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Abstract Given the classical dynamics of a non-relativistic
particle in terms of a Hamiltonian or an action, it is rela-
tively straightforward to obtain the non-relativistic quantum
mechanics (NRQM) of the system. These standard proce-
dures, based on either the Hamiltonian or the path integral,
however, do not work in the case of a relativistic particle.
As a result we do not have a single-particle description of
relativistic quantum mechanics (RQM). Instead, the correct
approach requires a transmutation of dynamical variables
from the position and momentum of a single particle to
a field and its canonical momentum. Particles, along with
antiparticles, reappear in a very nontrivial manner as the
excitations of the field. The fact that one needs to adopt com-
pletely different languages to describe a relativistic and non-
relativistic free particle implies that obtaining the NRQM
limit of QFT is conceptually nontrivial. I examine this limit
in several approaches (like, for e.g., Hamiltonian dynamics,
Lagrangian and Hamiltonian path integrals, field theoretic
description etc.) and identify the precise issues which arise
when one attempts to obtain the NRQM from QFT in each of
these approaches. The dichotomy of NRQM and QFT does
not originate just from the square root in the Hamiltonian
or from the demand of Lorentz invariance, as is sometimes
claimed. The real difficulty has its origin in the necessary
existence of antiparticles to ensure a particular notion of
relativistic causality. Because of these conceptual issues, it
turns out that one cannot, in fact, obtain some of the popular
descriptions of NRQM by any sensible limiting procedure
applied to QFT. To obtain NRQM from QFT in a seamless
manner, it is necessary to work with NRQM expressed in a
language closer to that of QFT. This fact has several implica-
tions, especially for the operational notion of space coordi-
nates in quantum theory. A close examination of these issues,
which arise when quantum theory is combined with special
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relativity, could offer insights in the context of attempts to
combine quantum theory with general relativity.
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1 Motivation and summary

Given the classical theory of a non-relativistic particle,
there is a systematic way of obtaining its quantum ver-
sion (NRQM), using either a Hamiltonian approach or one
based on path integrals. For a system with, say, H(x, p) =
(p?/2m) + V(x), these approaches lead to the same quan-
tum theory. This success, however, turns out to be more of
an exception than a rule in the description of Nature. There
is no guarantee that the standard (Hamiltonian or path inte-
gral) procedures of quantization will allow you to construct
a quantum theory — in terms of the same dynamical vari-
ables — if you try to impose some extra constraints, like for
e.g. Lorentz invariance,! general covariance, or the notion of
relativistic causality, which exist in the classical theory.

An important example of a well-defined physical system,
which has a simple classical description but does not have
a corresponding quantum description in terms of the same
dynamical variables is provided by a relativistic free particle.
The usual procedures which work for NRQM do not work in
this case. Bringing together the principles of special relativity
and quantum mechanics leads to a change in the dynamical
variables, the existence of antiparticles, and several other
complications leading, eventually, to what is called Quantum
Field Theory (QFT). The formalism and the language are
completely different in QFT and in NRQM.

Though we have all learnt to live at peace with this devel-
opment for decades, it is downright surprising when you think
about it.

We do know that both QFT and NRQM work quite well in
their respective domains. In the classical limit, the equations
of motion describing a relativistic particle does go over to
those describing a non-relativistic particle> when you take
the limit ¢ — oo. This suggests that, in the corresponding
quantum avatars, one should be able to get NRQM from QFT
by taking the limit ¢ — oo. But if the language and even the
dynamical variables used in QFT and NRQM are completely
different, how can you get NRQM from QFT seamlessly?
Several text books and articles deal with these issues rather
too glibly (and inadequately). A large part of this paper will
be devoted to pointing out that the transition from QFT to
NRQM is not possible if your aim is to reproduce many of

! Unless otherwise specified, I use the expression ‘Lorentz invariance’
to mean intrinsic Lorentz invariance and not manifest Lorentz invari-
ance.

2 Aside: but the Lagrangian for the relativistic particle does not go over
to that of a non-relativistic particle in this limit, contrary to what some
text books would like us to believe; instead, the Lagrangian blows up.
If you subtract the constant mc? — which blows up — and redefine the
Lagrangian, you lose Lorentz invariance of the action. In fact, it is not
possible to construct any Lorentz invariant action for a relativistic free
particle which will give the Lxg = (1/2)mv? in the ¢ — oo limit; see
Chapter 15 of Ref. [1].
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the conventional descriptions of NRQM. Towards the end of
the paper, I will describe how this can be achieved using one
specific formulation of NRQM.

Notation: Latin indices range over0, 1,2, ..., n = D—1
where, usually, D = 4. The Greek indices range over spatial
coordinates, 1,2,...,.n = D — 1. Iwillseth = 1,¢c =1
when it will not lead to any confusion. The signature is mostly
negative. I denote by p.x the on-shell dot product in which pg
is a given function of p, like e.g., po = (p*> +m?)'/?, while
pax® will denote the off-shell dot product. I will omit the
superscripts in x’, p’ etc. when it is clear from the context,
like e.g., use the notation ¥ (x) for w(xi). The symbol = in
an equation tells you that the equation is used to define some
quantity.

1.1 Does the emperor have clothes?

Let me briefly describe a series of issues which arise when
you try to think of NRQM as the ¢ — oo limit of QFT.? These
should alert you that the situation is not as straightforward
as the folklore might suggest.

(1) In NRQM, a description based on the Schroedinger
wave function v (x) (which is a c-number complex func-
tion in the coordinate representation) has a distinct technical
advantage over the one based on the Heisenberg picture. In
QFT, however, the Heisenberg picture is better suited for the
description and one uses, say, a, real, scalar field operator
qg(x) which satisfies the Klein—-Gordon equation. Of course,
operators remain operators and real functions remain real
when you take ¢ — oo limit; so to get ¥ (x) from (;Ab(x) one
has to do something more than just taking the c — oo limit. A
favorite procedure adopted in the textbooks is the identifica-
tion of e 1" (k|<]3(x) |0) (where |k) is a one-particle state with
momentum k) with the Schroedinger wave function. While
itis trivial to show that this function, in the appropriate limit,
satisfies the Schroedinger equation, this construction is rather
ad hoc. More importantly, it leads to another serious issue:

What happens to antiparticles when you take the ¢ — 00
of QFT? After all, a massive antiparticle has every right to
remain at rest (or in a low-energy state) such that it could
be described by NRQM! So when you take the appropriate
limit of QFT you should be able to get the NRQM of both
particles and antiparticles in a seamless manner. Many of
the conventional procedures (including the one mentioned
above) will not do this. At best you will get the Schroedinger
equation for the particle and will have to forget about the
antiparticle which, of course, is unsatisfactory.4

3 Throughout the paper, I will only deal with a non-interacting, massive,
scalar field because it is enough to illustrate the issues I am interested
in. Spin and interactions add extra complications which I want to avoid
so that I can highlight these issues in the simplest possible context.

4 For example, there are (wrong) claims in the literature that the real
scalar field in QFT has no NRQM limit because, for a real scalar field,
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(2) Another issue of interpretation has to do with the very
different roles played by the spatial coordinate x in QFT and
NRQM. In QFT we will deal with qAb(t, x), which is an oper-
ator with both ¢ and x acting as labels. This is necessary
since Lorentz transformations will mix space and time; so if
t is a label so should x be. But in NRQM the spatial coordi-
nate itself will acquire an operator status X () labeled by ¢.
Stated in another way, the dynamical variables in NRQM are
x%(t) and pg(t) obeying the equal time commutation rule
(ETCR), [x%(t), pp(1)] = ng. On the other hand, in QFT
the dynamical variables are qAS(x) and 77 (x), which obey the
ETCR given by [¢(t, x), 7 (¢, y)] = i8(x — y). But there is
no way of obtaining the position operator of NRQM from the
basic field operators of QFT. Text books do pay homage to
this fact by mumbling something about the inability to local-
ize a particle in QFT but that does not answer the technical
question of how the appropriate limit has to be taken so that
you get the dynamical variables and the ETCR of NRQM
from the dynamical variables and ETCR of the QFT. This,
in fact, turns out to be impossible; you cannot get there from
here. As we shall see, to make a seamless transition you need
to describe NRQM in a language which is closer to that of
QFT; not the other way around.

(3) Similar — and sometimes worse — difficulties arise
when you approach the problem in the language of path inte-
grals.5 Whenever we have a well-defined classical action, we
could try to quantize the system in terms of the path integral
by performing the sum over all paths, connecting two events
x1 and x7, in the expression

G(x2, x1) = ) _expiAlx(®)]. (1)

x(1)

This works like a charm in NRQM. What is more, the result-
ing expression GNR (x2, x1) has an equivalent interpretation
as the matrix element of the time evolution operator:

GNR(x2, x1) = (x2|exp[—i(2 — t1) H]|x1)
= (12, x2|t1, x1). (2)

The interpretation relies on the fact that |x1) and |x,) are
the eigenkets of a position operator x(0) with eigenvalues
x1 and x»; therefore we can use GNr(x2, X1) to propagate
the wave function (¢, x1|y) to give (2, x2|¥). We run into
several issues when we try to do any of these in an attempt
to obtain a RQM.

Footnote 4 continued

the particle is the same as the antiparticle. If antiparticles vanish mys-
teriously when you take the NRQM limit, then, of course, real scalar
fields cannot have an NRQM limit. As we shall see, this is incorrect.

5 Most of the intuition you develop about path integrals is based on
the quadratic momentum dependence of the Hamiltonian, making this
intuition pretty much useless in the study of even a relativistic free
particle.

To begin with, there are some technical issues in per-
forming the sum in Eq. (1); most of the procedures which
work well in NRQM do not work in this case. (This is
because these procedures in NRQM work only if the Hamil-
tonian is quadratic in momentum.) There is one procedure,
based on Euclidean lattice regularization, which does give
the sensible result leading to what is usually called the
Feynman propagator G g(x2, x1) in QFT. But the interpreta-
tion of this propagator is nontrivial because, roughly speak-
ing, it contains information as regards both the particle and
the antiparticle. Hence, it cannot be expressed in the form
GRr(x2,x1) = (t2, X2]t1, x1); in fact, we do not have an ana-
log of position operator X(¢) or its eigenstates, |, x) in a
Lorentz invariant QFT; so one does not have an analog of
Eq. (2) with the same interpretation in RQM.6

Thus there are serious issues in obtaining the NRQM based
on position eigenstates |¢, x) and a wave function (t, x|{r)
as a sensible limiting case of QFT. This conclusion remains
valid irrespective of the procedure — Hamiltonian or path
integral — adopted to construct the quantum theory of a rela-
tivistic particle.

1.2 Preview and summary

Let me next summarize the structure of the rest of the
paper and the key results. In Sect. 2, I begin by construct-
ing the quantum theory of a “free particle”’ described by
the Hamiltonian H = H(|p|). Since this form covers both
non-relativistic and relativistic free particles, it is possible to
compare the two situations at one go by studying such a sys-
tem and probe why we cannot extend the standard ideas of
NRQM to construct a RQM. Since a well-defined momen-
tum operator and its eigenstates |p) exist, it is possible to
develop the quantum theory in momentum representation in
a straightforward manner. Neither the square root structure
of the Hamiltonian for a relativistic particle nor the require-
ment of Lorentz invariance introduces any serious difficul-
ties in the momentum representation. But Lorentz invariance
requires using a relativistically invariant normalization for
momentum eigenkets (viz., (p’|p) = 2w, 27)"8(p — p’)
with wp = (p? +m?®?; see Eq. (9)).

The first real difficulty arises when we try to introduce a
(conjugate) position representation. In the relativistic theory
we cannot introduce localized particle position states |x) as

6 There is a folklore belief that, when you take the ¢ — oo limit of
the Feynman propagator G g(x2, x1), you will get the non-relativistic
propagator Gng (x2, x1). As I will show in Sect. 5.3, this is again not
true without extra, ad hoc, assumptions.

71 will define a “free particle” to be one for which neither the
Lagrangian nor the Hamiltonian depends on the spacetime coordinates
explicitly and H(p) = H(|p|). Throughout this paper we will be con-
cerned only with a free particle. As you will see, such a system itself
creates enough problems!

@ Springer
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eigenstates of a position operator because no sensible posi-
tion operator can be constructed. We can still attempt to define
states |x), labeled by spatial coordinates x, as Fourier (or
Fourier-like) transforms of the momentum eigenstates |p),
but with a relativistically invariant integration measure. This
leads to a Lorentz invariant propagator for the system, given
by®

G+(xz,x1)z/(

b (=ip.x)

—— exp(—ip.x), xX=xp—Xx
27)" 2w, p{—ip 2= X1
3)

with the D-dimensional (spacetime) momentum space rep-
resentation:’

Gi(p) = / dPxG )P = 8(p? — mDo(pO),
Denql. 4

But the trouble is that the states |x) we have defined (and
used to construct G 4 (x2, x1)), do not represent localized par-
ticles. The amplitude (x|y) will not be a Dirac delta function
8(x — ). So, even though defining |x) as Fourier-like trans-
form of | p) allows us to define a Lorentz invariant propaga-
tor for the system G, (x2, x1), there is no way of introduc-
ing a relativistic wave function in the coordinate representa-
tion, ¥ (x) = (f, x|¥), in the absence of position eigenstates
|t, x). In fact, the propagator G4 (x2, x1) does not satisfy the
correct composition law or the limiting behavior which are
necessary for it to “propagate” a wave function.

So the straightforward Hamiltonian approach does not
lead to an RQM such that we can obtain the NRQM as a
limiting case. The utility of this discussion, for our purpose,
is different. In Sect. 3, I show how the above description
leads to a natural notion of (non-Hermitian) field operators
both in NROM and ROM. Here we see the first glimpse of an
approach in which a natural transition from QFT to NRQM
could be possible entirely in terms of field operators. We
do not use the position operator x* at all and both ¢ and
x remain c-number labels, even after we have obtained the
NRQM. The propagator obtained in Sect. 2 can be expressed
in terms of the field operators, again, both in NRQM and in
QFT. In the relativistic case, the field operators are Lorentz
invariant but they do not commute on space-like surfaces.
Hence they cannot be used to construct physical observables
directly. (This requires some more work and leads to the
notion of antiparticle both in QFT and NRQM ; see Sect. 6.)

The discussion in Sects. 2 and 3 tells us that: (i) Lorentz
invariance or the square root in the Hamiltonian does not

8 Recall that T denote by p.x the on-shell dot product in which py =
(p% +m*)1/2, while pyx® will denote the off-shell dot product.

9 This is built from the so-called “positive frequency” modes of the
Klein—Gordan (KG) equation and has to be distinguished from the Feyn-
man propagator we will come across later on. We shall develop all these
results in detail in the coming sections.

@ Springer

introduce any serious conceptual difficulties in developing
RQM. (ii) The fact that particles are nonlocalizable in RQM
leads to difficulties in defining the position eigenkets but
these difficulties can be handled by working in momentum
representation and introducing the necessary Fourier trans-
forms. (iii) But when we do that, the resulting propagator
G+ does not satisfy the composition law necessary for it to
propagate a wave function. In fact, we cannot even properly
define ¥ (x) = (¢, x|y) in the absence of position eigenkets
|t, x). (iv) The formalism leads to the concept of a field oper-
ator both in NRQM and QFT but we run into trouble with
the notion of causality in QFT. This is related to the particle
states not being localizable but, as we shall see later, the issue
is deeper and is linked to the existence of antiparticles.

In Sect. 4 we look at the same (free particle) system,
described by a Hamiltonian H (|p|), from the path integral
perspective. In Sect. 4.1, I show how the Hamiltonian path
integral is indeed straightforward to evaluate for such systems
—even for the relativistic case with a square root Hamiltonian.
If you use the standard measure d"xd” p in the Hamiltonian
path integral, you get the correct answer in NRQM; but, in
the case of RQM, you get a propagator — called the Newton—
Wigner propagator — which is not Lorentz invariant. It is
possible to tinker with the path integral measure — taking a
cue from our discussion in Sect. 2 — and arrange matters so
that the resulting propagator is Lorentz invariant. This proce-
dure again leads to the same propagator G 4+ (x>, x1) obtained
earlier. This also means that we inherit all the difficulties
encountered earlier.

In Sect. 4.2, I study the same system using a Lagrangian
path integral. Again, there is a natural way of defining the
measure for this path integral which leads to the correct result
in NRQM. The same procedure, when applied to the relativis-
tic Lagrangian, leads to nonsense — that is, the path integral
does not exist for any choice of the measure. The fact that, for
the relativistic particle, the Hamiltonian path integral exists
while the Lagrangian path integral does not can be traced to
the structure of the Hamiltonian. One can write down a gen-
eral condition which must be satisfied by the Hamiltonian if
the Lagrangian and Hamiltonian approaches have to lead to
the same result. The square root Hamiltonian of the relativis-
tic particle violates this condition. This is probably the only
occasion in which the square root in the Hamiltonian leads
to a serious technical difficulty.

There is, however, another — rather elegant — procedure
for defining the Lagrangian path integral for a relativistic
particle. This makes use of the geometric interpretation of the
relativistic action as the path length in the Euclidean space.
You can then define the path integral in an Euclidean lattice
and obtain a continuum limit using a natural regularization.
I do this in Sect. 5 and show that the resulting propagator
G r(x2, x1) is the standard Feynman propagator in QFT with
the Fourier space representation:
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i
(p2 —m? +ie)’

&)

Gr(p) = / dPxGR(x)exp(ipax®) =

In Sect. 5.2, I show that this particular path integral approach
for the relativistic case is very similar to the path integral
based on the Jacobi action for a non-relativistic free parti-
cle. This mathematical identification clarifies several pecu-
liar features of the Feynman propagator. I also discuss briefly
some aspects of reparametrization invariance and its connec-
tion with the Jacobi action.

Obtaining the Feynman propagator from a path integral
prescription is gratifying but this does not again help in our
task of obtaining NRQM from QFT. In Sect. 5.3, I discuss the
non-relativistic limit of G g(x2, x1) and show that it does not
reduce to the propagator GNr(x2, x1) of NRQM. So while
the lattice regularization provides a natural way of obtaining
G Rr(x32, x1), it does not help us in obtaining the NRQM limit
in a seamless manner. Once again, we cannot use Gr(x2, X1)
to propagate a relativistic wave function because Ggr(x2, x1)
does not obey the correct composition law and does not have
the appropriate limit. In Sect. 5.5, I provide a brief discussion
of the different composition laws obeyed by relativistic and
non-relativistic propagators and how the relativistic compo-
sition law goes over to a non-relativistic one in the ¢ — oo
limit. This discussion clarifies several issues discussed in the
literature.

In Sect. 2, we obtain G (x2, x1) as a matrix element of a
time evolution operator provided the states |x) are defined via
Fourier transform from the eigenkets |p) of the momentum
operator. On the other hand, G g (x2, x1) is obtained in Sect. 5
from a lattice regularization procedure, applied to the path
integral, and it is not clear whether it is also a matrix element
of the time evolution operator. Strictly speaking, it is not.
However, it is possible to express it as such a matrix element
using a particular integral representation of the time evolution
operator. I do this in Sect. 5.4 and show how this approach
connects with the discussion in Sect. 5.2.

These results show how difficult it is to obtain the NRQM
from QFT in a straightforward manner. We run into difficul-
ties both in the Hamiltonian approach and in the path inte-
gral approach. The lattice regularization of the relativistic
path integral does lead to the QFT propagator Gg(x2, x1).
But this propagator does not have a single-particle NRQM
limit. This is to be expected because G r(xz, x1) contains
information as regards both particles and antiparticles. In the
NRQM limit, it should therefore represent the dynamics of
both the particle and the antiparticle rather than just a single
particle. I show how this result arises — thereby answering
the question raised in the subtitle of this paper! — in the last
two sections.

Sections 6 and 7 identify the necessary ingredients for
the NRQM to arise in the appropriate limit of QFT. This

is done by using a pair of field operators rather than a sin-
gle relativistically invariant operator. Such a pair restores
microscopic causality in QFT and collectively describes a
particle-antiparticle system. This behavior survives in the
NRQM limit and we obtain the Schroedinger equation for
two field operators, one describing the particle and the other
describing the antiparticle. They coexist on an equal footing
in the NRQM limit.

So, I have good news and bad news. Good news is that one
can obtain NRQM, as a limiting case of QFT, if — but only if
— we interpret NRQM in terms of a field operator satisfying
the Schroedinger equation a la (what is usually called, quite
misleadingly, as) the “second quantized” approach. The bad
news is that you cannot get the standard formalism (viz. the
stuff we teach kids in QM101, in which x* and pg are treated
asoperators and ¥/ (¢, x) = (t, x|{) is a “wave function” etc.)
as a natural limiting case of QFT. Section 8 discusses some
of the broader implications of this result.

While the main focus of this paper is on the conceptual
issues (and it does clarify and highlight several of them),
there are also many interesting results of technical nature
which either do not exist in the previous literature or not
adequately discussed. I mention below some of them:

(a) The Hamiltonians for both the relativistic and the
non-relativistic (free) particle depends only on their
momentum. Section 2 discusses such systems, for which
H(p,x) = H(|pl), in a unified manner and identi-
fies the reasons why, in spite of this simplicity, we do
not have an RQM but we have an NRQM. The unified,
focused, discussion should have found a place in text-
books but it had not.

(b) The most natural way of defining a path integral, either
from a Hamiltonian H (p) or from a Lagrangian L (X), is
by time slicing. (We look for other “sophisticated” meth-
ods only when this approach fails but alas, often, without
investigating why exactly it failed!). Section 4.1 explains
what happens (or goes wrong) when you attempt time
slicing with the Hamiltonian for a relativistic particle;
I have not seen such an explicit discussion, e.g., about
the issues regarding choice of measure, see Eq. (65), in
the published literature. Section 4.2 takes up the corre-
sponding question in the case of the Lagrangian path
integral. I show that there is a natural way of defining
the time-sliced path integral leading to Eq. (72) and use
this to clearly contrast the NR case with the relativis-
tic case. I have not seen such a discussion — leading to
e.g., Eq. (79) and the discussion in the two paragraphs
following Eq. (79) — in the literature.

(c) One consequence of the above analysis is the following:
It clearly shows that the Hamiltonian and the Lagrangian
time-slicing procedures are not equivalent — another fact
which is inadequately stressed in the literature. I also

@ Springer
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identify the formal condition, Eq. (80), for their equiva-
lence which I have not seen in the literature, at least not
in this context (though it might exist buried somewhere
in the literature on formal path integral techniques).

(d) Much of the discussion in different subsections of
Sect. 5 is new. In particular, the discussion in Sect. 5.1
leading to e.g., to the interpretation in Eq. (97), the
NR limit of lattice regularization in Eqgs. (104)—(112),
comments in the last paragraph of Sect. 5.2 leading to
Eq. (135) are either entirely new or highlights aspects
inadequately discussed in the literature.

(e) Section 5.3 shows that you cannot get the NR propa-
gator from the ¢ — oo limit of the Feynman propaga-
tor. Again, I have not seen an explicit discussion of this
(correct) result in the textbook literature. The result in
Sect. 5.4 is new and clarifies the structure of the G
from an alternative point of view.

(f) Section 6 emphasizes the fact that the standard KG field
is built from #wo fields which in the NR limit represent
the particle and the antiparticle. This, by itself, is not
new and exists in several textbooks including my own
[2]. Butit assumes importance in the context of Eq. (194)
which I claim nobody understands, in spite of it being the
key equation in QFT, allowing the formalism to work.
The fact that the path integral for, ostensibly, a single
relativistic particle actually describes the propagation
of rwo particles is the key issue here and the discussion
in Sect. 6 provides the backdrop for it.

Of course, these technical results are just the trees in the wood
of conceptual discussion and, hopefully, the reader will not
miss the latter for the former.

2 Quantum theory of a system with the Hamiltonian

H(p,x) = H(lp])

The classical dynamics of a free particle is completely
described by the action which has no explicit dependence
on the space or time coordinates:

A= / dL(E) = / dilp -5 — H(p)) ©)

in terms of a well-defined Lagrangian L(x) = L(|x|) or
a Hamiltonian H(p) = H(|p|). In the case of a non-
relativistic free particle we take:

2

. I ., p
LNr(%) = FmEs Hxr(p) = Eo @)

@ Springer

while, for the relativistic free particle, we have'?

Lr(x) =—m(1 —xHV2  Hp(p) = (P> +mH'2 (8)

In either case, the Lagrangian and the Hamiltonian are inde-
pendent of x and we can deal with both of them at one go.
The classical equations of motion are easy to solve lead-
ing to p = py = constant, x*(t) = F% + x“(0), where
F* = (0H/dp,) = constant. That is the end of the story.
What about the quantum theory? If one does not bring in
any extra symmetry considerations, then the quantum theory
of any system with H = H (]| p|) is also trivial in the Heisen-
berg picture. We upgrade the position and momentum to oper-
ators satisfying the commutation rule [x%, pg] =i 8%‘, which
can be concretely implemented — in the space of normaliz-
able complex functions — in the momentum representation
with X% = id/dp,. Since the Hamiltonian commutes with
momentum, p(¢) = p(0). It is trivial to integrate the opera-
tor equation for x* and obtain X% (t) = Fo% + £%(0) where
F* = H /9 Ppy) = constant. Since we have solved the oper-
ator equations, we can answer any question as regards the
quantum dynamics. Obviously, this procedure should work
for Hxr(p) = p?/2m as well as for Hg (p) = (p?+m?)1/2.
Soitis not the form of the Hamiltonian which creates prob-
lems when we try to construct relativistic quantum mechanics
(RQM) of a free, single, particle. But we do know that com-
bining principles of special relativity and quantum theory
does require more drastic modifications of the description
and, in fact, we cannot have a viable, single-particle quan-
tum theory based on, say, a relativistically invariant wave
function. The question arises as to why this is the case.
When you move from NRQM to RQM, there are two
new ingredients which come in. First, the Hamiltonian for
a free particle changes from Hxr(p) = p?/2m to Hg =
+(p* + m*)'/? with corresponding changes in the dynami-
cal equations. Second, we want the physics to respect Lorentz
invariance rather than Galilean invariance. As we have seen
above, the square root structure of the Hamiltonian does not
create any new conceptual issues when we use the momen-
tum representation and Heisenberg picture.'! The next sus-
pect, of course, is the requirement of Lorentz invariance. As
we shall see, the issue of maintaining Lorentz invariance
requires having the correct, relativistically invariant, inte-

10 The Hamiltonian for a classical relativistic particle is positive definite
and the square root is taken with positive sign in H(p) = +(p? +
m?)!/2 This is the classical system we want to quantize — not a strange
one with H(p) = j:(p2 + m?)1/2_ which has no classical meaning.

1 If you attempt to write the Schroedinger equation with Hp in the
coordinate representation, the square root in the Hamiltonian will make
the equation nonlocal. But then, if you write the Schroedinger equa-
tion for a non-relativistic particle moving under the action of a non-
polynomial potential V (x) in the momentum representation, you will
again get a nonlocal Schroedinger equation. So this by itself is not a
conceptual difficulty; but merely a technical nuisance.
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gration measure in the momentum space when we describe,
say, the momentum eigenstates of particles. Roughly speak-
ing, you can ensure that a classical theory is relativistically
invariant, if you ensure that the dynamical equations are rel-
ativistically invariant. But in quantum theory, you need to
ensure that both the dynamical equations (for the operators in
Heisenberg picture, say) as well as the description of quantum
states in the Hilbert space are relativistically invariant.'> The
first requirement — viz. relativistic invariance of dynamical
equations — can be ensured by using a relativistically invari-
ant action or Hamiltonian; but the second requirement does
not have a direct analog in classical relativistic mechanics.
We will see that this requirement is the root cause of several
nontrivial features in QFT. We will now see in some detail
the mathematical consequences of these requirements.

2.1 Propagators in momentum and coordinate spaces

Since a Hermitian momentum operator has to exist for the
proper definition of H(p), we start by introducing a com-
plete set of orthonormal momentum eigenkets, |p), which
must exist for any system described by a Hamiltonian of the
form H (p), including NRQM and RQM. We would then like
(p’| p) to be proportional to §(p — p’). This works in NRQM
but the integration over d" p§(p— p’) is not Lorentz invariant.
The relativistically invariant measure for momentum integra-
tion is d2, = d" p/Q2m)" (1/R2p) with Qp, = 2w,. So we
need to postulate:

d'p 1

dQ, = . (9)

(p'lp)=Q2n)'Qp 8(p—p), p= WQ_
P

so that (p|p)dQ2, = 8(p' — p)d" p. In NRQM we can take
2, to be a constant, or even unity; but in RQM the Lorentz
invariance of the measure for momentum integration d2,
requires the factor 2, = 2w,. By keeping the choice of 2,
unspecified in the algebraic expressions, we take care of the
two cases at one go; further, in the non-relativistic limit, w,
can be approximated by the constant m allowing us to take the
limit seamlessly. With this definition, the resolution of unity
and the consistency condition on the momentum eigenkets
become

lE/de/lp/)(P/l; |p) E/de'IP’HP’IP)- (10)

These relations can be taken care of by the choices in Eq. (9).
In the integration measure as well as in the Dirac delta func-
tion, we have introduced a factor £2,, which, of course,
cancels out in the right-hand side of the second relation in
Eq. (10).

12 1t is possible to address some of these issues, very formally, in terms
of the structure of the Lorentz group and Galilean group and their inter-
relationship. We will, however, adopt a more transparent and down-to-
earth approach in this paper.

Given these momentum eigenstates, we can define a nat-
ural momentum space propagator by the rule:

G(th, Py; tas Pa) = (Pple P |p,)
= (2m)"'Qp, 8(p, — pp) exp —itH(p,):
(1D

where t = t), —t,. Given any arbitrary state |¢) in the Hilbert
space we can “propagate’ the complex function ¢ (¢,, p,) =

(pl¢) by this propagator:

& (tp, Pp) = /deaG(tb,ph;ta,paM(ta,pa)
= ¢(ta, pp) exp —it H(py). (12)

So the momentum space evolution is just a change in phase.
Since momentum operator generates translation in space, it
seems natural to introduce a position space propagator by the
definition:

G(tp, Xp; la, Xq) = /deadebG(tba Py tas Py)
X expi(py - Xp — Py Xa)- (13)
Using Eq. (11) in Eq. (13) and performing the integrations,

we get the propagator, G(x) = G(tp, Xp; 15, X4) Where x =
Xp — Xg, for both NRQM and RQM at one go, in the form

G(x) = /de exp(—ip - x)

Y L (14)
= | Gy 2, exp(—ip - x

where we have introduced the four-component object (in both
NRQM and RQM) by p* = (H(p), p), which, of course, is
a genuine four-vector in RQM and just a convenient notation
in NRQM. For later reference, note that the standard spa-
tial Fourier transform (defined with the measures d”"x and
d" p/(2m)") of this propagator is given by

— e HP), (15)

Gp(t) = /d"xG(t,x)e—"P"‘ =
p

Let us now consider the two cases, NRQM and RQM. In
NRQM we get

ar 2
Onr () = / Ty P [i (” T i_mtﬂ

m \n/2 im|x|?
_(Zm't) eXp( 2t )’ (16)
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and in RQM we have,!3 with x2 = x,x9,

d'p 1 exp(—ip.x) = F(x?), (I7)

G (x) = Q2m)" 2wp

which is clearly Lorentz invariant. For space-like separations,
F can be expressed in terms of a Bessel function and decays
exponentially; for time-like separations, it can be expressed
in terms of a Hankel function and oscillates; it has a singular
behavior on the light cone (see, e.g., [2]). So obtaining a
Lorentz invariant propagator is not an issue at all. If we take
the ¢ — oo limit of G (x), we get

—i(mc?)t .
lim Gy(x) = —— [GNR - —
c—00 2m mc

In this expression, the overall factor (1/2m) is irrelevant; the
factor e~/ s unavoidable because the rest energy mc>
will always contribute to the phase. The second and higher
order terms within the square bracket in Eq. (18) vanish in
the ¢ — oo limit. So one can think of the non-relativistic

propagator being recovered in the limit:
lim [2m)e' |G 4 (x) = Grr, (19)
c—> 00

which seems reasonable. So far, so good.

2.2 The problems in defining localized particle states

We would, however, like to think of this real space propagator,
defined though the Fourier transform in Eq. (13) to be the
same as the matrix element of the time evolution operator:

G(xp. xq) = G(t, x) = (xpleHP|x,) (20)

for some suitable states |x). To do this we need to introduce
the states |x) labeled by the spatial coordinates. In NRQM
they could be thought of as the eigenkets of the operator X (0).
For a more general system described by an arbitrary H (p)
like, for e.g. in RQM, we do not have the natural notion of
such a position operator. But we can take a cue from the
previous results and use the property that the momentum
operator is the generator of spatial translations (which holds
both in NRQM and RQM) to define |x) along the following

13 While discussing the general expressions for the propagator, valid in
both NRQM and RQM, we will denote it by G (x) with no subscripts.
The propagator in NRQM is unique and will be noted by Gnr. In RQM
and QFT, we will encounter different types of propagators denoted with
different subscripts. This particular one carries the subscript +, since it
is made of positive frequency solutions of the KG equation.

@ Springer

lines: 14

x) = ¥ P10) = / dQpe™ P Cylp),

Cp = (pl0); (plx)=Cpe ™*P, 1)

This defines |x) in terms of a single function C,. Inserting a
complete set of momentum eigenstates in the matrix element
in Eq. (20), and using the last relation in Eq. (21), we can
evaluate the propagator explicitly in terms of Cp,. We get

G(x) = /de|Cp|2exp(—ip.x) (22)

where we have again defined the four-component object
p® = (H(p), p) taking care of both NRQM and RQM.

In NRQM, it is natural to take the measure in the momen-
tum space integration with £, = constant; similarly, we can
alsosetCp, = 1. With these choices and using xR = p*/2m
in Eq. (22), we immediately obtain the NRQM propagator
given by Eq. (16). In RQM, we want to obtain a Lorentz
invariant propagator. In Eq. (22), the measure d€2;, and the
function exp(—ip - x) are Lorentz invariant. Therefore, the
propagator will be Lorentz invariant if we take C, = con-
stant. It is conventional to scale things so that Cj, = 1. Then
the propagator is given by the expression in Eq. (17). We
have thus arrived at a Lorentz invariant propagator for RQM
which can also be interpreted as the matrix element of the
time evolution operator through Eq. (20). Unfortunately, the
situation is not so simple when we study it more closely.

To begin with, note that the only difference between the
relativistic and non-relativistic propagators is in the (1/2p)
factor, which we can take to be a constant (or even unity)
in NRQM but which is (1/2wp) in QFT. As we shall see,
this makes all the difference. From the definition of |x) in
Eq. (21), it follows that

(ylx) = /dsz,, eI E=N |, 1, (23)

If you want localized particle positions, this expression
should be proportional to a Dirac delta function. This in turn
requires |Cp|? = 2w, to give dQ2,|C,|* = [d"p/(27)"].
But we get a Lorentz invariant propagator from Eq. (22) only
if |C p|2 = constant in Eq. (22)! So, while the propagator
defined through Eq. (20) can be made Lorentz invariant, we
do not know what it propagates because |x) do not represent
localized particle states! (The difficulty in localizing parti-
cles states in RQM is discussed extensively in the literature;
see, e.g., [4-8].)

14 Here, as well as in most of the discussions which follow, we are
interested in expressions at a given time 7, taken to be ¢ = 0, for con-
venience. The notion of a state |x) = |z, x) such that |x) = |0, x) will
be introduced later in Eq. (27).
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Furthermore, with this Lorentz invariant choice C, = 1
we also have the result

/d"x Ix)(x|p) = /d”x e'P¥|x)

- / dn”ip‘x/ dQy e”1|q)

1 1
_ /d”q =0 —la) = 5-1p):
q p
24)

So we cannot use the states |x) for the resolution of identity.
Equation (24) also shows that it is the combination € ,d"x
rather than d"x which behaves better. For example, while
the measure of integration d"x is not Lorentz invariant, the
combination 2 ,d" x is. (We will discuss this aspect in greater
detail later on.) In the case of d" p, we could work from
the Lorentz invariant combination d* pa( p2 — m?)6( po) ('
d" p/2w), but there is no natural analog!? for that in the case
of d"x. The best one can do is to write, for any state |y/), the
relation

) =/dsz,,|p><p|w>
- / i, / [d"x 2,11%) (1) (p1Y/)

/d"”dnx| ) (x|p) (pl¥) (25)
= | ———|x){x ,
Q) p)p

which is Lorentz invariant if the left-hand side is. So there is
some kind of resolution of identity in phase space:

d"pd'x

1= =
2m)"

lx)(x|p){p] (26)
but not in normal space. We will come across this combi-
nation again later, while computing phase space path inte-
grals. Note, for future reference, that the natural extension
of |[x) = |0, x) for r # 0 is defined as the state |x) = |z, x)
through the relation

Ix) = t,x) ="' |x) = /dsz,, '’ p) (27)
where H (p) is the Hamiltonian.!®

The propagator we have obtained has another nice prop-
erty which arises directly from the definition in Eq. (11). It
satisfies the first order differential equation

(0, —H(p)G =0 (28)

15 Taking a cue from momentum space, one can redefine the integration
measure as d*x8 (x> — %) where u specifies the space-like hypersurface
12 —x? = ;2. Thave explored this possibility [9] but it leads to problems.

16 The sign in the exponential is correct and gives (f,x| =
(0, x| exp(—i Ht), which is the correct relation; see, e.g., 1.2.2 of Ref.
[2].

for any H(p). In the specific case of the relativistic free
particle, the structure of Eq. (17) tells you that it also satisfies
the equation

[020° + m*1G1(x) = 0. (29)

The zeros in the right-hand sides of Eqgs. (28) and (29) are
closely related to the fact that the definition in Eq. (20) — as
well as the form of the final propagator — is valid for both
t > 0andt < 0. Nowhere did we assume that t > 0 to obtain
the form of the propagator. The time evolution operator in
quantum theory U (t2, t1) = exp[—iH (&2 — t1)] evolves a
state from ¢t = # to t = 1, irrespective of the time ordering
of 1, and t1; that is, this is a valid evolution operator for both
t, > t; and 1p < t1. For example, in NRQM, given a wave
function ¥ (¢, x) we can determine the wave function at all
the earlier times and later times.!” Therefore the expression
for the propagator in NRQM, defined as the matrix element
(x2|U (12, t1)|x1), is valid for both t, > t; and 1, < 1.

Sometimes it is convenient to define another propaga-
tor by multiplying G by a theta function in time, getting
U(xz,x1) = 0(t)G(x2, x1), which will satisfy the differen-
tial equation

(0, — H)U =i5(12 — 11)(x2]x1). (30)

The right-hand side will reduce to i§(x» — x1) in NRQM
but not in the relativistic theory. When we bring in Lorentz
invariance, we run into trouble regarding the time ordering.
The notion of, say, r» > ¢ is well-defined only if the events x;
and x1 are separated by a time-like interval. When the events
are separated by a space-like interval, we can always choose
a Lorentz frame such that 1, = #; and hence G(x2, x1) =
(x2]x1). If G(x2, x1) does not vanish for space-like intervals,
then multiplying G (x2, x1) by (2 — #1) will not lead to a
Lorentz invariant construct.

2.3 Propagator does not propagate the wave functions

The reason why this propagator G4 (x) (in spite of (i) being
defined as a time evolution operator for the relativistic Hamil-
tonian through Eq. (20) and (ii) being Lorentz invariant) can-
not be used to define a single-particle RQM is the following:
We cannot use it to propagate a wave function with standard
probabilistic interpretation in real space. To see this let us
recall how this becomes feasible in NRQM. The dynamics
of a free particle in NRQM can be described using the prop-
agator GNR (xp, X4), Which relates the Schroedinger wave
function at two different times through the relation

17 The same results hold even in a relativistic theory where H (t, — t1)
will be replaced by an integral of d ¢ P, over a space-like hypersurface
2 of the four-momentum P, and the evolution proceeds from one space-
like hypersurface to another.
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W (xp) = / " x GNR (xhs x0)¥ (o). 31)

This provides the physical interpretation for GNgr (xp, X4) as
the amplitude for the particle to propagate from the event A to
the event B. One can immediately draw two key conclusions
from the existence of a relation like Eq. (31):

(1) Consistency of Eq. (31) in the limit #, — ¢, tells you
that GNRr (xp, x,) must satisfy the boundary condition

lim GNg(xp, X4) = 6(xp — X4). (32)
Ih—>t,

(2) The propagator must satisfy the transitivity condition
(also called the composition law) given by

GNR (Xp, Xg) = /d"xl GNR (Xp, x1) GNR (X1, Xg).
(33)

This is an extremely stringent condition on the form of
the propagator GNR (xp, X;)- In the case of a free particle,
GnNr (xp, x,) must be a function of x;, — x, alone. It is then
straightforward to show (see page 5 of [2]) that the spatial
Fourier transform Gnr (¢, p) must have the form

GNr(E, p) = /d”x GNR(t, x) exp(—ip - x)
exp[—itF(p)]. (34)

That is, GNr(Z, p), the propagator in momentum space, is
a unit norm complex function with a phase that is linear in
time.

Neither of these conditions, in Eq. (32), Eq. (33), hold for
G (x). The condition in Eq. (32) is violated because G (0, x; —
X,) = (xp|x,) is not a Dirac delta function; this is the same
issue of |x;) not representing a localized particle state. The
condition in Eq. (33) is violated because the spatial Fourier
transform of G, given by Eq. (15), is not of the form of
Eq. (34). So the idea of “propagation of a wave function” in
Eq. (31) does not work in RQM.

It is interesting to ask how Eq. (32) is reproduced in the
non-relativistic limit. Using Eq. (28), we can rewrite Eq. (18),
in the limit of ¢ — o0, as

e—i(mcz)t )»2
Gi(x) = o GNR+7CV2GNR+"' )
h
Ac = _— (35)

Taking the limit of r, — #; we find

1 Az,
Gy(xp—xp) =~ m (x2 —x1) + 7V S(xp —x1)+---

(36)

@ Springer

with a highly singular second term. This implies that

)»2
(2m)/dx1G+(x2 —x)Y(x1) ~ P(x2) — fvzw(m).

(37

The second term is nonlocal and probes the wave function
over a region of the size of the Compton wavelength Ac.
Clearly this non-localizability of the particle state is the cause
for the trouble which vanishes in the ¢ — oo limit. So the
propagator G . (x) cannot be used to propagate anything con-
sistently in RQM.

One might think that the propagation equation (12) in
momentum space should lead to a similar equation in real
space in terms of the Fourier transform v (¢, x) of ¢ (¢, p).
This is indeed true, but the propagator which will appear in
that expression is not the Lorentz invariant one, defined by
Eq. (13). We could define the Fourier transform (¢, x) of
¢ (¢, p) with either the measure d" p or with d 2, and the two
approaches lead to similar difficulties. The €2, factors will
come in the way when you try to translate Eq. (12) into some-
thing like Eq. (31) with G (¢, p;; t4. p,) replaced exactly by
G(tp, xp; tg, x,). For example, if you define ¥ (¢, x) with the
Lorentz invariant measure

¥p) = / A9 (11, py) explipy - X5) (38)
and use Eq. (12) you will find that

W) = [ ", K wnn) (39)
with

K (xp; xq) = /dQPadQPb [Qpr(tbv Pbita, Po)l
X expi(py - Xp — Py - Xa)

an . 3G
- / (zﬂ‘;’n exp(—ip.x) = 2= E. (40)

This K (xp; x,) does propagate ¥ but it is not Lorentz invari-
ant. As you can see, the extra factor of €2, in the integrand
ensures that K (xp; x,) reduces to a Dirac delta function when
t — 0, ensuring the consistency with Eq. (39). The combi-
nation K (xp; x,)d"x, behaves as a Lorentz scalar though
neither K (xp; x,) nor d"x, individually is, thereby allow-
ing us to define v as a Lorentz scalar. Thus we can define
a propagation relation only with a propagator which is not
Lorentz invariant.'® The propagator K (x;, x,) is sometimes

'8 In NRQM, we can treat both momentum eigenstates | p) and posi-
tion eigenstates |x) on an equal footing, while in the RQM momentum
eigenstate |p) acquires a preferred status. Notice, however, that even
in textbook NRQM, there is one key difference between these descrip-
tions. The probability density p = |(x|y)|? in position space satisfies
a continuity equation d;p + V - j = 0 while we do not have a corre-
sponding continuity equation for the probability density 5 = |(p|¥)|?
in momentum space. This is hardly emphasized in the text books.
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called the Newton—Wigner propagator. (For a small sample
of literature dealing with Newton—Wigner states and related
topics, see [15-28].)

This is the propagator you get if you forget all about
Lorentz invariance and study a system with the Hamiltonian
H = (p*>+m?)"/? as though you are doing NRQM with this
Hamiltonian. In this case, we will be working with 2, = 1in
Eq. (9) and will take Cp, = 1 in Eq. (21). Equation (20) will
then lead to K (xp, x,). We will also recover the standard res-
olution of the identity for the states |x) in Eq. (24), because
we have set 2, = 1. Everything will proceed exactly as in
NRQM except for the fact that pg = (p>+m?)!/2 in Eq. (40).
This propagator will satisfy the standard composition law and
the boundary condition in Eqs. (32) and (33), which is, of
course, necessary for a propagation law of the form Eq. (39)
to hold. Finally, if you take the ¢ — oo limit, K (xp, x,) will
reduce to GNRr (¥p, X4) (except for the understandable factor
exp(—imt)). So the square root in the Hamiltonian is of no
real consequence in developing a quantum theory, if you are
willing to sacrifice Lorentz invariance. Needless to say, this
is too high a price to pay.

The fact that spatial integration with the measure d"x is
not Lorentz invariant also means that a relation like Eq. (33)
has no hope of surviving in a Lorentz invariant theory if the
propagators are Lorentz invariant. The standard procedure to
define invariant spatial integration is to use a (variant of a)
combination like d X% F10,F, = d"x F19yF> for two scalar
functions Fi, F. This, however, does not help us to define a
wave function for a relativistic particle. But it again raises the
question as to how the correct composition law in Eq. (33)
is recovered in the non-relativistic limit; we will discuss this
issue in Sect. 5.5.

Some of these ideas involving the states |k) and |x) are
usually expressed by introducing a one-particle “wave func-
tion” which, as we know, is not a useful notion. Nevertheless,
to connect with previous literature, let me briefly mention
how this comes about. Consider a state | W) defined in terms
of a function F (k) by

W) = /koF(k)|k). (41)

We clearly have F(p) = (p|V). Given the definition of |x)
in Eq. (27), we see that

(x|W) = /ko e F(k) = F(x). 42)
It is easy to show that this function F(x) satisfies the rela-
tivistic Schroedinger equation

i0,F(x) = (=V2+m)2 F(x) = H(p)F (x). (43)

By acting on the left-hand side with i9; again, we see
that_F (x) also satisfies the [(lein—Gordon equation (J +
m?)(x) = 0. The fact that F(x), which is analogous to a

single-particle wave function, and the operator A(x) both
satisfy the Klein—Gordon equation sometimes creates (avoid-
able) confusion in the literature.

Because of the 2wy, factor in the measure d 2, F (x) is not
a straightforward Fourier transform of F (k)e ™'+ in RQM.
This is also reflected in the fact that while |\W) has a straight-
forward expansion in terms of |k), the corresponding expan-
sion is non-local when we attempt it'!? in terms of |x). The
norm of the state |W) can be expressed in two equivalent
ways:

/ko F*(t, k) F(t, k) :i/dE“F*(x) B F(x), (44)

which shows that it is fairly natural in the momentum space
but involves what is called the Klein—Gordon inner product
in real space.

3 Fields from propagators in NRQM and RQM

The fact that the relativistic propagator does not propagate
a wave function, while the non-relativistic propagator does,
leads to the first point of departure between the two. Even
though a useful notion of wave function fails to exist in the rel-
ativistic case, the propagator does lead to a natural notion of
field operators (not c-number wave functions) in both NRQM
and RQM. They can be introduced in a unified way, and as we
shall see later, actually facilitate a seamless transition from
QFT to NRQM. This section introduces this idea, which we
will explore further in Sect. 6.

To do this, recall that the |p) represents the state with a
single particle having a momentum p and energy H (p) both
in NRQM and RQM. When a particle is in an external field or
when its interacts with other particles, it could evolve from,
say, a state | p;) to | p,). Such a process can be equivalently
thought of as annihilating a particle in state | p;), leading to
a no-particle state, which we will denote by |0), followed
by the creation of a particle in |p,) from |0). To specify
these processes, we can introduce a pair of operators A, and
A; (“creation” and “annihilation” operators) which obey the
following relations:

[4p. 4] = )" 2,80 - @),
Apl0) =0, p) = A;|0). (45)

The first relation defines the commutator structure of the cre-
ation and annihilation operators in the momentum space with
the Dirac delta function in the right-hand side defined with
the invariant measure containing the factor £2,. The second
relation defines the unique no-particle state |0) as the one

19 Recall our notation |x) = |x);—¢ = |0, x). We will use the same
notation for all physical quantities.
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annihilated by A, for all p. The third relation constructs the
momentum eigenstate from |0) by the action of the creation
operator. All these work both in NRQM and RQM. Combin-
ing Egs. (27) and (45) we find that |x) can be expressed in
the form

Ix) = /deAj, ¢'P¥10) = AT(x)|0) (46)
where we have defined the operator

Alx) = /de Ape*iP.x; AT(.X) = /de A;eip.x.
(47)

So we find that the state |x) can be obtained from the state
|0) by the action of a non-Hermitian “field operator” A (x)
both in NRQM and in RQM. The propagator we obtained
earlier can now be expressed in the form

(x2lx1) = (t2, X2lt1, x1) = (0] A(x2) AT (x1)|0)
= / d Qpe™ " = Gy (x2; x1) (48)

with the four-component object (p, H(p)). Again this rela-
tion is valid both in NRQM and RQM allowing seamless
limiting process.

The difference between NRQM and QFT is in the inter-
pretation of the amplitude in the left-hand side in Eq. (48). In
NRQM, the state |¢1, x1) can be defined as the eigenstate of
the position operator X (¢1) at time 7; with eigenvalue x; that
is, X(11)|t1, x1) = x1|f1, x1). Such an interpretation is not
possible in RQM, since we do not have a suitable position
operator and the states like |x) has to be built from |p) by
Fourier transform tricks. We also have the equal time result:

(2, X212, 1) = f d.Qpel P, (49)

which is a Dirac delta function in NRQM but not in RQM,
because of the 2w, factor in the measure, leading to the issue
of the non-localizability of particle position.

It is trivial to see that the field operator defined in Eq. (47)

always obeys the first order differential equation:
lid —H(p)IA=0, [~id, —H(pIA"=0, (50

including both in NRQM and in RQM. In NRQM, it is just
the Schroedinger equation. If H = (p?> + m?)!/? the field
operator also obeys the Klein—-Gordon equation [JA(x) =
0=0AT(x).

A straightforward computation, using Eqgs. (47) and (45),
shows that the field obeys the commutation rule

[A(x2), AT(x))] = /de/que_ipxzeiqxl [Ap. A]]

- /dQ,,e*"px = G (x2i x) = (x2lx1).
(51)

@ Springer

On aty = 11 space-like hypersurface, [A(2, x2), AT, xD]
are Dirac delta functions in NRQM but finite non-vanishing
functions in RQM. So the non-localizability of the particle
position has a counterpart in the field commutator as well.
This, in turn, implies that if you try to construct bilinear
operators from the field and treat them as observables, they do
not commute on a space-like hypersurface. The measurement
of one observable will affect the other, thereby violating the
relativistic notion of causality. We will see later on what it
implies for RQM and — more importantly — for the NRQM
as well.

Some of the unnaturalness in the above expressions can be
taken care of by sacrificing manifest Lorentz invariance. For
the sake of completeness we will briefly describe these con-
structs and their relationship to the Newton—Wigner position
operator. This is usually done by introducing a different set of
creation and annihilation operators ag, ach through the rela-
tion [(2m)" 2wk ]'/?ay = Ay etc. A comparison with Eq. (45)
shows that these operators obey the simpler commutation rule

|ax.a | =8k = p, (52)

which is not Lorentz invariant. If we also define fj by the
corresponding rule, [27)" 2w ]/? fx = F, we can write
the state |\W) in Eq. (41) in the form

) = / &'k f k) al0). (53)

We can also define the fields a(x),a’(x) in terms of
Ax), AT(x)inan analogous fashion. While the relationship
between F(¢, k) and f (¢, k) is a simple scaling in momen-
tum space, the corresponding relationship between F(z, x)
and f (¢, x) is much more complicated in real space and is
given by

f(t, x) =/d”x’Q(x,x/)F(t,x/) (54)
where
Ox,x) = /ko Qay)?/? etk =), (55)

One reason people like to work with a(x) and a'(x) is
that it allows defining a set of states |x)nw as eigenstates
of a position operator called the Newton—Wigner position
operator. We define |x)nw through the relation |x)nw =
a’(x)|0). It is then straightforward to verify that these states
are eigenstates of an operator XNw, that is, XNw|X)Nnw =
x|x)Nnw where the Newton—-Wigner position operator Xnw
is defined as

chWE/d"xaT(x)xa(x)=fd”pa*(p) <i%) a(p).
(56)
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This appears to be a natural definition both in position space
and in momentum space (where x is replaced by id/d p), but
— as we have stressed several times — it is not Lorentz invari-
ant. If we try to re-express it in terms of Lorentz invariant
operators Ap, A;, and the Lorentz invariant integration mea-
sure dS2p, then we get fairly complicated expressions given
by

& :/dszATii——p A
W L ip 207 P
s A |+ A@), 67
2(m2_vz)1/2 ’

which are obviously not Lorentz invariant. These features
once again stress the fact that a single-particle description of
RQM is not easy to obtain.

3.1 Aside: some general comments

I have taken a particular approach to demonstrating the prob-
lems which arise when one attempts to introduce a Lorentz
invariant, single-particle description in RQM with a natural
definition of probability. Given the importance of this issue,
it is not surprising that many people have attempted to do
it from many other perspectives in the past. Each of them
requires making some compromise and it is only fair to say
that none of them appear natural. This is in fact the major
reason why people adhere to the standard interpretation of
QFT, in which one no longer attempts an interpretation in
terms of a “relativistic wave function”. Further discussion in
this paper will confirm this point of view.

But before I proceed, it is probably worthwhile to make
some general comments about these attempts, which will fur-
ther clarify the situation. The basic point is strikingly simple:
In NRQM you can treat: (i) the momentum operator in the
position basis p, = —id/dx* and (ii) the position opera-
tor in momentum basis X% = i9/dp, on an equal footing.
This is because both are unconstrained variables (in a sense
which will become clear in a moment) and the corresponding
measures of integration are identical in form, being propor-
tional to dPx and dP p. A natural generalization to RQM
will be?” to use the momentum operator in the position basis
being p, = id/9x“ and the position operator in momentum
basis being x¢ = —id/dp® (in our mostly negative signa-
ture). The essential problem is that the four-momentum is
a constrained variable, satisfying the condition p? p, = m?,
while the four-coordinate x“ has no such constraint. This also
implies a key difference between the measures of integration
in coordinate and momentum spaces. As long as the mass m

20 For example, we will see later that in the Schwinger proper-time
approach one can work with the worldline x“ (s). This provides a natural
backdrop for introducing the operators x¢ etc.

is treated as a Lorentz invariant, scalar constant, this asym-
metry will always surface up somewhere in the formalism.
As soon as we do this, we also have to treat the coordinate
time £° as an operator with all sorts of interpretation issues.
One invariably pays a price for such attempts, for example,
in the form of having to make m a variable, dynamical entity,
rather than retaining it as a parameter, which happens, e.g.,
in approaches like [10].

Other attempts to handle this issue demand working with
an ensemble of particles (see, e.g., [11,12] for a sample) —
rather than a single-particle theory — with several peculiar
interpretation issues. In addition, it being a many-particle
description one runs into difficulties in defining a center-
of-mass with expected properties. Moreover, the entire for-
malism lacks naturalness and one wonders whether this is a
remedy worse than the disease. We again see that a strictly
single-particle description with a constant mass parameter is
not easy to obtain.

There is actually a fundamental reason why such issues
arise and one is forced away from a constant mass descrip-
tion (see, e.g., [13]), which I will describe very briefly. Let us
assume there exist an operator X“ and quantum states | etc.
such that (¥ | X%|y) = x* are the coordinates of a localized
event. (I temporarily use capital letters to denote operators to
avoid the clutter of adding ‘hats’). Then, using the facts that:
(a) a Lorentz—Poincaré transformation is to be implemented
in the Hilbert space by a unitary operator, and (b) knowing the
transformation rule for the coordinates x“, one can determine
the commutation rules of the position and momentum oper-
ators. We will then find that the position operator X¢ does
not commute with the operator corresponding to the Casimir
invariant P2 = P“P, = M?. In fact, you get [ X9, M?] =
—2i P?, which can lead to all sorts of trouble. For example,
working in the subspace which excludes zero-mass states,
we can rewrite this relation as [ X%, M| = —2i P*/M, which
will lead to the uncertainty relation (with c-factors reintro-
duced) AX*A(Mc) > (h/2)|{P?/Mc)|. In a single-particle
description, we necessarily have A(Mc) = 0, violating this
bound. We now see why a single-particle description cannot
coexist with an operator X“ with standard Lorentz transfor-
mation properties. This is the fundamental reason why many
previous attempts have to tinker with the mass parameter
and either make it a dynamical variable or introduce a many-
particle description.

Another possible “way-out” is to tinker with the notion
of localization itself, one possibility being to work with
hyperplane-dependent states [13]. It is difficult to think of
these as localized states around an event and the description
is definitely not the most natural one. I merely quote this
to show that you need to pay a price one way or another;
either the mass becomes a dynamical variable or one needs a
more liberal view of what localization means. These attempts
also run into trouble [14] with the natural notion of causality
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based on the idea that the association of an operator with
a spacetime region implies that one can measure it by per-
forming operations confined to that region. In fact, as we
shall see later, it is the consistency with micro-causality and
Lorentz invariance which makes the single-particle descrip-
tion extremely difficult to come by.

4 Propagators from path integrals

Let us now consider the above results from the path inte-
gral perspective, which is expected to provide an intuitive
connection between the classical and quantum mechanics.
The path integral formalism also has the advantage that we
can work with c-number functions rather than with opera-
tors, state vectors etc. If the classical physics of the system
is described by an action A, specified as a functional of the
relevant paths, then G (xp, x,) is expected to arise from a sum
over all paths connecting the events A and B, with exp(i A)
being the amplitude for each path. (The relativistic path inte-
gral has been studied in several papers in the literature; see,
e.g., [15,17,28-34].)

There are three forms for the action functional which we
will concentrate on. The first one is the Hamiltonian form of
the action:

b
Aplp(n), x(1)] = / di[p-x — H(p)] (58)

where the action A, is a functional of p(#) and x(¢), which
are treated as independent. The second one is the (more famil-
iar) Lagrangian form of the action:

b
Axlx(t)] = / dr L(&) (59)

in which the action Ay is a functional of just x (7). Finally, we
can also define a Jacobi action for our system, which is quite
different from either of these. It requires a separate treatment
which we will take up in Sect. 5.2.

In terms of either Ap[p(?), x(t)] or Ax[x(?)], the path
integral propagator is formally defined by

G(xp, xa) = Y exp(iAy),
x(1)

Gy, xa) = ) expliAp). (60)
x(1),p(t)

Of the two, the Lagrangian path integral has an obvious intu-
itive appeal. In contrast, the “sum over paths” in phase space
lacks a simple interpretation because, classically, a single
point in phase space determines the trajectory. Also note
that, in the Lagrangian path integral, the paths are continuous
but not the momenta, while in the Hamiltonian path integral
the paths are also discontinuous making the physical picture
harder to interpret. So the meaning of the Hamiltonian path
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integral is not as straightforward as that of the Lagrangian
path integral.

If we are ensured that these path integrals lead to the same
propagator (as they do in NRQM) one would have preferred
the Lagrangian path integral, at least as a formal expression.>!
Unfortunately the Hamiltonian and Lagrangian path integrals
are not guaranteed to lead to the same result. In fact, we will
see that the most natural definition for the Lagrangian path
integral does not work in the case of a relativistic particle,
while the Hamiltonian path integral can be made to work with
some extra tinkering of the measure. We will now examine
both, starting from the Hamiltonian path integral.

4.1 Propagator from Hamiltonian path integral

Let us work out the Hamiltonian path integral for the “free
particle” with H = H(p) taking care of both NRQM and
RQM at one go. The standard procedure which we will adopt
involves the following steps.

(i) We discretize the time interval #, — #, into N intervals
of size € such that Ne = 1, — t,. At the end of the
computation we take the limit of N — oo,e — 0,
keeping the product Ne = t;, — #, a constant.

(i1) We discretize the action and treat it as a function of
(pj,xj) where j = 0, 1,2, ..., N, with the identifi-
cations xg = x4, XNy = X defining the end points.
This discretized action is given by

N
Ap=Y [p;j (xj—xj-1)—€eH(p))]
j=1
N—1
= (Pj = Pjy1) -x;

j=1
N

+py XN —p Xa—€ y_H(p)). 61)
j=1

As we will see, the second form of A, is more conve-
nient for the computation.

(iii) The sum over paths is treated as integrations over
(pj,xj). The x ; integrations are over j = 1,2,...,
N — 1, keeping the end points fixed, so that there are
N — 1 integrals to do. The p; integrations are over
Jj =1,2,..., N so that there is one extra momentum
integration.

21 The issue of the measure in defining the path integral is somewhat
easier to handle in the Hamiltonian approach than in the Lagrangian
approach. For example, when you use time slicing, one needs to add
an extra integration measure in the Lagrangian approach, which has a
natural origin in the Hamiltonian approach. But as a formal expression,
the Lagrangian path integral makes more sense intuitively.
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The crucial question, of course, is the choice of measure
for the integration. The natural choice is to use just dT" =
d"xd" p/(2m)". In this case, the propagator is defined by
the integrals over the discretized action, given by the second
equation in Eq. (61):

G —/dl_ dr f Py expiA (62)
= _ XpiAj,.
1 N—-1 Q)" ptAp

Note that this choice will lead to the surviving momentum
integration (because there are N momentum integrations but
only N — 1 position integrations) to appear with the measure
d"p/(2m)". At each intermediate step, the integration over
dx, leads to a Dirac delta function on the momentum. (This
is the advantage of using the second expression in Eq. (61).)
On integrating over the momenta, only the contribution from
one end point survives (since there is no corresponding x
integration) leading to the propagator:

_ dnp —ip-x
G(x) = f Gy ¢ (63)

defined again using the four-component object p, = (H, p).
This leads to the standard propagator Gnr in Eq. (16) in
NRQM. But in the case of RQM, the surviving integration
over d"py/(2m)" will break the Lorentz invariance, lead-
ing to the Newton—Wigner propagator encountered earlier in
Eq. (40):

n

d . 3
LP vy — i % G (xp, xa). (64)

K> = | Gom ot

This Newton—Wigner propagator is obviously not Lorentz
invariant and is built from positive frequency solutions of
Klein—Gordon equation. This situation is completely analo-
gous to NRQM; the price we have paid is the lack of Lorentz
invariance which, unfortunately, is too high.

If we want a Lorentz invariant propagator the final momen-
tum integration measure has to be dQ2, = d"p/Q2m)"
(1/82p). But this will lead to a wrong result in the intermedi-
ate integrals, if it is used with d" x. To solve this problem, we
are forced to tinker with the choice of measure and choose it
to be

dr = [d"x 2,] [d"p 9;1] Q)" (65)

At each intermediate step, this is the same as the original
choice dT" = dx, dp,/@2m)" (since the 2, factors cancel)
but the surviving momentum integration will come with an
invariant measure. With this choice, the propagator is now
defined by the integrals over the discretized action, with

G =/dF1 <-dlMy—y fdQN eXpiAp. (66)

At each intermediate step, the integration over dx, again
leads to a Dirac delta function on the momentum. On inte-
grating over the momenta, only the contribution from one end

point survives (since there is no corresponding x integration)
leading to the final result:

G=>) > et = /dea et =G, (67)
P X

which matches with the result in Eq. (14) obtained from the
Hamiltonian procedure.

A somewhat more intuitive way of obtaining these results
is as follows: Rewrite the Hamiltonian form of the action by
eliminating x:

b

b
Ay=p-x —f de [x - p+ H(p)]. (68)

a

We then define the measure for the sum over x (¢) such that
it gives a Dirac delta function of p. Then the path integral
becomes

G = Z Z eiAP = Z (S(p)ei(pb'xh_Pa‘xa) e_i / dr H.
p x )
(69)

The existence of a delta function tells you that in the sum p
(and thus H (p)) remains constant, which immediately leads
to the result in Eq. (67).

Clearly, a nontrivial choice of measure — which is not
easy to justify from first principles — was needed to get the
correct result. The final, surviving momentum integral has to
come with the measure d 2, to give a Lorentz invariant result
but the intermediate integrations have to be over dx, d p,, to
give the Dirac delta functions. This requires one to define the
phase space measure by Eq. (65), which is the structure we
were led to earlier, in Eq. (25). This is the first instance of
our running into a measure problem and, of course, it does
not arise in NRQM when €2, = 1. Since the final answer is
G + we will inherit all the issues discussed in Sect. 2.

4.2 Propagator from the Lagrangian path integral

There is a fairly general and natural procedure for defining
the Lagrangian path integral by time slicing which works
very well for the non-relativistic particle but fails for the
relativistic particle. To see how this disaster comes about, we
will next consider the discretized version of the Lagrangian
path integral for both cases.

To compute the propagator G(xp, x,) it is again con-
venient to divide the time interval (¢, — f,) into N equal
parts of interval € such that Ne = 1, — #,. In the interval
(th—1, tp) we will approximate the action by A = eL(x) =
€L ((x, — x,_1)/€). The full propagator is obtained by mul-
tiplying the amplitudes for each of the infinitesimal intervals
with the intermediate spatial coordinates integrated out. This
would lead to an expression for the path integral of the form
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(N=1)
Zexpi/Ldt =/ H dxiy M(N,e€) expieL(£/€);
X k=1

= (xy —xp-1) (70)

where M (N, €) is a measure which we hope to choose such
that the continuum limit exists.

To evaluate this expression, it is convenient to work in
the Euclidean sector. (We assume that we can obtain the
Lorentzian result by analytic continuation at the end of the
calculation.) Let us introduce the spatial Fourier transform
of the discretized Euclidean amplitude e <L ¢/€) by

A /d"p F(p,e)e'Pt. (71)

The intermediate integrations in Eq. (70) now lead to a series
of Dirac delta functions allowing us to determine the spatial
Fourier transform of the propagator in the form

G(p)=CWN,e) [F(p,o]" (72)

where C(N, €) takes care of the integration measure and
other numerical constants. We now have to take the limite —
0, N — oo with Ne = ¢. If such a limit exists for a suitable
choice of C(N, €), then we have succeeded in defining the
path integral. As we will see, this works for a non-relativistic
particle, but not for a relativistic particle.

Let us first consider the non-relativistic case, for which
the relevant Fourier transform in Eq. (71) is given by

F(p) = fd"e exp (—ip . ;”—Eez)

2 n/2 2
_ (ﬁ) exp (_1> . (73)
m 2m

Therefore, the Fourier transform of the discretized path inte-
gral is given by

G(p) = C(N, e)(F)N
nN/2 2
— C(N, e (2”—6> exp [—p—(Ne):| a8
m 2m

We now see that the exponential factor has a finite limit when
Ne = 1, —t,. The pre-factor can be made unity by choosing
C(N, €) = 2mwe/m)~"N/2. We will then find the continuum
limit of the propagator to be the one in Eq. (16). There are
no surprises at all.

Let us next consider the relativistic case. The conventional
action functional for a relativistic particle, analytically con-
tinued to the Euclidean sector, is given by

n
Ap = —m/ Spdxgdxb = —m/ drv/1 + v2. (75)
t

1

The relevant Fourier transform in Eq. (71) becomes

F(p) = fd"z exp[—m(e? +€)'2 —ip. 4]
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_(m)l/2 27\"? [ du
2 m 0 R

n/2 MK o M 76
X [ exp( e 2ME> (76)

where wf, = p?+m?>. The integral can be expressed in terms
of McDonald functions, leading to

27 (n—1)/2
m

m-e —(in/$)(n+1)
X | — e K_(n+1)/2(a)pe).

5}
@p

(77)

We, however, only need its form for small €; in this limit, this
expression becomes

(n+1)/2
F(p) =2m(4m)"=D/21 <ﬂ> (%) . (78)

2 wy,

which can also be obtained directly from Eq. (76). Therefore,
the Fourier transform of the discretized path integral for the
relativistic case is given by

C(N,e€)

G(p) = C(N, 6) [F(P)]N & (p2 +m2)(n+l)N/2'

(79

We again need to take the limit of N — oo, ¢ — 0 with
Ne = t in this expression and obtain a finite result. It is clear
that one cannot obtain a finite result for any choice of the
measure C (N, €). Therefore the straightforward approach to
obtain the propagator fails.

The algebraic reason for the different results in the case
on non-relativistic and relativistic cases can be traced to the
structure of the integrands in Egs. (73) and (76). Reintroduc-
ing the c-factors, as occurring in the combination cAt = ce,
we note that the discretized action in the relativistic case
has the combination mc(c*e? + (2)1/ 2 If we first take the
¢ — oo limit in this expression, keeping € finite — which
is what we do to get the non-relativistic result — this gives
mcte +(1/ 2)m(£? /€) and the Fourier transform leads to the
resultin Eq. (73) except for a finite, irrelevant, phase —i mc’t,
in the Lorentzian sector. But if you take the ¢ — 0 limit first,
keeping c finite — which is what we do in the exact relativistic
case — the action mc(c2e? + €2)1/2 becomes mc|| leading
to the result in Eq. (78). So the fact that ce goes to either
infinity or zero, depending on whether you take the ¢ — oo
limit first or the ¢ — 0 limit first, makes all the difference.

There is another crucial feature which is worth mention-
ing. If you take the propagator in NRQM, given by Eq. (16),
and consider its limit when the time interval t = ¢ — 0,
you find that the argument of the exponential factor is pre-
cisely equal to the non-relativistic action; that is, in this limit
the propagator has the factor exp[ie L(|x2 — x1]/€)]. So, the
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propagator for a finite interval can indeed be thought of?? as
arising from a product of infinitesimal propagators. But this
result does not generalize to the relativistic propagator. The
infinitesimal form of the relativistic propagator is not related
in any simple manner to the exponential of the action for
infinitesimally separated events. This is again closely related
to the composition laws obeyed by the two propagators. The
composition law in Eq. (33) can be iterated repeatedly allow-
ing the GNR, for a finite interval of time, to be expressed as an
integral over the products of the propagators for infinitesimal
time separations. Since the relativistic propagator does not
obey this composition law, you cannot do this in a straight-
forward manner.

Thus, while the Lagrangian and Hamiltonian path inte-
grals lead to the same result in the NRQM, they differ widely
for a relativistic action. The standard approach leads to a
nonsensical result in the case of the Lagrangian path inte-
gral, while the Hamiltonian path integral measure has to be
chosen carefully to lead to a Lorentz invariant result.

Why do the two approaches lead to different results? The
Lagrangian and Hamiltonian path integrals will lead to the
same result only if — in the discretized version — the integrals
over p in the Hamiltonian path integral lead to the corre-
sponding (discretized) Lagrangian form of the action.”® So
this equivalence will hold only if the following condition
holds:

/dnp M(p) ezpf ieH(p) __ f(e) ezeL(é/e) (80)

where M (p) is some measure in momentum space and f (€)
is a measure for the Lagrangian path integral. So if the func-
tions M (p) and f (¢) exist, then the two procedures will give
the same final result. This happens for the non-relativistic
action but not for the relativistic action.

The time-slicing procedure to define the (Hamiltonian or
Lagrangian) path integral automatically selects a class of
paths which satisfy the following condition: any path which
is included in the sum cuts the intermediate time slices at
only one point. That is, you only sum over paths which are
always going forward (or always going backwards) in time.
In either case, it seems reasonable to interpret the expression
in Eq. (67) with a 6(¢) [or a 6(—1)] factor. But, as we men-
tioned earlier, 0 () G + (x) is not Lorentz invariant. In fact the
whole idea of choosing paths which go only forward in time
is not a Lorentz invariant criterion when the events x; and x|
are separated by a space-like interval. We will see in the next

22 This idea works even in the presence of a potential for a Lagrangian
of the form L = (1/2)mx? — V(x) as first noted by Dirac, thereby
paving the way for the path integral description of QM.

23 As it turns out, this does happen in the case of NRQM, creating
the myth that somehow this should always happen. This is far from
true and does not, in general, hold even for an arbitrary ‘free particle’
Hamiltonian H = H (p), let alone in the presence of interactions.

section that using the lattice regularization procedure to give
meaning to the path integral bypasses these issues.

5 Lattice regularization of the path integral

So far we have seen that: (a) The Hamiltonian path integral
can be made to give the propagator G (x) with a specific
choice of measure, while (b) the straightforward way of com-
puting the Lagrangian path integral does not work. Interest-
ingly enough, there is another way to define the Lagrangian
path integral for the relativistic particle based on a geomet-
ric interpretation of the relativistic action functional. This is
based on a lattice regularization procedure and leads to the
Feynman propagator (with x> = x,x?):

je~iPax*
(27t)D (p?2 —m? +ie)

= f Ki(imy/x2), 81)
which is more relevant to standard QFT than G4 (x). I will
briefly describe how this result comes about. (More details
of this approach are available in e.g. Ref. [2, Section 1.6.2].)

We will again work in the Euclidean space of D dimen-
sions, evaluate the path integral and analytically continue
to the Lorentzian space at the end. The Euclidean action in
Eq. (75) can be expressed in the form

Gr(x) =

b b
Ap = —m/ dt*> +dx®H'/? = —m/ dt=-mt (82)
a a

where £(xp, x,) is the length of a path connecting the events
A and B. Our aim is to give meaning to the sum over paths

Gr(xz,x1;m) = Y exp—m l[x(s)] (83)
all x(s)

in the Euclidean sector, where £(x2, X1) is just the Euclidean
length of a path, connecting x; and x. (We will use x to
denote the position in D-dimensional Euclidean space, in
contrast to x, which was used earlier for the position in the
n = D — 1 dimensional space in Lorentzian spacetime. We
will also label the D = n+ 1 axesas (x', x2,...x/,...xP)
with no x* axis.) This sum can be given a meaning through
the following limiting procedure.

Consider a lattice of points in a D-dimensional cubic lat-
tice with a uniform lattice spacing of €. We will work out G
in the lattice and will then take the limit of ¢ — 0 with a
suitable measure. To obtain a finite answer, we have to use
an overall normalization factor M(¢) in Eq. (83) and treat
m (which is the only parameter in the problem) as varying
with € in a specific manner; i.e. we will use a function p(€) in
place of m on the lattice and will reserve the symbol m for the
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parameter in the continuum limit.* Thus the sum over paths
in the continuum limit is defined by the limiting procedure:

GRr(x2, X1;m) = ell_r)% [M(e)GE (X2, X1 pu(€))] (84)

where G (X2, X1; n(€)) is the sum defined on a finite lattice
with spacing €.

In a lattice the sum can be evaluated in a straightforward
manner. Because of the translation invariance of the prob-
lem, Gg can only depend on x; — X1; so we can set x; = 0
and call x, = €R where R is a D-dimensional vector with
integral components: R = (n1,n2,n3---np). Let C(N, R)
be the number of paths of length Ne connecting the origin
to the lattice point €R. Since all such paths contribute a term
[exp —u(e)(Ne)] to Eq. (83), we get

GeRse) = Z C(N:R)exp(—u(e)Ne). (85)
N=0

It can be shown from elementary combinatorics (see, e.g.,
Sect. 1.6.2 of Ref. [2]) that the C (N ; R) satisfies the condi-
tion

N

D
FN = choskj = ZC(N; R)e'KR, (86)
j=1 R

Therefore,

o]

Y e*RGeR:e) = Y 3 CN: R R exp (—u(e)Ne)
R N=0 R

i -1
= D2 e THONEN [y pemne]

N=0
87)
Inverting the Fourier transform, we get
de e—ik.R
R;e) =
GER: )= | oD 1= e s )
de e—ik.R
- - (83)
@m)P (1 —2¢=#© 30 cosk;)

Converting to the physical length scales x = eR and p =
ek gives
€ Dde e*ip.x

Qm)P (1 — 2¢e—1te) Z?:l cos pj€)

Ge(x;€) = - (89)

This is an exact result in the lattice and we now have to
take the limit € — 0 in a suitable manner to keep the limit
finite. As € — 0, the denominator of the integrand becomes

1
1 — 2e™€H(© <D - §€2|p|2>

24 Purely from dimensional analysis, we would expect the mass param-
eter ((€) to scale inversely as lattice spacing; we will see that this is
what happens.
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1 —2De= M)
_ 2 —eu(e) 2 l—eae
=€“e |:|p| + Ty en@ :| (90)
so that we get, for small €,
dPp A(e)e 'P*
Ge(x;€) > P 1)

Q2m)P pl> + B(e)

where A(€) = eP72e€#() and B(e) = (1/€*)[e**©) —2D].
The continuum theory has to be defined in the limit of € — 0
with some measure M (¢); that is, we want to choose M (¢)
such that the limit

G(x) = lim {M(e)GE (x; €)} 92)
e—0

is finite. It is easy to see that we only need to demand near

€ ~ (), the validity of the conditions:

In2D 1 1
~ , M) =——F=
2D €

With this choice, we get

de efip.x
Q@m)P |pl? +m?’
which is the usual (Euclidean) Feynman propagator now
obtained from a path integral using a lattice regularization.
On analytic continuation to the Lorentzian sector, it gives
the expression in Eq. (81). So we have succeeded in defin-
ing the relativistic path integral and evaluating it to give the
Feynman propagator. We will now highlight several aspects
of this approach.

Gr(x) = lim Gr (x M () = f (94)

5.1 Comments on the lattice regularization approach

The scaling of ©(€) = In2D /e might appear quite strange
and I will provide two alternative routes to this scaling which
might demystify it a little bit. First one proceeds as follows:
Let A/ (£) be the number of paths of length ¢ connecting
the origin to the event X in the continuum limit. Then our
propagator is given by

G(x) = foode N x) e ™t (95)
0

This expression, which is the continuum analog of Eq. (85),
is only a formal expression, since N '(¢; x) is divergent in
the continuum limit. To give meaning to this equation we
have to define ' (£) on a lattice with spacing € and take the
appropriate limit after the integral is performed. We also need
to replace m by the mass parameter (. (€) in the lattice. The
Fourier transform of A (¢) on the lattice is then given by
Eq. (86). Switching to the continuum with the replacements
x = eR and p = k/¢, it is easy to see that

No(t;p) = / dPx N (6 x) P> ~ 2D — EpA)U (96)



Eur. Phys. J. C (2018) 78:563

Page 19 of 35 563

where we have set N ~ {/e. Taking the Fourier transform
of Eq. (95), using Eq. (96) and performing the integral over
£, we find that

2D 2D -1
} o7

2D [ ,
Gp;e)=—— [p +—upu—— 2D
€ € €

If we now assume that w(e) scales as in the first equa-
tion of Eq. (93), the expression in the square bracket in
Eq. (97) reduces to p? + m?. The overall factor in front can
be taken care of by a suitable measure M (€). You see that
the (log2D)/e scaling of 1(€) arises due to the pre-factor
(2D)*/€ in Eq. (96).

The second approach to understanding the scaling pe ~
In 2D, which is of interest in its own sake, is to think of
the propagator as a solution to the KG equation with a delta
function source and compare the versions in the continuum
and in the lattice. Let us consider a path of N steps connecting
the origin to a lattice site labeled by integer valued lattice
points n. Then the lattice propagator is given by the sum
over all paths of the form

Gn = Z exp(—me N) = Z KN (98)

paths paths

where K = 7", We now interpret K as the probability
(amplitude) for the particle to hop between two nearby cells
of the lattice. This immediately allows us to write the recur-
rence relation to reach a specific lattice point n as

D
gn = 60,n + K Z(gn+mj + gn—mj) (99)

j=1

where m ; is the unit vector in the jth direction. This recur-
rence relation determines the lattice propagator. On the other
hand, in the continuum limit the propagator satisfies the
Klein—Gordon equation with a delta function source: The lat-
tice version of this differential operator can easily be obtained
by using the Taylor series relation

G(x+h)+ G(x —h) —2G(x) = h*’G" (x) (100)

for each direction. Converting this relation into a lattice with
lattice spacing e, the discretized Klein—Gordon equation for
the propagator becomes

25 You might wonder whether one can give meaning to the Lagrangian
path integral which led to the result in Eq. (79) by allowing m to depend
on €. Unfortunately this does not give the correct relativistic propagator.
The best one can do is the following. If we assume that m — oo as
€ — 0, then Eq. (79) will reduce to an expression proportional to
exp[—(pz/Zmz)((n + 1)t /€e)] for a suitable choice of C (N, €). The best
we can do is to assume a scaling of the form m2(e) = [mo(n + 1)/€]
where m is a constant. This will lead to an expression proportional to
exp[—( p2 /2mg)t]. This expression is finite and, rather curiously, results
in the propagator for NRQM but not the correct one we want.

D

1

= > Guim; + Gn-m; —2Gn) = m*Gy =Son.  (101)
j=1

This equation can be rewritten in the form

D

<m) Zl(gn+mj + Gn-m;) +80.n = Gn. (102)

j=

where we have rescaled the Dirac delta function by € on
the lattice. Comparing Eq. (99) with Eq. (102), we see that
exp(moe) gets replaced by (mze2 + 2D) on the lattice. This
is equivalent to the replacement of mg by € "' In2D in the
limit of € — 0, which is precisely the mass renormalization
we saw earlier.

How does it come that the Lagrangian path integral, orig-
inally evaluated with the time-slicing method, led to a mean-
ingless expression (viz. Eq. (79)), while the lattice regular-
ization method leads to the Feynman propagator? The reason
has to do with the different kinds of paths which are summed
over in the two approaches. When you define the path integral
by time slicing, you implicitly assume that any path which
is included in the sum cuts the intermediate time slices at
only one point. That is, you only sum over paths which are
always going forward (or always going backwards) in time.
But when you sum over paths on the lattice, the paths can
go back and forth in time. So the two sets of paths which are
summed over are completely different and we have no reason
to expect them to give the same answer.

This connection can be made more quantitative by exam-
ining a lattice regularization scheme for paths which go only
forward in time in the Lorentzian sector. On analytic contin-
uation to the Euclidean sector, they will go only forward in
one of the axis, which we take to be the x° direction. (We
will now label the D = (n + 1) axes as (x9, x!,...x"),
restoring the x¥ axis which is treated as special.) Our aim is
to see whether such a condition will lead to anything which
resembles the non-relativistic propagator.

We know that a relativistic scalar field in the Euclidean
sector will satisfy the Euclidean Klein—Gordon equation
(=0 + m?)¢ = 0, while its non-relativistic counterpart
f(x), related to ¢ (x) by ¢(x) = e™™ f(x), will satisfy the
Euclidean Schroedinger equation (9; — (1 /2m)V2) g f=0.
The latter is obtained from the former by approximating the
second time derivative ¢ by ¢ ~ m2¢ — 2me"" f. In the
momentum space, this involves replacement of (p>4+m?) g =
Q24 p?+m? by 2miw+ p? where Q = w+im and we have
ignored the w? term in comparison with m. This requires
the denominator (22 + p% + m?) in the Euclidean relativis-
tic propagator (written as a Fourier transform with respect to
Euclidean time),

_ ao dnp ei(QH—p-x)

) ol (Q2+ p2+m?)

Gr (103)
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given by Eq. (94), to be replaced by (2miw + p?) to give the
non-relativistic propagator:

dod"p 2me' (@+p¥)

Qm)P Cmiw + p?)
dod'p  (2m)e!@+px)

~ ) en)P pry2mi(Q—im)

GNR =

(104)

Let us see how this comes about when we restrict paths to go
only forward along x°.

Eachofthe2cos pje = ¢'Pi€ 4 ¢~Pj€ in the denominator
of Eq. (89) is contributed by paths going forward along the
jth direction (contributing ¢'?i€) and paths going backward
along the jth direction (contributing e ~'7i€). So, when we
restrict the paths to moving only forward along the x axis
and repeat the analysis, along the 0 direction we only pick up
a e!P0 factor. This modifies the denominator D of Eq. (89)
to the expression

n
D=1—2¢ Mena Zcos pj€l — el (€060 piroco  (105)
1

We have taken the lattice spacing to be € along the time
direction and € for all the space directions. This is essen-
tial because the transition from a Klein—Gordon equation to a
Schroedinger equation involves a transition from wave equa-
tion to a diffusion equation; the propagation in the Euclidean
lattice will mimic a diffusion only if 7 o x2, requiring
€y X 612, when we take the continuum limit. (If you do
not do this and assume the same lattice spacing along both
direction you will not reproduce the form of the propaga-
tor in Eq. (104).) Straightforward computation now reduces
Eq. (105) to the form

D = (Apo+ p* + B)C (106)

where

C =ele e, (107)
1

B = —zeé”“ (1 — 2ne €1H1 — €_€0H0), (108)
€1
1

A= — e (—igge M) (109)

€1

Ignoring the overall constant C — which merely defines the
overall measure like M (¢€) in the previous analysis — and
comparing D with the denominator in Eq. (104), we find that
the following conditions need to be satisfied:

A =2moi, B=2m} (110)
Some more algebra now shows that this can indeed be

achieved with the choices

2m 2 2

=m610<61 (111)

€0

@ Springer

and

1
wo=——InRn—1), w =2m’e. (112)

€0
Equation (111) shows that €y o €2 has to be expected in a
diffusion process; Eq. (112) shows the scaling of w1 and g
for this result to hold.

This feature can also be made more transparent along the
following lines. While the real space expressions for Gng (x)
(given by Eq. (16)) and G (x) (given by Eq. (81) look very
different, their spatial Fourier transforms are very similar:

Ggr(t,p) = /d3x G (xa; x1)e iP*

e~iop! (non-relativistic)
= : (113)
—— e~ iopltl (relativistic)
2wp
where w, = p2/2m in the non-relativistic case, while

wp = (p? +m?)Y/2 in the relativistic case. Using the Fourier
transform of G4 (x) in Eq. (15), it is easy to relate G (x)
and G4 (x). We find that Gr(x2, x1) = G4+(x2; x1) when
1 > t1 and Gg(x2; x1) = G7 (x2; x1) when #; < | where
G_(x2:x1) = G%(x2;x1) = G1(x1;x2) is the complex
conjugate of G4 (x2; x1). That is,20

GRr(x2; x1) = 0(1) G4 (x2: x1) + 0(=1) G (x2; x1)

=0()G4+(x2;5x1) +0(=1)G_(x2; x1).  (114)

Since we know that G4 uses only paths which go forward
in time it is clear that G g propagates particles with energy
wp forward in time and propagates particles with energy
—wp backward in time. This feature arises from summing
over paths which go back and forth in the time direction. So,
G Rr(x2, x1) is actually two propagators rolled into one; we
will come back to this aspect in Sect. 6.

It is obvious that, while the relativistic propagator G g
in Eq. (94) arises very naturally through the lattice regular-
ization approach, we have to make several artificial choices
based on our hindsight for obtaining a non-relativistic prop-
agator by lattice regularization. Once again there is no nat-
ural limiting process within the lattice regularization which
allows us to obtain the non-relativistic propagator from the
relativistic one.

26 9(r) is Lorentz invariant only when x; and x; are separated by a
time-like interval, in which case the 0(¢) picks out one of the two terms.
When x; and x| are separated by a space-like interval, 6 (¢) is not Lorentz
invariant and hence the expression could pick either of the two terms
depending on the Lorentz frame. But since we know — from any of
the explicit expressions like Eq. (116) — that Gr(x2; x1) is Lorentz
invariant, it follows that G (x2; x1) = G_(x2; x1) when x; and x;
are separated by a space-like interval. This is indeed true and can be
explicitly verified. (See Appendix B.)
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5.2 Jacobi action and its path integral

A convenient expression for Gg in the coordinate space
is obtained using the Schwinger proper-time representa-
tion.?” We write (|p|> + m?)~! as an integral over A of
exp[—A(] p|> +m?)] and do the p integration to obtain

G /OO dx - x|
= —————exp| —Am” — —
R=J, (@nypr P an

_ 1 /00 dx 2 x|
— —exp|—mAr— ——
1622 J, 22 5P 4,

where the second expression is for D = 4. The analytic
continuation from the Euclidean to the Lorentzian spacetime
changes the sign of one of the coordinates in |x|? to give
|x|2 — 2 = —x? and we set A = is. This gives the final
result:

; i /00 ds . i,
= ——F — €X —Im-Ss — —X
R="T6x2 J, 52 P 4s

m
= —— K |(imVx2).
4 2i/x2
This proper-time representation of the G g has an alterna-
tive interpretation. The integral expression in Eq. (116) can
be expressed, after a rescaling of s — s/m, as

(115)

(116)

o0
GR(xz;xl)OC/ dse™"" (x2, s]x1, 0)
0

o
- cm/ ds e~ims Ze”‘[x(f)] (117)
0 x(0)
where C,, is an unimportant constant and
L/om N2 i mx?
(2, 51x1,0) = 0(5)i (=) exp (-3 (118)
4mis 4 s

can be thought of as a propagator for a (fictitious) particle
moving in the four dimensional Lorentzian spacetime from
x’l' att =0to xé at T = s, where 7 parameterizes the path
in spacetime x’ (7). The relevant action for this particle is a
quadratic one, given by

N

Alx(1)] = —Z—llm/(; dr x,x%.

(119)

Classically, this action could also be thought of as represent-
ing the free relativistic particle (since it leads to the equa-
tion of motion d?x’/dt?> = 0). But — unlike the action in
Eq. (75): (i) it is not reparametrization invariant and (ii) it
does not have a geometrical interpretation. The path integral
in Eq. (117) gives the amplitude (x3, s|x1, O) for the particle
to propagate from x| to x» during the proper-time interval s.
The Fourier transform of this amplitude with respect to s can
be thought of as giving the amplitude for this propagation to

27 This representation, using a “fifth time” was introduced by Stueck-
elberg [35,36] and developed further extensively by Schwinger.

occur with the energy mc? in the rest frame. This suggests
that G g (x2, x1) gives an amplitude for propagation at a con-
stant energy rather than for a given time interval. Such a path
integral can be defined in a more general context using what
is known as the Jacobi action functional. We will now discuss
this interpretation of the Feynman propagator.

The Jacobi action A; can be thought of as the integral
of p-dx where p is expressed as a function of energy E
by solving the equation H(p) = E. In our case, for a sys-
tem with H(p) = H(|pl), the x and p will be in the same
direction allowing us to write p-dx = P(E)d{ where £ is
the arc-length of the path and P(E) is the magnitude of the
momentum |p|, expressed as a function of E. Since E is
constant, the Jacobi action in our case reduces to
Ay ="P(E) / dt =P(E) L(xp, x,), (120)
which has the geometrical meaning of the length of the path
connecting the two events. This expression is manifestly re-
parameterization invariant with no reference to the time coor-
dinate.

Since A; describes an action principle for determining
the path of a particle with energy E classically, the sum over
exp(i A y) could be interpreted as the amplitude for the par-
ticle to propagate from x{ to x5 with energy E. Since Ay
is not quadratic in the velocities, even for a non-relativistic
free particle (because d? involves a square root), one has to
again do a lattice regularization to compute the result, just
as we did for a relativistic particle. The path integral defined
using the Jacobi action then reduces to the sum over paths
of the kind considered in Eq. (83) with m replaced by P(E).
So the propagator for the Jacobi action will be given by the
expression obtained earlier in Eq. (94) with m? replaced by
P2(E). That is, the Jacobi action propagator will be

de e—ip-x
@m)P p*+PUE)
121)

G(x, E) =) exp(—A)) =

In the case of a non-relativistic free particle with P2(E) =
2mE, this gives us the result

Dp efip-x
Qm)P E + (p2/2m)’

28

(2m) G(x, E) =/ (122)

which makes sense.

28 The Fourier transform of a Lorentzian propagator G (¢, x) with
respect to Lorentzian time ¢ will be defined using an exp(—iwt) fac-
tor, while the Fourier transform of a Euclidean propagator G (g, x)
with respect to Euclidean time tg will be usually defined using an
exp(—iwtg) factor. Sometimes it is more convenient to use the fac-
tor exp(—wtg) (and restrict the time integration to the range (0, 00))
and define the Laplace transform in the Euclidean sector. This is what
we have done here; the usual Fourier transform can be obtained by the
replacement £ — —iE.
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But there is another way of determining G(x, E). Since
we already have the standard path integral defined for the
non-relativistic particle, we can use it fo give meaning to this
sum over exp(—A ). In the process, we would have obtained
a procedure for defining the sum over paths for any non-
quadratic action that is proportional to the length of the path.
The idea is to write the sum over all paths in the conventional
Lagrangian action principle (with amplitude exp(i Ax)) as a
sum over paths with energy E followed by a sum over all E.
So we write, formally,

1,x2

D explidAy) = 22: e Bl expiAJ[E, x(7)]
E x

0,x

X2

[o)e]
o</ dE e "'y exp(iA)).
0

X1

(123)

In the last step we have treated the sum over E as an integral
over E > 0 (since, for any Hamiltonian which is bounded
from below, we can always achieve this by adding a suit-
able constant to the Hamiltonian) but there could be an extra
proportionality constant which will depend on the measure
used to define the sum over exp(i A ;). Inverting the Fourier
transform, we get the Jacobi propagator:

p ) 00 1,X2

Gz xii E) = Y explia)) =C [ are® Y
0

X 0,x

o
exp(iA) = C/ dr ¢'F'G (x; x1) (124)

0

where we have denoted the proportionality constant by C.
This result shows that the sum over the Jacobi action Aj
involving a square root of velocities can be re-expressed in
terms of the standard path integral; if the latter can be evalu-
ated for a given system, then the sum over Jacobi action can
be defined by this procedure. For the case of a free particle
we get

X2 00 1,X2

> expivV2mE £(xy, x1) = c/ dee'™ "
0

X1 0,x

: t
X exXp % / dr (ga,g)'c“fcﬂ)
0

(125)

where we have denoted the length of the path connecting x{
and xg‘ by £(x2, x1), Since the action for the relativistic parti-
cle in Eq. (75) has the same structure as the Jacobi action for
a non-relativistic free particle, the propagator, G g(x2; x1),
can be obtained directly from Eq. (125). We first take the
complex conjugate of Eq. (125) (in order to get the overall
minus sign in the action in Eq. (75)) and generalize the result
from space to spacetime, leading to

@ Springer

X2 ) ) t,x2
Zexp —iv2mE (x5, x1) = c/ dre 'ET Z
X1 0 0,x1
im /t .a-b
X exp —— da <gabx X )
2 Jo

(126)

In order to get —imf(x2, x1) on the left-hand side we take
E = m/2 and put T = 2s to get an exp(—ims) factor. The
path integral over the quadratic action trivial and in D = 4,
we get the expression in Eq. (118). Therefore the path integral
propagator reduces to the expression in Eq. (117):

L m °° ds
G(x2; x1) = —(2Cm)i (—)/0 =

1672 s

( ) imxz)
Xexp |\ —itms — ZT

i /OO du .2 i x2
=—— —exp|—im‘u—-——
1672 Jy u? P ! n

(127)

where we have rescaled the variable s to u by s = mu and
made the choice C = 1/2m to match with conventional result
in Eq. (116).

Once we introduce the idea of a fictitious particle prop-
agating in spacetime, governed by a quadratic action in
Eq. (119), we can also introduce a complete set of (space-
time) position eigenkets |x) and momentum eigenkets |p).
The Hamiltonian relevant for the action in Eq. (119) will be
H = —p? (corresponding to the mass m = 1/2) and the
matrix element of the proper-time evolution operator will be

—isH

(x2, s]x1, 0) = (xale ™ H x)) = (x2]e™”" |x1). (128)

So, the relativistic propagator G g, treated as a function of

w = m? can be expressed as the integral

o0
Gr(xa, x1; ) = / ds (xale SHT )
0

= —i{xal(n + H) " Mxy). (129)

This result will be useful later on.

Our propagator can also be obtained by using the quadratic
action Eq. (119) in the path integral and imposing the
reparametrization invariance through a Lagrange multiplier.
(This is also equivalent to imposing the condition H =
—p? = —m? on the Hamiltonian.) The path integration
over the Lagrange multiplier will reduce to integration over
T leading to the same final expression. I will quickly run
through this procedure [37-39] to connect with our previ-
ous discussion. We begin by recalling that, for the relativis-
tic Lagrangian, Ly = —m [nm,,xmx"]‘/2 = —m(x?)1/2,
the momenta p,, = 9L/0x™ satisfy the constraint H =
Ppm P —m?* = 0. While constructing the Hamiltonian form of
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the action, this constraint is incorporated through a Lagrange
multiplier N(7), leading to

)
AR:/ dr (pm)'cm+NH).
r

1

(130)

This action, in turn, retains the memory of re-parameteriza-
tion invariance of L because it remains invariant under the
gauge transformation generated by H given by

dx = e(t){x, H}, Sp = e(t){p, H}, SN = €é(1)

(131)

where €(7) vanishes at the end points. The simplest gauge-
fixing condition [3] is to take N = 0, making N a constant.
The Hamiltonian path integral will now require an integration
over the parameter NV, which will lead to the correct propaga-
tor G g if the range of integration is restrictedto) < N < oo.
That is,

o0
Gr(xp —x1) = —if deDpr
0

r2
X exp <zf dr (px + NH)) .
"

This is yet another popular route to the Feynman propagator
discussed in the literature.

To avoid possible misunderstanding, I stress the follow-
ing fact. It is certainly possible to come up with schemes by
which the path integral for a relativistic particle can be evalu-
ated. We have already seen three such procedures which lead
to the “correct” propagator, G r(x): (a) lattice regulariza-
tion, (b) the Jacobi action method, and (c) the gauge-fixing
approach. (The approach based on lattice regularization or
the one based on the interpretation of Eq. (75) as a Jacobi
action seems more transparent than the one in which gauge
fixing is used, but this could be a matter of taste.) The key
common feature is that all ‘successful’ approaches — which
lead to the ‘correct’ G r(x) — allow for the paths to go back-
wards and forwards in Minkowski time coordinate ¢, which
will not be allowed in the standard time-slicing approach to a
path integral based on the Lagrangian L = —m (1 —x2)!/2.
In fact, the class of paths summed over in each of the three
approaches are formally very different. For example, it is
certainly true that the Lagrangian Lg(x) arises from the
‘gauge-invariant’ Lagrangians, in a specific gauge. But the
path integral involves the sum over totally different sets of
paths (x“(7) versus x(¢)) in these two approaches; summing
over x%(7) with time slicing in 7 allows for paths x (#) which
go backwards in the Minkowski time coordinate 7.

The existence of these three (and possibly many other)
procedures does not provide the answer to the simple ques-
tion: How does it come that the most natural procedure, based
on paths x(t) and time slicing in t, which works so well in
the case of a NR particles, fails for a relativistic particle?

(132)

Given the action for a non-relativistic particle I can con-
struct NRQM by path integral, just with time slicing, without
knowing the Schroedinger equation or the Heisenberg oper-
ator algebra. But given the action for the relativistic particle,
I cannot do it in a natural fashion and, in fact, the corre-
sponding single-particle RQM does not exist! Of course, if
you think of relativistic particles as excitations of an under-
lying field and quantize the field — rather than use the action
principle for the particle — you will get Gr(x) as well as
the antiparticles. You can then cook up several ways to get it
from path integrals; that is hardly satisfactory if you want to
do everything upfront from the path integral.

The technical reason, as we will see in Sect. 6, has to do
with the fact that G r(x) actually propagates two fields and
two kinds of particles, not one. The procedures which actually
“work,” for defining the path integrals, have this feature built
into them one way or another — usually by allowing paths to
go backwards and forwards in Minkowski time coordinate ¢ —
so that they can lead to the “correct” propagator, G ¢ (x). This
is hardly a satisfactory situation because we already need to
know the answer (and the existence of pairs of particles) from
some other approach to define the suitable procedure for the
path integral. I will say more about this in Sect. 8 in the text
surrounding Eq. (194).

I conclude this section with a technical comment related
to the time-slicing approach for determining the relativis-
tic propagator which, as we saw earlier, does not work. In
Eq. (117), the amplitude (x3, s|x1, 0) has a natural path inte-
gral expression with time slicing in the proper time s. If we
divide the proper-time interval into N slices and write the
usual time-sliced expression for (x», s|x1, 0) in Eq. (118),
we can write the relativistic propagator in Eq. (117) in the

form
o= [ [ Tl (25

M (X1 — Xn)?
X exp (—1 Z ;/N

ims) . (133)

In the absence of the integration over s, the propagator
(x2, s]x1, 0) satisfies the non-relativistic composition law in
Eq. (33). But once we introduce the integration over s, this
composition law fails and — as we will see later in Eq. (158) —
isreplaced by a composition law involving the Klein—Gordon
inner product. The crucial point is that the expression in
Eq. (133), after integration of s, is not related to the expo-
nential of the infinitesimal action. If we define the sum in the
exponent as

(134)

N N—1
2 = Z X(:)(xn—i-l - xn)2
n=l
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then the integration over s will lead to a weight for each path
given by (with s = ms):

o0 cp2
W = f ds 522N exp (—i - im2§>
0 N

—R?

v/2 )
=2 <—) e V2K (2miR) (135)

m2
with v = 3 — 2N. Obviously, this expression has no simple
relation with the exponential of relativistic action.

5.3 Non-relativistic limit of the Feynman propagator

We have obtained the propagator G using the Hamiltonian
path integral and G from the lattice regularization of the
Lagrangian path integral. We already know that G . is related
to GNR through the limit in Eq. (19), which is not very sur-
prising because we could derive both G and GnRr at one
go, in Eq. (14). But the derivation of Gg, using the lattice
regularization, was quite different and there is no simple cor-
respondence to GNr. So the question arises as to whether one
can get the non-relativistic propagator GNg (xp, X,) from the
relativistic propagator G g (xp, X,) in the limit of ¢ — oo.

This is not possible in spite of occasional claims to the con-
trary made in the literature. This should, in fact, be obvious
from Eq. (113). When youtake ¢ — oo limitof G (z, p), the
pre-factor becomes 1/2m, which is an inconsequential scal-
ing. In the phase w,, can be approximated as m + p*/2m. The
factor exp(—imt) could have been interpreted as due to the
rest energy mc> contributing to the phase. But the |t| never
becomes t when we take this limit.> So the factor exp(—mltl|)
does not have a straightforward interpretation. Thus, while
we can barely escape’? in the case of > 0, the expressions
are quite different for r < 0.

To see this more explicitly, we have only have to evaluate
G inthe ¢ — oo limit using the saddle point approximation
to the integral. Rescaling A — A/m we can express the
Euclidean G g in the form

1 /OO dh i (/a4
0

T @)y 22
N (4m)2 / i %e_mk_(m/ W) (136)
T 0

We need the saddle point of the function f(A) = mi +
(mt?/4}), which occurs at A = A, = |¢|/2. The value of the

29 The Feynman propagator is an even function of ¢ and it will remain
an even function of ¢ even when you take the limit ¢ — oo. On the
other hand, Gngr (¢, x) is not an even function of ¢ since GNR(—1, X) =
G;IR (t, x). So you cannot get GNr from G g for all 7.

30 Equation (19) tells you that, for 1 > 0, we have Gg = G and we
already know the relation, given by Eq. (19), between G and Gng.
So this is not a big deal. The real issue is in the comparison of G g and
GnR for t < 0 where they do not match.
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function at the saddle point is f, = m|¢| and the pre-factor
is given by 27 /f")Y/? = (7|t|/2m)'/?. So we find, in the
limit ¢ — o0, the propagator

3/2
G = L (fom / o—mltl=mx? /21|
2m \ 27t] '

The overall scaling by 2m is of no consequence and arises
from 2w, in the limit ¢ — oo. But you find that the result
has |¢| rather than ¢ in the expression. When you analytically
continue to the Lorentzian sector, this effect will persist and
you will get

32
G = L m / omimltl+ima2 /21|
2m \ 2mit| ’

One can understand the factor exp(—imc?|t|) as signaling
the rest energy mc? of the particle, which has to be taken
away from the phase of the wave function, to reach the non-
relativistic limit when ¢ > 0. But one cannot make sense of
this phase for ¢ < 0; more generally we cannot interpret the
occurrence of |¢| in NRQM. This issue is actually quite non-
trivial and we will discuss it again in Sect. 6 from a different
perspective.

The usual folklore that the Feynman propagator has the
correct NRQM limit originates: (i) either from consider-
ing only ¢+ > 0 case, (ii) or from mixing up momentum
space and real space descriptions. The momentum space
argument goes along the following lines: In momentum
space, the Feynman propagator is governed by a term in
the denominator (p2 — m? — i€) where p* = (E,p).
If we write E = m + € removing the rest energy, then
p> —m? = €2 + 2m(e — p*/2m) and when we study pro-
cesses involving non-relativistic energies, one can ignore the
€2 term and use the approximate expression proportional to
(€ — p*/2m) in the momentum space. This approximation
completely changes the pole structure of propagator from
two poles in the complex plane to one. To get the real space
propagator from the momentum space propagator, you need
to integrate over all € without ignoring the €> term. Making
the approximation € < 1, obtaining an approximate momen-
tum space propagator and then integrating over all € to get
the real space propagator is conceptually incorrect.

(137)

(138)

5.4 Feynman propagator as a matrix element of time
evolution operator

The non-relativistic propagator GNr can be expressed as the
matrix element G (xp, x,) = (xple”"H |x,) of the time evo-
lution operator in a straightforward manner. In the case of
G 4, we could again do this but the states |x) did not have the
interpretation as eigenstates of the position operator; instead
we had to define them using a Fourier transform. Let us now
address the corresponding question for the relativistic propa-
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gator G g(xp, x,) obtained above from lattice regularization,
viz., whether it can be expressed in the form G (xp, x,) =
(xple ™ |x,) where H = H(p) = (p> + m>)'/2. We
already know that this is not going to happen with the proce-
dure we have adopted for defining the states |x); it only leads
(at best) to G4 and Gg # G4. Obviously we have to cheat
a little bit somewhere along the line if such a relation should
hold. I will now describe how this can be achieved (with a
bit of cheating) because the procedure highlights some key
issues we have been discussing.

To do this, we will first consider the case when ¢ > 0 and
use the easily proved (operator) identity

o0 i12 12
ZH/ du exp (—iqu2 - l—2> = (£> et
0 4/1, 1
(139)

which allows us to write

' C1/2 oo
(xple™ Ml jxg) = (i) f du
T 0

x I () [ H (p)e WP )

iN1/2 oo
~(z) [
b 0

x oI U (e D (p)e 1P xy).
(140)

The matrix element can be evaluated by introducing a com-
plete basis of momentum eigenkets | p) with integration mea-
sured2, = d" p/(2m)"(1/2w)) for the momentum integra-
tion. This will give us, in three dimensions with £ = x; —x:

dp 1
(27)3 2w,

7 \7"? 1 . i
=|\— —expl|l-—]-
in? 83 P 4p2

(141)

—iuZp? in-o —iu2p?
ol2H (e ) = [ P (20,010

Note that the 2w, arising from 2H in the left-hand side of
Eq. (139) cancels nicely with the (1/2w),) in the measure of
integration in the momentum space, giving a simple result.
Substituting Eq. (141) into Eq. (140) we get the final result,
with x2 = x%x, = 1% — {2,

: i\'2 m\32 1 [>®d
—iHr .y _ (L (g) 1 / ds
tple” 1xa) (n) i 873 Jo 252

ix? .9
xexp| ————im"s |, (142)
4s
11 fOOds , x2+ )
=-— — exp—i|—+m"s|.
i 1672 Jy 2 P 4s
(143)

This is, of course, the standard expression for the Feynman
propagator and we have obtained it earlier in Eq. (116); it was

equal to the matrix element in the left-hand side. So where
did we cheat?

The identity in Eq. (139) is actually valid when the right-
hand side has exp(—i H|¢|). Note that, in our final expression
given by Eq. (143), the right-hand side is an even function of 7.
So the left-hand side should also be an even function of 7. This
is ensured only because the result we have proved continues
to be valid for ¢ < 0 as well, if we replace exp(—i Ht) by
exp(—i H|t|). In other words, the evolution operator we have
sandwiched between the eigenkets is not exp(—i Ht) but

U@ =e MM =6@)e™ " +6(—n)e'". (144)

So we are not computing the matrix element of the evolution
operator e "*f" a5 per the standard rule but evaluating a matrix
element of the operator U(t) = e~ M1l This modification
of the evolution operator, in which propagation forward in
time is dictated by H and the propagation backward in time
is dictated by — H, makes all the difference in the world.

But the real surprise is the following: We have now
shown that the propagator Ggr can be expressed as
(ylexp(—iH|t|)|x) where |x) and |y) are non-localized
states!. It is not obvious that, merely by using U (1) = ¢!l
rather than e~/ ¥ we can still express the correct propagator
without solving the problem of localized particle state. This
is the real surprise I want to highlight against the background
of the discussion in this section.

5.5 Aside: composition law for propagators

In NRQM, the propagator GNRr (xp, X,) actually propagates
the wave function from the event A to the event 3. Such an
interpretation relies crucially on the propagator satisfying the
composition law in Eq. (33). This composition law, in turn, is
a trivial consequence of two facts: (i) GNr can be expressed
as the matrix element (x| exp[—i H (tp, — t;)]|xq) and (ii)
the set |x) forms a complete set of an orthonormal basis. So
multiplying two propagators GNr (xp, Xc) and GNR (Xc, Xq)
and integrating over the variable occurring in |x.) reduces
the composition law to an identity:

/ dxe (xple MO g o) (x e~ HOD | )

—iH (tp—t,4

= (xple xa). (145)
Obviously, this will not hold for the relativistic propagator
because the condition (ii) is violated.

It is, however, straightforward to derive the corresponding
composition law with integration over spacetime rather than
just space, for the relativistic propagator. From the integral
representation of the propagator in Eq. (129), we immediately
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t31

see tha 2,

with u =m
/de G(; x2, X)G (s x, x1) = —(x2| (1 + H) 7 2|x1)

0
=i—G(u; x2, x1).
&
(146)

But the integration now is over, say, dPx at the interme-
diate event, rather than over d"x; so the physical mean-
ing of this composition law is unclear; you certainly can-
not use it to propagate a wave function. (It does not help to
restrict the integration over spatial coordinates in Eq. (146);
see Appendix A.) It is also obvious from the derivation of
Eq. (146) that it is the integration over ds in Eq. (129)
which makes the relativistic case very different from the non-
relativistic one.

Incidentally, this composition law can be iterated N times
to give the result

/d% ceedPxy G X xx) - G x1, o)

= O 5 G ) (147)
This result suggests a curious way of reconstructing
G(u; xp, x5). We first note that the Euclidean version of
Eq. (146) (in which the i factor on the right-hand side is
replaced by —1) can be rewritten, after integrating over p in
the range m? < j < oo, in the form

o0
/ dudPxy G(w; xp, x1)G (15 x1, x4)

m2
E/dMl G(u; xp, X1)

x G(i; x1, xg) = G(m?; xp, Xq) (148)

where we have treated the propagator as a function of the
variable p and defined the measure of integration as d M =
dp dP x and used the fact that the Euclidean propagator van-
ishes whenm? — oo. This equation can be iterated an infinite
number of times by keeping two events in G(u; xj, X;j—1)
infinitesimally close to each other. Iterating N times will
give the result

/dM1~--dMN G xps xx) -+

G113 x1, Xg) = G(m*; xp, X4). (149)

This is very similar in structure to the non-relativistic com-
position law in Eq. (33). Therefore, one can, in principle,

31 You can obtain the same result by multiplying the two propagators
and using their explicit form in Fourier space. For a discussion of the
composition laws for the propagators, see Refs. [15,28] and the refer-
ences therein.
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convert Eq. (149) to some kind of sliced up path integral pre-
scription. Unfortunately, the form of G (u; x, y), when x and
y are infinitesimally separated, is not the exponential of the
action for the relativistic particle and, in fact, has no simple
interpretation.

The expression for the relativistic propagator in terms of
the Jacobi action offers some further insight into the composi-
tion law and demystifies it. Even in NRQM, the energy prop-
agator G(x2,x1; E), obtained from the path integral sum
over the Jacobi action, does not obey the composition law
in Eq. (33); instead it satisfies an analog of the composition
law in Eq. (146). This is, again, obvious from the structure of
G(x2, x1; E), defined in Eq. (124). Expressing the propaga-
tor G (x2, x1) in Eq. (124) as the matrix element of the time
evolution operator of NRQM, we get

o0 ~
G(x2,x1; E) = / dr " EHO (x5 e H |xy)
0

= i(xa2|(E — H +ie) ' |xy) (150)

where we have introduced an i factor, with an infinitesimal
€, to ensure convergence. From Eq. (150), it immediately
follows that

3G (x2, x1; E
/ dPyG(x2, y; EYG(y, %13 E) = —i [M} ,

oE
(151)

which has the same form as the result in Eq. (146), for pretty
much the same algebraic reasons. So this composition law in
Eq. (146) has nothing to do with relativity; it arises because
the G can be interpreted as arising from a Jacobi action.
(One can also write down an iterated relation, identical in
form to Eq. (149) in this case as well; unfortunately its phys-
ical meaning is not clear.)

The composition law in Eq. (146) induces corresponding
composition laws in the Fourier transform of the propagators.
Consider first G (t, — t,), which is the spatial Fourier trans-
form of the propagator in Eq. (113). This function satisfies,
in the Euclidean sector, the composition law

[e¢)
a
/ dt Gyt —)Gp(t — 1)) = ——Gp(t2 —11). (152)
o0 I
It is straightforward to verify that the integrals on both the
left-hand side and right-hand side can be expressed in the
form

Irgs = —— =—

G 0InG G
2w, dw), 2w

1
(t—1)+ —} = I us.
@p
(153)

It would be interesting to ask whether one can recover the
non-relativistic composition law in Eq. (33) from this result
— which looks quite different — in the appropriate limit.
This cannot be done with the expressions in Eq. (113)
but if we change the propagator for the non-relativistic
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case by multiplying it by a 6(¢) [that is, we take the non-
relativistic propagator in the Fourier space tobe GNr (2, p) =
0(t) exp(—iwpt)] then one can obtain the non-relativistic
limit correctly. This is based on the fact that in the non-
relativistic limit we have the approximate form

alnG

o

Then, aslongas?; < t < t, the composition law in Eq. (152)
reduces to the composition law of NRQM in Eq. (113). (Some
of the details of these computations are given in Appendix
A)

One can also consider the Fourier transform of the
Euclidean propagator with respect to time obtaining G g (x).
A simple calculation shows that

00 . dn ip-x
GE(x)E/ Gelldr = p3 5 ¢ 5 5.
—o0 (2m)* E*+ p*>+m
(155)

- h—n
@m)

(154)

1 1
=+ {(tz—t1)+—}
NR 2w w

This function satisfies the composition law

0
fd"x Gr(x2,%) Gr(x.x1) == -Gr (), (156)

which is easy to verify.

Finally, let us consider the composition law which does
lead to the propagator in terms of two other propagators in the
relativistic case. Since the scalar product for the relativistic
Klein—Gordon equation is defined as

G1.d0) =i / Ao (6 0ud2 — $20.07]

. a % <>
=i [ do® ¢ 94 ¢, (157)
it is straightforward to show that the propagator, treated as a
function of x, satisfies the composition law:

(G*(x2, x), G(x,x1)) = G(x2, x1). (158)

This result holds only as long as xg >x0 > x?. On the other
hand, if x* > x9 > x¥, say, the integral on the left-hand side
vanishes. One simple way to prove this result is to Fourier
transform Eq. (158) with respect to spatial coordinates and
write the corresponding condition involving G (¢, p) and
d:GRr(t, p). We next note from Eq. (113) that Gg(¢, p) and
its time derivative can be expressed as

G = [G(I)e_iw’ +9(—t)e+fwf];

2w

_ l_ _ —iwt _ it
8,G_+2[ 0 +0(—1)e ] (159)

leading to 3;G = —iwG[Sg(t)] where Sg(t) = t/|t| is the
sign function. With this result, it is easy to show that the
combination occurring on the left-hand side of Eq. (158)
in Fourier space is proportional to Gg(t2 — t, p)Gr(t —
t1, p)[Sg(t>» — t) + Sg(t — t1)], which is non-zero only in

the interval 1| < ¢ < 1. In this interval the relation Eq. (158)
is identically satisfied.>> So, even though the Feynman prop-
agator can propagate backwards in time, it does not work in
the composition laws.

6 A seamless route from QFT to NRQM

In Sect. 3 we found that one is led to a notion of a field oper-
ator A(x) fairly naturally from the propagator both in RQM
and in NRQM. This was done by introducing the “creation”
and “annihilation” operators in the Fourier space, A, and
AI,, and defining A (x) by Eq. (47). This approach, therefore,
holds promise for a seamless transition from QFT to NRQM.

There was, however, one serious difficulty. We found that,
in QFT, the commutator [A(x2), A*(x 1] = (x2|x1) (where
the state |x) is defined by Eq. (27)) does not reduce to a
Dirac delta function on a space-like hypersurface. This is a
reflection of the non-localizability of the particle position.
So if you build observables from A and AT, they will not
commute for events separated by a space-like interval. A
sensible way of incorporating causality into quantum theory
will be to arrange matters such that commutator between
observables vanish for space-like separated events. So we
cannot treat A(x) as the basic building block in the theory
and need to do a little bit more work.

To tackle this issue, we will introduce another field B(x)
whose commutator will lead to G_(x2, x1) = G7.(x2, x1)
just as the commutator in Eq. (51) lead to G4 (x2, x1). This
is achieved through the definition
B(x) = /dsz,,B,,e—W (160)
with the assumption that B(x) commutes with A(x). It is
straightforward to verify that [ B(x3), BT(xl ) = G_(x2; x1).
Let us now define the combination ¢ (x) = A(x) + BT (x).
This field ¢ will also satisfy the Klein—-Gordon equation since
A and B do. But ¢ has better behavior as regards causality.
It is straightforward to show that

[¢(x2), ¢" (x1)] = [A(x2) + BT (x2), AT(x1) + B(x1)]
= [A(x2), AT(x))] = [B(x1), BT (x2)]

= Gy (x2; x1) — G (x1; x2). (161)

This commutator vanishes at space-like separation because
G (x2; x1) = G4(x1; x2) in that case. (See Appendix B; for
a nice discussion of the role of causality in QFT, see [41].)

32 If you do the integrals in Eq. (158) in the real space, this result arises,
after a bit of tedious algebra, because a factor in the numerator cancels
a pole in the denominator in a rather subtle manner. It is also related
to the orthogonality of G, (x, y) and G_(x, y) = G% (x, y). I do not
know of any simple way to “guess” this result.
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So we find that to maintain relativistic causality we need
to work with two fields A and B and define the physical field
asp(x) = A(x) + BT(x). We also have the relations giving
the propagator directly in terms of ¢ and ¢':

(01 (x2)$" (x1)10) = (0] A(x2) AT (x1)]0)
- /dsz,,e*ipx = G, (x2:x1),

(01¢" (x1)¢ (x2)10) = (0| B(x1) B (x2)|0) = / dQpetiry
= G_(x2; x1). (162)

These relations, in turn, allow us to express our relativistic
propagator entirely in terms of ¢ through the relation

G (x2, x1) = 0(12 — 11) (0] A(x2) AT (x1)]0)
+6(t1 — 12){0| B(x1) B (x2)|0)
= (0| T (¢ (x2)9" (x1))]0).

To summarize, we first introduced a primitive field A(x)
based on the relationship between |x) and |p). This field
satisfies the Klein—Gordon equation but not our notion of
causality. Looking at the structure of the commutator of A
field, we introduced another field B(x), which also satisfies
the Klein—Gordon equation and, finally, a physical field ¢ (x)
which obeyed the Klein—Gordon equation and the notion of
causality. Obviously, the notion of causality introduced here
will disappear in the non-relativistic limit and the two prim-
itive fields A and B will — so to speak — be liberated. They
will have appropriate non-relativistic limits which will allow
us to construct NRQM in a proper manner.

To see how this comes about, we first introduce two “non-
relativistic” fields a(x) and b(x) in place of A(x) and B(x)
by

(163)

—imt —imt

N B =
N a(x) (x) N

This rescaling does two things: (i) It separates out a rapidly
oscillating phase exp(—imc?t) from the fields; this phase
arises from the relativistic rest energy of the particle. (ii) It
factors out (1/ \/%), which is a vestige of the relativistic
momentum measure (1/2wp), which goes over to (1/2m) in
the non-relativistic limit. Thus we have eliminated two key
relativistic factors (one due to rest energy, mc?, and the other
due to the change of measure in momentum integration) from
the fields A and B to define a and b.

We next express the Lagrangian L = 9,¢ 3%¢" — m?¢¢’
for the physical field ¢ in terms of a and b fields. The kinetic
energy part is

Alx) = b(x). (164)

dup 09T = (aaA + aaB*) (a“AT + B“B) , (165)
- (aaAa“AT)

+ (aaBTa“B) 4 9,A0°B + 3,AT99 BT
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= (0,A0,AT) + (A= B)+---. (166)
(9aA247)

Here and in what follows, the - - - represent terms with factors
exp(x2imt), which can be ignored since they rapidly oscil-
late and average out to zero in the non-relativistic limit.>3 In
terms of the “non-relativistic” fields, the first term is given
by

2ma A AT = [(—ima ra) (imaT + a*) — da a“aT]

(167)
and corresponding terms for b. Similarly,
m?pTp = m*AAT+ (A= B)+---
=m?ad"+(a=>b)+---. (168)

Using these results we can express the Lagrangian in terms
of a(x) and b(x) as

2L=a" (i3, —H)a+b" (id, —H)b+hc+--- (169)

where H = —(1/ 2m)V2 is the non-relativistic Hamilto-
nian for free particle — obtained by writing d,a a’ =
ou(a a"y —a Z),ﬁ"cff in Eq. (167) and ignoring the total
divergence —and the dots indicate terms which can be ignored
in the non-relativistic limit. These are terms of the kind

0 = al® + |b]* + e 2m () + e2m (). (170)

The terms |@|? and |b|* are ignorable because the leading
time variation, viz. the e~ factor, has been pulled out on
defining the non-relativistic fields a and b; therefore, it is jus-
tifiable to retain only up to first time derivative while working
with @ and b. We can also ignore terms multiplied by fac-
tors exp(£2imt) since they rapidly average out to zero in the
non-relativistic limit.

From the structure of Eq. (169) we see that, in the non-
relativistic limit, our system is described by two fields a and
b, which actually represent the particle and antiparticle of
the original system. Both of them satisfy the non-relativistic
Schroedinger equation in operator form. So antiparticles do
not go away when you take the non-relativistic limit if you
do it correctly.

We worked with the primitive fields A and B (which actu-
ally correspond to the particle and antiparticle, respectively)
in order to show that the non-relativistic limit leads to a pair
of fields a and b both obeying the Schroedinger equation. It
is, however, possible to work entirely with the physical field
¢ and obtain the appropriate limit. To do this, we start with
the definition of ¢, viz.,

1
«/Zm'

33 One can do this more formally in an RG-type analysis by integrat-
ing out the high frequency modes and defining a low-energy effective
Lagrangian. But since the modes are decoupled in the free field theory,
this is equivalent to just dropping the rapidly oscillating terms.

¢ =A+Bf = (ae*""” + b*ef'"’) (171)



Eur. Phys. J. C (2018) 78:563

Page 29 of 35 563

The canonical momentum associated with ¢ is

NM=¢~i /% (—ae_imt + b-reimt)

where we have ignored the time derivatives of a and b in com-
parison with the time derivatives coming from exp(z£imt)
factor. This allows us to write

a=eimt<\/E¢+ i H);
2 V2m
T —imt @ _ i
= (5o g )

This procedure works even for a real scalar field for which
the antiparticle is identical to the particle. So, even real scalar
fields have a natural non-relativistic limit, contrary to what
is sometimes claimed in the literature.

The most important feature which has come about in
the non-relativistic limit is the transition from second time
derivatives to first time derivatives in the equation obeyed
by the operators. That is, the relevant operator changes
from (8,2 — V2 +m?) to (id, + (1/2m)V?) or equivalently
(V2 —m?— Btz) goes over to V2 4+ (2mid,). So the net effect
is the replacement

(172)

(173)

(82 + m?) = (—2mid,). (174)
Almost all the key differences between QFT and NRQM are
directly or indirectly connected with this change. In view of
its importance, it is worth going over the algebraic features
which led to this reduction.

Since the spatial dependence is governed by the same
operator V2 both in the relativistic and non-relativistic field
equations, we can work in the Fourier space — with modes
labeled by the magnitude of a wave vector k — in both cases.
In the relativistic case the Fourier mode will satisfy a har-
monic oscillator equation with frequency Q% = k2 + m?.
All we need to do is to look at appropriate features of har-
monic oscillators to understand what is going on. So consider
a dynamical degree of freedom f (¢), which satisfies the har-
monic oscillator equation of the form

d? d?
—+Q) f= (5 +E+m?) f
dr? k)7 =\ dr2 '

To study NRQM, we want to look at the limit k> <« m?
when the frequency of oscillation of f will be dominated by
a factor like exp(Zimt). It makes sense to pull this factor
out of f and redefine another dynamical variable F' by the
relation f = e~/ F.1Ttis now straightforward to show that
the Lagrangian that leads to Eq. (175) can be re-expressed in
terms of F as

(175)

o (d? 5 N F'F

(176)

The first term on the right-hand side involves only the first
time derivative. The second term contains £ , which can be
ignored compared to F in the limit we are interested in. This
is how the reduction of time derivatives occurs when we
proceed from QFT to NRQM. The culprit is the rest energy,
which introduces rapid time oscillations through the factor
exp(—imt).

The idea of the primitive fields @ and b and the physical
field ¢ can also be understood without worrying about the
spatial dependence, and working with Fourier modes which
behave like oscillators. To do this, let us consider a dynamical
variable ¢ (#) described by a Lagrangian

L=¢"¢g—Q%"q +hec. (177)

We now introduce two primitive fields a(¢) and b(¢), such
that ¢ = a + b, and re-express L in terms of a and b.
You will find that the Lagrangian separates into two parts as
L =L+ L, where

Ly = |a* — Q*|a)* + |b]* — Q|b|? (178)
and
Ly =—a(b— b)) —a' (b — Q%b)". (179)

The second part of the Lagrangian L, actually leads to the
identical field equations as L. For example, if you vary a in
L you get b = —Q2%b, which s identical to the field equation
you get from the second pair of terms in L. Therefore we
can ignore L, and think of the dynamics as being dictated
by L itself. The L describes two independent oscillators a,
b with frequency 2. By an analysis similar to the one done
before, we can reduce this system to one which involves only
the first time derivative. This is exactly analogous to what we
have done earlier in the case of the field.

One feature which emerges out of this analysis is the
sharp distinction between (i) any direct approach to quan-
tum theory of relativistic particle and (ii) relativistic parti-
cles emerging as excitations of a quantized field. Conceptu-
ally these constructions are completely different. To describe
a relativistic particle, we can start with an eigenstate |p)
of its three-momentum (with its energy w, determined by
wp = +( p2 + m?)1/2. One can build further states like, for
example, |x) and other useful operators like, for example,
A(x) etc. and build a theory in a suitable Hilbert space. But
such a field A(x) will not obey a sensible notion of causality.
To remedy this situation we have to double up the number
of particles by associating with each particle another parti-
cle with (an unfortunate) nomenclature antiparticle. This is
roughly what the introduction of the field B(x) does. Then the
combination ¢ (x) = A(x) + BT (x) obeys a natural notion
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of micro-causality. So the answer to the question “why do
antiparticles exist” is simply “to ensure causality in a Lorentz
invariant theory”. It has nothing to do with square roots in
Hamiltonians or some funny notion of negative energy states;
there are no negative energy states in the one-particle sector
of the Fock space. The two fields A(x) and B(x) have to be
treated on an equal footing and both have a right to exist in
NRQM. In short, a pair of fields in NRQM gets mapped to a
single field in QFT.

7 Propagators as correlators

We have seen that when you take the non-relativistic limit
properly, an operator remains an operator. All that happens
is that the Lagrangian and the field equation describing the
field operator $(x) are different from the ones describing the
field operator a(x) and IS(x). ¢ (x) satisfies a field equation
which is of second order in time, while a(x) and b(x) sat-
isfy field equations which are of first order in time. These
non-relativistic fields are what are usually called — in a con-
fusing and incorrect nomenclature — the “second quantized”
version of Schroedinger wave functions. By using the lan-
guage of field operators both in QFT and NRQM we can
make a seamless transition from QFT to NRQM. (This is a
familiar aspect of condensed matter physics but is not usually
explored in detail in the context of non-relativistic limit of
QFT; some earlier work is cited in [40].) The last issue which
remains to be answered is the role of the propagators: How do
we obtain the non-relativistic propagator in the appropriate
limit since we are no longer talking about particle positions
and trajectories even in the NRQM limit?

To answer this question, let us start by examining an action
which is quadratic in the fields and can be expressed in the
form

A= /de ®* D(id,)d = /de O*(0 + w)®. (180)

The first equation defines an operator D which is built
from the time and space derivatives d,; for convenience we
have introduced a parameter u and written this operator as
D= Q + 1. (In the case of Klein—Gordon field, for exam-
ple, 1 could be identified with m2.) We will now define the
propagator for the field as the correlator averaged using /4
through

* 1 * * i A

G(x, y) ={2X)P"(y) = ~ DO D" O (x)P*(y)e'”;
7= /DCDDCD*eiA. (181)
Since the action is quadratic, it is straightforward to evaluate

this correlator, which is the matrix element of D! in Fourier
space. We get

@ Springer

de e~ ir(x—y)

G(x,y) = —i{x|D7y) = @oP D)

(182)
As an example, consider the standard Klein—Gordon field. In
this case, we have D= O+ pu—ie) = (—p2 4+ u—ie),
so that —iD~! = +i(p> — u +ie)~!. This will lead to the
standard Feynman propagator G g.

One can give a nicer interpretation to any such propagator
by using the integral representation for D! and writing

00 R
o= oy
0
00 . ; de
_ d —ip(x=y) p=isD(p) &£ 183
/o s/ ‘ < T oop P

The second expression is obtained by introducing a com-
plete set of momentum eigenstates and using (x|p) = e~P*
etc. The matrix element (x|e~**P|y) can be thought of as a
quantum mechanical propagator for a particle to go from y
to x under the action of a Hamiltonian D in “time” interval
s. The structure of this expression immediately leads to the
composition law for the propagator. Since

/dx (x20D) " x) (x| D) x1) = (x2l (i D)3 x)

.0 N
=i—(x2|D)”" " |x1),
o

(184)

we obtain the result

0
/de G(x2,x)G(x, x1) :ia— G(x2,x1). (185)
I
The discussion so far has been completely general. Let
us now consider the question recovering NRQM from this
approach. We start with the Fourier transform of the propaga-
tor with respect to spatial coordinates which can be expressed
as

_ D —ikx __ OO d_w i
Gi(1) —fd x G, x)e ‘/,oo 2m) iD(w. k)’

(186)

Obviously, the form of the propagator depends on the pole
structure of D(w, k) in the complex plane. We saw in the last
section that the essential difference between QFT and NRQM
is in the reduction of second time derivatives to first time
derivatives, indicated by Eq. (174). This, in turn, suggests
that in the Fourier domain, a second order pole is replaced
by a first order pole in w. In fact, this is indeed the case. You
will get the standard form of NRQM if the pole structure of
D(w, k) has the form

D(w, k) —ie = [—w+ F(k) —ie] 22%). (187)
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Then a simple contour integration of the integral in Eq. (186)
will give the momentum space propagator:

o(t)
2Q (k)

Gr(t) = exp[—itF(k)], F=H-+pu (188)

This will lead to standard NRQM if 2€2 (k) = constant. This
propagator obeys the composition law in Fourier space given
by

/ dr 2Q)Gr(t2, 1) 2R) G (2, 11)

—00

)
= i8—(29k)Gk(t2, n). (189)
"

From the explicit form of the propagator in Eq. (188), we see
that the right-hand side of Eq. (189) is given by

0
i@(ZQk)Gk(tz, 1) = (2 — 1) Gi(t2, t). (190)

The left-hand side of Eq. (189) will also reduce to this expres-
sion because of the theta functions in time and we will recover
the standard result in NRQM. Thus it is clear that NRQM is
recovered when D(w, k) has a single pole in the lower half
plane.

We can also construct the propagator directly from
Eq. (183) along the following lines. Introducing a complete
set of momentum eigenkets |p) in the matrix element, this
expression can be reduced to

dn i
G = / / 2y ©

/ o GO ot ,=isQQ)(~w+F— ie) (191)
—0o0
d" o i i
_ p f ds ((ZQp)S _ t) e SF(p)Fipx
2m)" Jo
(192)
B 90)/ Qny 2%, e, o

Notice that, when there is only one pole for D (w, k), making
it alinear function of w, the w integration in the first line leads
to a Dirac delta function in time. This allows us to identify the
“internal time” s with the physical time 7, leading to the final
result. The final expression also has a direct interpretation in
terms of the Hamiltonian form of the action principle. Thus
the definition of propagators as correlators work consistently
both in QFT and in NRQM. The key difference between the
two is in the pole structure of the operator ﬁ, which, in turn,
is related to the conversion of second time derivatives to first
time derivatives as explained in the previous section.

8 Discussion

This has been a rather long journey and — for the sake of
clarity — let me briefly describe the path we have followed
and the landmarks on the way. (The reader is invited to revisit
the summary of the results given in Sect. 1.2 at this stage,
for more details.) I will then conclude by highlighting two
important results we have obtained.

8.1 Brief overview

One main conclusion — which we have reached from several
different perspectives — is that, to make a seamless transition
from QFT to NRQM, you need to describe NRQM in a lan-
guage which is closer to that of QFT and not the other way
around. This conclusion by itself may not be surprising but it
was necessary to demonstrate it from different perspectives,
which was one of the main objectives achieved in the paper.

The NRQM limit can be obtained for a free particle by
working with relativistic particle and antiparticle field oper-
ators AT(x) and BT(x). (The antiparticles do not “go away”
in the NRQM limit.) These operators are, in turn, defined in
terms of operators which create fixed three-momentum states
from the no-particle state. The three-momentum continues to
be a “good” operator in QFT while the three-position is not.
I have commented on this aspect extensively, contrasting the
non-relativistic and relativistic cases, where the Hamiltonian
takes the forms H (p) = p?/2mor H(p) = p*+m?, respec-
tively.

A closely related question is whether the non-relativistic
wave function can be recovered through some limiting pro-
cedure from a relativistic field operator. I addressed this by
focusing on the propagator, an object that is well-defined
in both NRQM and QFT. The technical issue, which makes
all the difference between the two cases, is the fact that the
measure of integration in momentum space has to be dif-
ferent in the two cases, which — in turn — arises from the
requirement of Lorentz invariance. This difference features
throughout the discussion, and it makes it impossible to per-
form a Fourier transform in the relativistic case that will
yield Lorentz covariant coordinate wave functions represent-
ing spatially localized particles.

After discussing these aspects, I turned to the issue of
obtaining NRQM from QFT using the path integral formal-
ism. Once again, the simplest route is to try and define the
respective propagators from the path integrals. You then find
that the Lagrangian path integral cannot be defined through
time slicing in the relativistic case for any sensible choice of
measure. The Hamiltonian approach does work in both cases
but does not lead to the correct Feynman propagator.

The best route seems to be the one based on a Euclidean
lattice regularization scheme, which does lead to the Feyn-
man propagator. In this approach we sum over the paths,
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parametrized by proper time, including implicitly those that
proceed both forward and backward in coordinate time.
Exploiting the mathematical similarity of this method to the
approach based on the Jacobi action principle, one can again
understand the origin of the difficulties in obtaining a single-
particle wave function. The Jacobi action approach tells us
that, in the non-relativistic case, we need to construct a prop-
agator for fixed energy and then sum over all energies while,
in the relativistic case, we need to sum over paths for a fixed
proper time followed by an integration over the proper time.
It is this last integration (over energy in NRQM and over
proper time in RQM) that ruins the composition property of
the propagator in either situation.

To conclude this summary, [ will comment briefly on two
issues which are indirectly related to the discussion in this
paper. The first comment has to do with the philosophical
interpretation of the wave function in NRQM, which is still
strongly debated. But note that: (i) QFT is more fundamental
than NRQM, and (ii) we do not have a sensible notion of
the single-particle wave function in RQM. Therefore, the
debate over the ontological versus epistemological status of
the wave function within the context of NRQM — in which
it is often attempted — seems irrelevant and misplaced. At
least one should expand the debate to full QFT (say in the
Schroedinger functional formalism) for it to be meaningful,
but then we will face several new serious, nontrivial, issues
which might take precedence and change the nature of the
debate.

The second comment is more technical. We saw that the
consistent description of the NRQM limit of QFT requires
us to work with a pair of fields, corresponding to a particle
and its antiparticle. In the case of charged particles, these
two will carry equal and opposite charges and hence there
is a natural notion of charge conjugation with an associated
operator in QFT. From our discussion it is clear that this is
a purely relativistic feature and one does not have natural
notion of charge conjugation operation in the NRQM, within
the single-particle sector. There are attempts in the litera-
ture to introduce the notion of charge conjugation in NRQM
but these attempts lack the naturalness with which one can
introduce this notion in QFT.

8.2 Two intriguing results

The investigations of the path integral leads to some remark-
able results, definitely worthy of further study. The first one
is the expression for the Feynman propagator, Gg(x2, x1) =
(x2]ef11!|x1), with the appearance of the absolute value of the
time difference in the evolution operator. The second one is
an intriguing relation between the path integral and the exis-
tence of antiparticles. I will now discuss these two results,
starting from the second one.

@ Springer

The key result I want to highlight is contained in the beauti-
ful —and not adequately appreciated —equation, which allows
us to describe relativistic particles as excitations of a Lorentz
invariant, causal, quantum field:

> exp (—%m/]zdtm)

paths
= 6(13 — 11){0]A(x2) AT (x1)|0)

+ 6(t1 — 12)(0|B(x1) B (x2)|0). (194)

The equality of the left-hand side with the relativistic prop-
agator G g(x2, x1) was demonstrated by lattice regulariza-
tion in the Euclidean sector in Sect. 5; the equality of the
right-hand side with the relativistic propagator G g (x2, x1) is
provided by Eq. (163).

The remarkable fact about Eq. (194) is that nobody under-
stands it!. That is to say, no one has found a simple, physical
argument suggesting why the left- and right-hand sides of
Eq. (194) should be equal without doing fairly elaborate cal-
culations. This means that we do not quite understand the
conceptual basis of QFT — and the structural implications
of combining the principles of quantum theory and special
relativity — in spite of its remarkable success as a working
tool.

To see why ‘explaining’ Eq. (194) is hard, consider the two
sides separately. On the left-hand side we have the action for a
single relativistic particle summed over all paths in spacetime
connecting two events. So the left-hand side combines the
principles of quantum theory and special relativity in the most
straightforward manner. The right-hand side, on the other
hand, describes rwo kinds of particles propagating between
the two events in spacetime. If #, > 1, then the A-type
particle propagates forward in time, while, if #, < 7, the
B-type particle again propagates forward in time. (There is
no propagation of particles backward in time which textbooks
are fond of invoking.) It is a mystery how the path integral
for a single relativistic particle gets an equivalent description
in terms of two kinds of particles — both propagating forward
in time with the choice of particles determined by the time
ordering. It would be nice if a prescription for the sum over
paths can be devised which nicely separates the contributions
from A and B type particles on the right-hand side. (I have
some ideas on how to do this, but — as you could have guessed
— none of them works properly.)3*

The second result I want to highlight is the one we found
in Sect. 5.4. We found that the relativistic propagator can be
expressed in the form

Gr(x2,x1) = (xa]e Hl|xy). (195)

34 Usually textbooks combine the two terms in the right-hand side of
Eq. (194) into a single time ordered product of the field ¢ = A + BT,
which does not help in resolving the mystery.
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We are working throughout with H = / p? + m?2, which is
a positive definite operator. But for t = —|¢| < 0, we have
exp(—iH|t|) = exp[—i(—H)t] and thus the minus sign in
t can be transferred to H giving the illusion of a negative
energy Hamiltonian. Since the operator U (¢) = e~ 71l sep-
arates into two distinct evolution operators for + > 0 and
< 0, it is obvious that two types of propagations are again
incorporated in Eq. (195) just as in the case of Eq. (194).
This is understandable but the real surprise has to do with
the quantum states between which the time evolution occurs
in Eq. (195). We have repeatedly seen that there are no local-
ized particle states in QFT and hence we necessarily have
to interpret |x1) and |x2) as some kind of smeared particle
position states. Then Eq. (195) tells you that the relativis-
tic propagator is obtained by the standard time evolution
operator used with either H or —H between such smeared
states. Clearly, some subtle interplay is going on between the
non-localizability of particle states and the existence of two
kinds of propagation. As in the case of Eq. (194) I do not
know of any simple way of explaining Eq. (195) vis a vis the
occurrence of smeared states.

Finally, let me comment on some broader implications of
these and other results highlighted in the paper. I believe we
can learn lessons regarding combining General Relativity
(GR) with QM from carefully exploring the new features
which arise when we combine Special Relativity (SR) with
QM, which is the motivation for these comments.

It often happens in physics that certain well-defined
notions become approximate or, sometimes, even lose their
utility when we proceed from an approximate description
of Nature to a more exact description. It is possible that the
spatial location of an event is one of such concepts. In classi-
cal physics, both relativistic and non-relativistic, the notion
of a spatial location x is operationally identified either with
the position of the particle x(¢) at some time ¢ or through
the intersection of the world lines of two particles. Both
these notions assume the existence of particles with arbi-
trarily small dimensions.

In the conventional formulation of NRQM this idea is
retained except for elevating x(¢) to a Heisenberg opera-
tor X (1) while retaining the purely parametric (non-operator)
status for time #. In NRQM you can still work with sharply
localized one-particle states |, x), which are eigenstates of
the operator X (), as long as you do not care about the momen-
tum of the particle. But, as we have seen, the introduction of
special relativity into QM makes this notion ill-defined. We
no longer have localized particle states in RQM, which, of
course, is well known in the literature. But if you do not have
localized particle states, can you still use the notion of spa-
tial coordinates as though they are well-defined? The usual
belief is that one can. For example, combining the uncer-
tainty principle of QM with the mass—energy equivalence of
SR, we immediately reach the conclusion that the notion of

a single-particle position becomes ill-defined, for a particle
of mass m, at length scales below Ac = % /mc. So by con-
sidering hypothetical particles of arbitrarily high mass you
can define spatial location with arbitrarily high accuracy.

This idea, of course, breaks down when you approach the
Planck length, Lp. It is well known that one cannot (see,
for e.g., [42,43] and the references therein) operationally
define spatial locations with an accuracy better than a few
Planck lengths, say. This in turn brings about an extra non-
localization in the states |x). In the absence of gravity, (y|x)
differs from a Dirac delta function and has significant support
over a region of the size |x — y|*> & AZC. When we introduce
the Planck length into the consideration, we probably need
to modify the form of (y|x) so that it has support in a region,
say, |x — y|? ~ kzc + L%, or something like that.>

To incorporate any such modification at a fundamental
scale, we may have to abandon the notion of precise spa-
tial location x. Instead, one may want to consider creation
and annihilation operators for spatial locations themselves;
the action of these operators on a pre-geometric quantum
state should produce the standard geometrical notion of a
space-like hypersurface as a collection of spatial coordinates
along with other geometrical notions. This is a coordinate-
based notion of the more abstract idea that a creation operator
AT(3G) creates a three-geometry 3G out of a pre-geometric
state. Such an approach may be necessary to incorporate
the breakdown of operational notion of spatial location at
the Planck scale. The de-localization of the position by an
amount Ac, which arises when we combine SR with QM,
suggests that some such structure is required to describe the
spacetime when we combine GR with QM.
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A Appendix A

The left-hand side of Eq. (152) has the form

35 The standard smearing over the Compton wavelength arises with the
Klein—Gordan equation of the form (CJ+ )»EZ)d) = 0, while one can get
the above modification if we use the equation ((J + £72)¢ = 0 where
02 = Azc + L%,. One can also introduce such a zero-point-length into
spacetime in a Lorentz invariant manner by modifying the path integral;
see [44,45].
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(0.¢]
1
ILHs :/ dr e—wp(\fz—f|+|f—ll\)’ (196)
—00 (2wp)2
which, on integration, gives
1
4% ILps = [(tz —1)+ —] e~ er(2=1), (197)
@p

Consider now the right-hand side of Eq. (152), which also
evaluates to

IrHs = —%Gp(tz —t) = —E%
- GG _ G {(tz — 1)+ i} = ILus.
20p, dwp 2wp wp
(198)
Either side can also be expressed as
G — 1) dlnG
Iins = Irus = {— }
2w dwp
__ 1 6 _ a¢ (199)
2wp dwp o

The non-relativistic limit corresponds to w ~ m and w(t; —
t1) &~ m(ty — t;) > 1. Then we find that

0lnG
o

- h—n
@m)

(200)

= —|—2L {(tz —n)+ l}
NR ) 1)
The (#, — #1) dependency will arise in the left-hand side of
the standard composition law because of the appropriate 6(¢)
functions.

If one restricts the integration in Eq. (146) to just spatial
coordinates of the intermediate point, we get the result:

d
/dx G(x2,x)G(x,x1) = (2753
o L wpUn—tli—nD ip-tra—x1) 201
Qw,)?

This expression, of course, is not Lorentz invariant and will
depend on the intermediate time ¢ except when #| < t < .
Further it is not related in any simple manner to G (x2, x1). It
is also clear from the form of the expression how it reduces to
the correct non-relativistic composition law when the mod-
ulus signs are omitted in |, — ¢| and |t — #1| and we set
wp, =m.

B Appendix B

This is most easily seen by manipulating this expression into
the form
Gi(x2;x1) — G- (x2;x1) = G4 (x5 x1) — G (x13x2),  (202)

— /de[e—ipx _e+i[))6]
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— /dgp[e—iwpt+ip-x _eiwpt+ip-x]

— /dgpeip-x [efia)pf _ ei(t)pt].
(203)

To arrive at the third line, we have flipped the sign of p in
the second term. Since the expression is Lorentz invariant, we
can always evaluate it in the frame with t, —#; = ¢ = 0, when
the events are separated by a space-like interval. It vanishes,
showing that G4 (x2; x1) = G_(x2; x1) when the events are
separated by a space-like interval.
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