i) background field type and (ii) black hole and its
background field dynamics.

We have reported elsewhere on the causal structures and ther-
modynamical properties of our obtained solutions here [140].
We also aim to generalize this work to the case of charged
black holes.
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