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Abstract The article is dedicated to one of the most unde-
servedly overlooked properties of the cosmological mod-
els: the behaviour at, near and due to a jump discontinuity.
It is most interesting that while the usual considerations of
the cosmological dynamics deals heavily in the singularities
produced by the discontinuities of the second kind (a.k.a.
the essential discontinuities) of one (or more) of the physi-
cal parameters, almost no research exists to date that would
turn to their natural extension/counterpart: the singularities
induced by the discontinuities of the first kind (a.k.a. the jump
discontinuities). It is this oversight that this article aims to
amend. In fact, it demonstrates that the inclusion of such
singularities allows one to produce a number of very inter-
esting scenarios of cosmological evolution. For example, it
produces the cosmological models with a finite value of the
equation of state parameter w = p/ρ even when both the
energy density and the pressure diverge, while at the same
time keeping the scale factor finite. Such a dynamics is shown
to be possible only when the scale factor experiences a finite
jump at some moment of time. Furthermore, if it is the first
derivative of the scale factor that experiences a jump, then
a whole new and different type of a sudden future singular-
ity appears. Finally, jump discontinuities suffered by either
a second or third derivatives of a scale factor lead to cosmo-
logical models experiencing a sudden dephantomization –
or avoiding the phantomization altogether. This implies that
theoretically there should not be any obstacles for extending
the cosmological evolution beyond the corresponding singu-
larities; therefore, such singularities can be considered a sort
of a cosmological phase transition.

a e-mail: artyom_yurov@mail.ru
b e-mail: artyom.art@gmail.com
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1 Introduction

There are very few ideas that are as ingrained in the con-
temporary cosmology as that of a cosmological singular-
ity. Although initially quite vehemently opposed by the very
father of the General Relativity, Albert Einstein, by the end
of the 1990-s this concept became so widespread and rec-
ognizable that it even gave its name to the most popular
cosmological model of the day – the Big Bang theory has
derived its moniker from the so-called Big Bang initial sin-
gularity (BBS), out of which the entire expanding universe
must have emerged in all its high-energy glory. The simi-
lar model of a collapsing universe was said to be evolving
towards yet another singularity, called the Big Crunch singu-
larity (BCS).

Both of these singularities occur when the scale fac-
tor a(t) → 0 at t → ts (the value ts will from now on
denote the precise moment when a singularity arises). Prior
to 1990-s most cosmologists were confident that the den-
sity and pressure of the kind of matter that fills the universe
have to abide by either the strong or, at a worst case, the
weak energy conditions. These conditions, filtered through
the solutions of the Friedman–Lemaître–Robertson–Walker
equations (FLRW), led the cosmologists to believe that in all
but two physically plausible scenarios the matter density and
the pressure must diverge at the singularity: ρ → ρs = ∞,
p → ps = ∞; and so should all the derivatives of a scale fac-
tor: |dna/dtn|t→ts → ∞ for n ≥ 1. The only two exceptions
were the models of Milne (an open universe with ρ, λ ≡ 0)
and of De Sitter (a flat universe with ρ ≡ 0 and a positive
cosmological constant λ), but since both of them had a mis-
fortune to be literally empty – having zero energy density ρ –
both of them were deemed to be not particularly interesting
(their incompatibility with the observational data didn’t help
matter either).

The discovery of a cosmic acceleration [1,2] in 1998
changed all that. Suddenly there was an unequivocal obser-
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vational proof that there is more in the Universe than the
ordinary matter with its usual energy constrains. The uni-
verse was evidently filled to a brim with a weird new field,
called a “dark energy”, and all bets were off. The prover-
bial floodgates were open. The cosmologists rolled up their
sleeves and started rolling out one after another exciting new
models aimed to describe and understand the universe filled
with that or another version of a dark energy. And while some
of those models did have the old familiar faces of BBS and
BCS singularities, pretty soon it became obvious that these
two are but a tip of a singular iceberg of possibilities. In par-
ticular, the cosmologists realized that the singularity should
not be solely associated with zero values of a scale factor a,
but in fact can occur when a reaches infinity in finite time.
And then they went even further and have found out the singu-
lar solutions with a finite non-zero scale-factor 0 < a < ∞!
Similar to the BBS and BCS, each of the new singularities
has received a befitting name: a Big Rip singularity (BRS)
[4–12,28], a Big Freeze singularity (BFS) [13–17], a Sud-
den Future singularity (SFS) [18–28] a Big Boost singularity
(BBtS) [29], a Big Break singularity (BBS) [30–32], the w-
singularities [35,36], the inaccessible singularities [37], and
the directional singularities [38]. A common feature in all of
these models except for the singularity of type IV, according
to the Nojiri–Odintsov–Tsujikawa classification of [3] (see
also [39–41]), is that they all predict cosmic evolution to end
by means of a curvature singularity, |ä(t)| → ∞, reachable
in a finite proper time, say as t → ts .

Now, what are the requirements and characteristic prop-
erties of all these solutions?.. The BRS takes place in the
phantom models with a → ∞ for the t → ts , where
a = a(t) is the scale factor. The models with SFS, BFS,
BBtS and BBS all predict a finite value of the scale factor
as = a(ts) < ∞ but they differ in their own distinct values
of the Hubble expansion parameter Hs = H(ts) as well as
in different signs of (divergent) expression äs/as (see also
[33,34]). Yet another type of singularity, aptly called the w-
singularity, was obtained in [35] and it is characterized by
the finite scale factor, vanishing pressure and energy density
(similar to the the type IV cosmological singularity), so that
the only thing singular is a time-dependent barotropic index
w(t). It is important to note that the w-singularities differ
from the singularity of IV type in that it does not exhibit the
divergence of the higher derivatives of the Hubble parameter
([35]).

At this point one can ask: is it possible to name a property
that would unite all these distinct models?.. Surprisingly, the
answer is yes. These singularities all share one similar trait:
each and every one of them is associated with an essential
discontinuity. It is this feature that should give a pause to
an attentive reader who at this point may ask: but aren’t the
essential discontinuities just one of the type of possible dis-
continuities?.. Or, to put it in other words: is it not reasonable

to assume that in our fixation on one special type of disconti-
nuities we might actually be missing some other interesting
phenomena?.. Just to illustrate our point, consider a singular-
ity of IV type by N.O.T. classification [3]. Such singularities
are associated with essential discontinuity of the third order
derivative of the scale factor. But what about the derivatives
of the lower order?.. One usually assumes that the second
derivative here is properly defined and continuous, even at
the moment of singularity itself. But it is not the only possi-
bility. The divergence of the third derivative at t = ts might
as well imply that the second derivative has a jump disconti-
nuity at t → ts!.. Similar reasoning can also be provided for
other types of singularities. So, it is the goal of this article
to correct this glaring oversight by examining these exotic
cases. Admittedly, at first glance this line of research might
not look promising. We can even go as far as to predict two
typical objections issued by an imaginary referee:

Objection 1. If n-th derivative of the scale factor diverges
a(n)(ts) = ±∞ and |a(n−1)(ts)| < ∞ in the moment of sin-
gularity, the existence of a jump discontinuity for a(n−1)(t)
might be completely inessential for the dynamics of the uni-
verse and hence lead to no new observable phenomena.

Objection 2. The existence of a jump discontinuity might
seem natural from the purely mathematical point of view, but
what possible physical meaning can lie beyond such a wild
assumption?

Naturally, the list of the arguments can go on, but it is
these two arguments we consider most pertinent and most
deserving of an answer.

In this article we will concentrated on dispelling the first
of these objections, for an obvious reason. If the addition
of a jump discontinuity to our solutions would produce no
new results, such an addition should be deemed completely
superfluous – and there would really be no point at all in
discussing the second objection. Fortunately, that is not our
case. As we shall see the solutions with the jump discontinu-
ities do have new properties, making them distinct from the
known solutions that only have the essential discontinuities.

Still, the second objection remains valid. That any physical
field (say, a scalar field φ with a potential V (φ) governed
by an ordinary power law) might produce a cosmological
dynamics characterized by a jump discontinuity – doesn’t it
seem to be completely impossible?.. Well, the answer is no,
and we can prove it with a simple counterexample.

Consider the aforementioned model of a flat Friedmann
universe containing a scalar field φ = φ(t) and a common
quadratic potentialmφ2/2. In addition, let us also assume that
the universe in question is filled with a negative cosmological
constant, finely tuned with the “mass” m of a scalar field in
a following very specific (but not unreasonable!) way:

V (φ) = 9λ2

4
(φ − φ0)

2 − λ2

2
. (1)
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The cosmological dynamics of such a universe will follow
the standard Friedmann equations:

φ̈ = −3H φ̇ − dV (φ)

dφ
,

H2 = 1

2
φ̇2 + V (φ),

Ḣ = −3

2
φ̇2.

(2)

The system (2) with the potential (1) can be solved via the
reduction to the Abel equation [42]; the resultant solution
will have the following form:

φ = φ0 + λ|t | = φ0 + κλt,

H = 3

2
κλ(φ0 − φ) = −3λ2

2
t,

where κ = +1 for t > 0, and κ = −1 for t < 0. Note here
that while both the Hubble parameter H and the scalar field
φ are continuous, the first derivative of the latter experiences
a jump discontinuity at t = 0! This vividly demonstrates
that even the most respectable potentials V (φ) might, under
the right circumstances, begin to behave themselves in a way
consistent with our hypothesis and to produce some sort of
jump discontinuities.

In this work we will demonstrate four important features
the cosmological solutions with jump discontinuities might
possess:

• It is possible to construct the cosmological solutions with
ws = ps/ρs < ∞ although ps = ∞, ρs = ∞, as < ∞;

• The energy density can diverge (ρs = ∞) while the
pressure remains finite (ps < ∞). In other words,
the Lagrangian for such models doesn’t diverge at the
moment of singularity (Sect. 2);

• New cosmological solutions with SFS appear (Sect. 3);
• Cosmological solutions with jump discontinuities might

avoid an effect of phantomization (Sect. 4).

Finally, in Sect. 5 we will briefly discuss the possible
importance of the jump points in the cosmology and will
argue that their existence has to be accepted, if only to avert
much more serious problems with a behaviour of physical
fields when the universe enters the phantom zone.1

We will subsequently study three types of cosmological
models:

Model (i) whose scale factor a has a singular point of the
first type (i.e. a jump discontinuity) at t = ts ;

1 One should also note that it is not the first time the jump discontinuities
enters the cosmological consideration: such discontinuities are a must
for all the brane models (cf. [45]).

Model (ii) in which the first derivative of a scale factor has
such a point at t = ts and

Model (iii) in which the second (or higher) order derivative
of a scale factor has a jump at t = ts .

Let us see now what these models look like and what
properties they possess.

2 Cosmological models with wc-singularities

We begin by considering a spatially flat universe with the
FLRW metric

ds2 = dt2 − a(t)2
(
dx2 + dy2 + dz2

)
. (3)

The Friedmann equations for such a universe have the form2

ȧ2

a2 = ρ,
ä

a
= −1

2
(ρ + 3p) , (4)

where ρ and p are the total energy density and the pressure.
As we have discussed in the end of Sect. 1, we will study

three possibilities. In case (i) (the scale factor itself expe-
riences the jump) the density ρ must necessarily diverge:
ρ → +∞. This necessity, however, does not extend on the
behaviour of pressure p: it might either stay finite p → ps
or it can diverge |p| → ∞ at t = ts . These properties closely
mimic those of a singularity of the III type according to the
N.O.T. classification. The type III usually arises in models
with the equation of state [43]

p = −ρ − Aρk . (5)

But our model is quite different, because in it:

1. All energy conditions (weak, strong and dominant) can
actually hold at t = ts ;

2. The barotropic index w = w(t) = p(t)/ρ(t) →
∞/∞ = ws = const < ∞ or w → 0 (the latter holds
when, for example, pressure p remains finite as t → ts).
In particular, it is possible to obtain ws = 0 even in a
case when pressure diverges.

It is useful to think about the second property (when
|p| → ∞ at t → ts) in view of a duality existing between
a Big Bang and a w-singularity [35]. Namely, the BBS is
characterized by p → ∞, ρ → ∞ and w → 0 for the
universe filled with a baryon and/or dark matter whereas
the w-singularity is characterized by p → 0, ρ → 0 and
w → ∞. In contrast to the Big Bang (and the Big Crunch)
singularity where a → 0 when t → ts , in our model a → as ,

2 Throughout the article we will be using the “natural” system of units
in which 8πG/3 = c = 1.
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0 < as < ∞. Since the term “duality” has already been used
for the purpose of comparison between thew-singularity with
BBS, we will instead use the term “conjugate” to define our
new type of singularity, and will henceforth call it a conjugate
w-singularity or wc-singularity.

Remark 1 We’d like to stress that from a physical point of
view the w-singularity in not a proper singularity because
all the observable functions (density, pressure and the higher
derivatives of the scale factor or the Hubble parameter H )
stay finite even at t = ts . Moreover, the very definition of
w-singularity given in [35] is actually incomplete. To show
this lets consider the following form of the scale factor

a(t) = as − A (ts − t)m , (6)

where (6) is the special case of the general form of the scale
factor from the [35] (with B = 0, A = as , C/tns = −A,
D = 1, n = m). One can show that for the t → ts we get

1. Type III singularity if 0 < m < 1;
2. Type II singularity if 1 < m < 2;
3. w-singularity if m > 2.

Furthermore, we have two special cases: m = 1 and m =
2. The case m = 1 corresponds to a model with a constant
barotropic index w = −1/3. The case m = 2 is the most
interesting one because

ρ → 0, p → 4A

3as
�= 0, |w| → ∞.

and

d2nH

dt2n = 0,
d2n+1H

dt2n+1 ∼ An+1

an+1
s

< ∞,

at t = ts . Thus we end up with a sort of a generalization of
w-singularity with a finite non-vanishing pressure at t = ts .

In contrast to w-singularity, wc-one is a true cosmologi-
cal singularity since density (and, depending on the model,
pressure) diverges at t = ts .

It is easy to see that wc-singularity is irreproducible in the
models with a continuous scale factor a(t). To demonstrate
this, we should start by constructing a singularity of the III
that corresponds to equation of state (5). To satisfy the weak
energy condition we choose A < 0 and ρ > 0. Thus the
barotropic index has the form

w(t) = −1 + |A|ρk−1. (7)

Since for the singularity of the III type ρ → ∞ and for
the wc-singularity w → ws < ∞ it is necessary to pick
k < 1 (in the case k = 1 we have a standard cosmology
with a constant barotropic index (7) which does not result in

a singularity with a finite value of the scale factor). After one
integration one gets

log
a(t)

a0
= − ρ1−k

3(1 − k)|A| ,
so a(t) → 0 when ρ(t) → ∞. Thus in framework of the
model [43] one gets a Big Bang/Crunch singularity rather
than wc-one.

This conclusion will also hold for a general case of an
analytic scale factor. Indeed, if a(ts) = as and a(t) is a
continuous function then for a sufficiently small open neigh-
bourhood of ts

a(t) → as + μ (ts − t)ν + o
(|ts − t |β)

,

with β > ν > 0. Therefore the barotropic index will have a
form

w(t) → 2as(1 − ν)

3μν(ts − t)ν
→ ∞,

and a chance to have a wc-singularity once again slips right
through our fingers.

For further description of the models with wc-singularities
it will be useful to define a jump function:

U (t) =

⎧⎪⎨
⎪⎩

0, if t < ts
A/2, if t = ts
A, if t > ts

(8)

There are few analytic representation of (8), for example

U1(t) = A

2
lim

α→+∞

(
1 − 2

π
arctan (α(ts − t))

)
, (9)

U2(t) = lim
α→+∞

A

1 + eα(ts−t)
, (10)

U3(t) = A lim
α→+∞ 2−eα(ts−t)

. (11)

For the U1, U2, U3 one gets

U̇i (t) =
{

0, if t �= ts,

sgn A × ∞ if t = ts .
(12)

If we are to differentiate (9), (10), (11) once more, we will
immediately conclude that the second derivatives of U1(t)
and U2(t) are zero for any values of t including t = ts . For
the U3(t) the situation is a bit more complicated:

Ü3(t) =
{

0, if t �= ts,

−sgn A × ∞ if t = ts .
(13)

Let ψ = an , n > 0 so the density and the barotropic index
are

ρ = ψ̇2

n2ψ2 , w = p

ρ
= −1 + 2n

3

(
1 − ψ̈ψ

ψ̇2

)
. (14)
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Let ã(t) be a smooth function that describes the evolution
of the observable universe. For example, one can choose

ã(t) = a0

[
1 − ��

��

sinh2
(
t

T

)]1/3

, (15)

where a0 = ã(t0) is the present value of the scale factor, t0 –
the present time (i.e. time passed since the initial Big Bang
singularity at t = 0) and

t0 = 2 arctanh
√

��

3H�

, T = 2

3H�

, H� = √
�� H0,

where �� = 0.72 ± 0.04 and H0 = 72 ± 8 km/s Mpc−1

is the present value of the Hubble constant. The expression
(15) describes the universe filled with both dark matter (with
density ρM = (1 − ��)ρcri t ) and a vacuum energy.

As a next step, lets define ψ = ψ(t) = f (t) + U (t),
where f (t) = ãn(t) and U (t) is one of the functions from
the set (9), (10), (11). Since all these functions together with
their derivatives are equal to zero at t < ts , we can safely
conclude that the dynamics of a universe with the scale fac-
tor a(t) = ψ1/n(t) will be exactly the same as the dynamics
of a universe with the scale factor ã(t) at t < ts . Moreover,
since all quantum corrections depend on the higher deriva-
tives of the scale factor (for example, if the conformal fields
are dominant, one has to take into account the third derivative
of the Hubble parameter), the quantum dynamics will be the
same up to the moment t = ts where the term U (t) will be
dominant. Calculating the derivatives and substituting them
into the (14) one gets at t = ts : ρs = ∞, |ps | = ∞ but
ws = ps/ρs < ∞, which of course means that we have
a wc-singularity. At exactly the moment of singularity the
scale factor will be

as =
[
(ã(ts))

n + A

2

]1/n

< ∞,

while the barotropic index will either be

ws = −1 + 2n

3
, (16)

if U if defined as (9) and (10), or

ws = −1 + 2n( f (ts) + A/2 − f (ts) ln 2 + A ln 2/2)

3A ln 2
,

(17)

if it is defined by (11).
One can choose the parameter n (in case of (16) or n and

A together in order to conserve all the energy conditions,
excluding the dominant one which is violated at the threshold
of this singularity.

Below we consider two particular examples of cosmolog-
ical models with wc-singularities. The first one illustrates
the case when both the density and the pressure diverge

at the moment of singularity, whereas the second example
describes wc-singularity with a finite pressure.

Example 1 First we introduce a little generalization of the
function (10):

U4(β; t) = lim
α→+∞

A

1 + βeα(ts−t)
. (18)

Choosing n = 1 and using (14) one can calculate density,
pressure and parameter of EOS w. For the equation-of-state
parameter we have the following expression

ws = −1

3
− 2

3β

(β2 − 1)( f (ts) + A/(1 + β))

A
(19)

Therefore the parameter ws is explicitly determined by free
parameters A and β. Choosing

A = 2 f (ts)(β2 − 1)

2 − 3β
,

one gets

ws = 0.

One might get a bit concerned by the fact that the pressure
ps = ∞:

p = 4

3

β − 1

β + 1

ḟ (ts)

f (ts)

3β − 2

β
α, α → ∞. (20)

However, the energy density ρ ∼ α2 so it balances nicely
with the pressure and we still have ws = 0. It is interesting to
note that for any given w = w0 we can choose the parameters
A and β so that ws = w0. One interesting case occurs when

w0 = −1

3
− 2

3

f̈ (ts) f (ts)

ḟ 2(ts)
.

Therefore for any giving β we can choose the value of “jump”
A so that in the moment of singularity the equation of state
parameter is continuous.

Example 2 We have already discussed how the condition of
continuity of a(t) acts as a safeguard from appearance of
a finite-time, future singularity with ps < ∞, ρs = ∞. In
order to get one, however, it suffices to assume that a(t) has a
discontinuity of the first type. This is interesting because the
finiteness of pressure implies the finiteness of the Lagrangian
of matter.

Lets consider a following modification of (18):

U5(β, γ ; t) = lim
α→+∞

g(t)

1 + βeα(ts−t)
, (21)

where γ is a constant and the function g(t) is finite at point
t = ts . The requirement of finiteness of pressure at the
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moment of singularity leads to the following conditions on
function g(ts) and on its first derivative:

g(ts) = 2 f (ts)(β2 − 1)

2 − 3β
,

ġ(ts)

g(ts)
= 2 − 3β

2

ḟ (ts)

f (ts)
. (22)

These conditions would be satisfied if

g(t) = Aeγ (ts−t), A = 2 f (ts)
β2 − 1

2 − 3β
, γ = 3β − 2

2

ḟ (ts)

f (ts)
.

The permissible set of values for parameter β includes
2/3 < β < 1 and β < 0 (otherwise one would end up with
a meaningless result for a scale factor at the very moment of
singularity, a(ts) < 0).

In this case the value of pressure at the moment t = ts is
finite:

p(ts) = 2 − 3β

3β

(
2 f̈ (ts)

f (ts)
+ (3β − 2)

ḟ 2(ts)

f 2(ts)

)
(23)

Moreover, one can in principle choose β in such a way that
the pressure is continuous at the moment of singularity i.e.
p(ts) = p̃(ts), where p̃(ts) is the value of pressure for a
solutiona(t) = ã(t). For de Sitter solution ã(t) ∼ exp(

√
�t)

this would not be possible. But for (15) the condition of
“continuity” for pressure at t = ts reads as

tanh2
(
ts
T

)
= (1 − β)(1 + 2β)

From this relation for ts as a function of parameter β it follows
that

ts = T

2
ln

(
1 + x

1 − x

)
, x = ((1 − β)(1 + 2β))1/2 . (24)

The direct comparison of this relation with the conditions
on the value of β written above leads us to conclusion that
−1/2 < β < 0 or 2/3 < β < 1. For a cosmology
with a scalar field we therefore would have a model with
a Lagrangian that remains finite even at the very moment of
singularity.

3 Cosmological models with a survivable sudden future
singularity (SSS)

Let’s consider the case when the first derivative of a scale
factor has a jump at the moment t = ts .

ȧ(ts + ε) − ȧ(ts − ε) = ±α2a(ts), ε → 0. (25)

The question arises: what would happen with a scale factor
at t > ts? To answer this question one should first note that
this case corresponds to a sudden future singularity since the

second derivative of a scale factor diverges here: ä(ts) → ∞.
Therefore the pressure p at t = ts should also diverge while
the energy density remains finite and unaffected.

In the case of (25) the solution for a scale factor for t > ts
can be written as

a+(t) = a(ts)g(t), (26)

The condition of continuity at t = ts gives g(ts) = 1. The
condition (25) reads as

ġ(ts) − ȧ−(ts)

a−(ts)
= ±α2. (27)

Let’s choose a solution for the scale factor in form (15).
Then for every t in a sufficiently small left neighbourhood of
ts we’ll have the following approximation

a−(t ≈ ts) ≈ as − a0

(
1 − ��

��

)1/3 2

3T
sinh−1/3

(
ts
T

)

cosh

(
ts
T

)
(ts − t). (28)

The subscript “−” is added to emphasize that this is a solu-
tion for the interval 0 ≤ t < ts . According to the classifi-
cation of FLRW models presented in [44], the linear expan-
sion (28) corresponds to a case of a weak singularity. We
remind the reader that a singularity is called weak if its tidal
forces aren’t capable of disrupting a finite object falling into
it. For a weak singularity the causal geodesics are complete
and therefore the cosmological evolution in principle may
be extended beyond the threshold of singularity – hence the
name “survivable sudden singularity” (SSS).

The condition (27) for (25) reads as

ġ(ts) − 2

3T
coth

ts
T

= ±α2. (29)

The simplest case occurs when the energy density remains
continuous at t = ts . The sign of ȧ(t) changes but its abso-
lute value remains invariant. For example, one can write the
function g(t) as

g(t) = 1

sinh2/3
( ts
T

) sinh2/3
(

2ts − t

T

)
. (30)

Using the Eq. (30) with the condition (29) produces the
following equation on T (and therefore on the value of the
cosmological constant):

1

T
coth

(
ts
T

)
= 3

4
α2. (31)

This equation has a single solution at α2ts ≥ 4/3 and no
solutions at all if α2ts < 4/3. For λts → ∞ the solution
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(31) is T = 4α2/3. The solution (26) describes a shrinking
universe filled with the vacuum energy and cold dark matter.
The cosmological constant is the same as was in the solution
a−.

One can note that the model we just considered actually
coincides with the �CDM cosmology at 0 ≤ t < ts and
can therefore be used to describe and explain the data of the
astronomical observations. However, there is an interesting
twist here. While in a case of �CDM model the value of
the cosmological constant can only be determined via the
observations, in case of a model with SSS the said value can
be determined right from the equations.

Remark 2 It is actually possible to construct many solutions
that would satisfy the conditions (29) and ρ+(ts) = ρ−(ts).
For example, let’s choose

g(t) = C(t f − t)2/3. (32)

The constants C and t f can be derived from the conditions
g(ts) = 1, (29)

C =
(

3α2 − (2/T ) coth(ts/T )
)2/3

,

t f = ts +
(

3α2 − (2/T ) coth(ts/T )
)−1

. (33)

The more rigid condition ρ+(ts) = ρ−(ts) leads to the Eq.
(31), so for C and t f we end with:

C =
(

3

2

)2/3

α4/3, t f = ts + 2

3
α−2.

In contrast to (26) the solution (32) corresponds to a universe
filled with a cold dark matter only. At the moment t = t f this
universe ends its existence in the Big Crunch singularity.

It is clear that one can choose a solution for g in the form

g(t) = C

a(ts)
sinh2/3

(
t f − t

T ∗

)
(34)

with constants C , t f and T ∗. If we require continuity of
energy density at t = ts these constants can be determined
from the equations

C sinh2/3
(
t f − ts
T ∗

)
= sinh2/3

(
ts
T

)
, (35)

C

T ∗ coth
t f − ts
T ∗ = 3

4
α2. (36)

For a given C one can get the time before the singularity
t f − ts and the value 1/T ∗. The solution (34) describes the
universe filled with the cold dark matter and the vacuum
energy. But the value of the cosmological constant ends up
being different from its original pre-singularity value (for
0 < t < ts). Therefore, the following interpretation of this
type of singularity is possible. At the moment t = ts the

phase transition occurs and a certain amount of the vacuum
energy turns into the dark energy or vice versa. Although the
possibility of such transformation is quite unclear from the
physical point of view, there is also no clear physical law that
might forbid a transition like that, so such a possibility should
not be simply dismissed without at least a consideration.

4 Cosmological models with a (de)phantomization and
the jump discontinuities for the derivatives of a scale
factor

In the previous section we have explored a model that can
serve as a sort of a generalization of the classical �CDM
model. In this section we will delve even deeper along the
scale of the barotropic index straight to the weird domain of
the phantom cosmologies with w < −1. Specifically, we will
try to work out the answer to the following question: what
might be the fate of the universe filled with phantom fields
if at least one of the physical fields (say, a or one of its time
derivatives) would be allowed to have a jump discontinuity.
As we shall see, this one seemingly minor assumption might
have profound consequences for the entire evolution of the
universe, allowing it to spontaneously “dephantomize”, i.e.
safely exit the so-called phantom zone.

Interestingly, the connection between the jump discon-
tinuity of the physical fields and the problem of “dephan-
tomization” has been known at least since the paper [46]. In
it the model of a flat universe filled with a scalar field φ and
the potential V (φ) was considered. It is known that in such
a universe the density ρ and pressure p depend on the field
φ as

ρ = 1

2
φ̇2 + V (φ), p = 1

2
φ̇2 − V (φ),

and the FLRW equations for the field φ and the Hubble
parameter H are

φ̇2 = −2

3
Ḣ ,

H2 = ρ.

(37)

From the first equation of (37) it follows immediately that
if Ḣ ever crosses zero and becomes positive, the kinetic term
φ̇2 becomes negative, effectively switching the range of φ̇

from the real to the imaginary numbers. However, the second
equation from (37) stalwartly guarantees that, as long as the
absolute value of the kinetic term in ρ does not exceed the
value of potential V (φ) > 0, the physical field H will stay
real. Since the requirement Ḣ > 0 means that the universe
undergoes a super-inflation, similar to the one produced by
the phantom fields (i.e. the fields with the parameter of state
w < −1), the described phenomena – a change in the sign
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Fig. 1 The scale factor (left) and acceleration ä/a (right) as function of time for three values of c1/c2

of the kinetic term while the rest of the physical fields stays
real-valued – is called “phantomization”.

Naturally, the very real problem of a physical quantity
suddenly becoming (at least temporarily) imaginary to day
remains a highly controversial point of contention among the
cosmologists. There were a number of interesting attempts
to explain this over the years, in particular by extending the
class of physically meaningful Hamiltonians to include the
non-Hermitian ones [47,48]. However, as we shall see, there
exist a different, less radical alternative: the universe might
literally “skip over” the seemingly inevitable phantomiza-
tion, similar to a frog jumping over the obstacle.

In order to demonstrate this, let’s first assume that the
time the universe spends in the “phantom zone” is finite (the
assumption that is substantiated by the direct calculations for
many physically significant types of potential V (φ)). Then,
as [46] argues, it is actually possible to completely cut the
phantom region out of the model by taking not just one but
two different solutions of (37) a−(t) and a+(t) and sewing
together at the points when Ḣ hits zero, thus producing a
new scale factor a which will be a proper solution of (37) –
and in so doing we can actually prove that this a, its first and
second derivatives, corresponding ρ and its first derivative
and even p will all be continuous. This amazing feat is made
possible by two important facts: first, that the general solution
a = a(t) of the equation (37) always contains two constants
of integration (recall that H = ȧ/a) and, second, that the
points needed to be sewn together can be shown to be the
inflection point of the function ln a (see [46] for more details).

For example, let’s consider a particular model of the flat
universe that for large t � 0 behaves as a classical FLRW
universe filled with cold dust (w = 0) and thus have the
scale factor obey the power law a(t) ≈ t2/3. It is easy to see
from (37) that the simplest potential V that leads to such a
dynamics is:

V (φ(t)) = 2

9t2 ,

and the corresponding general solutions of the (37) for this
potential are:

a = 3

√
c1

t
+ c2t2, p = − c1

(
c1 + 4c2t3

)

3t2
(
c1 + c2t3

)2 ,

ρ =
(
2c2t3 − c1

)2

9t2
(
c1 + c2t3

)2 , c1, c2 ∈ R.

A straightforward computation shows that there indeed exists
a phantom region for t ∈ (t1, t2), where

t1 = 3

√
4 − 3

√
2

2
· c1

c2
, t2 = 3

√
4 + 3

√
2

2
· c1

c2
,

and for simplicity we have assumed that c1/c2 > 0. Now
picking two of these solutions (in our case – two different
solutions for the scale factor a) with the opposite values of
constants c1 and c2 (say, choosing them to be negative for
the first solution and positive for the second one), then per-
forming an adequate time translation (t → t + t0, where t0 is
uniquely defined by the initial conditions) on the second of
them, one would end up with two models, the first of which
at t = t1 delves into the phantom region, while the second
one effectively pops out of it. All that is left for us to do
then is to sew these two solutions together at t = t1, thereby
completely discarding the phantom regions altogether!

The results of this operation for the scale factor a, acceler-
ation parameter ä/a, density ρ, pressure p and the parameter
of state w, performed for three particular values of c1/c2, are
demonstrated on Figs. 1 and 2.

One important thing we can immediately see here is the
fact that, although ä/a, p and w are all continuous at t = t1,
their derivatives are apparently not! In fact, the direct cal-
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Fig. 2 Density ρ(t), pressure p(t) and the parameter w = p/ρ as the functions of time for three values c1/c2

culations show that no matter how one cuts and sews the
functions a− and a+ together, the third derivative of a, sec-
ond derivative of ρ and the first derivatives of ρ and w will
necessarily have jump discontinuities at t = t1. We believe
that this result is actually very telling, but we will post-
pone the discussion of its importance for the correspond-
ing Sect. 5. For now, let us just keep in mind that the jump
points in the behaviour of the physical fields can be relevant
as they are directly related to the problem of dephantomiza-
tion.

With that said, let us now look at the phantom cosmologies
in general (i.e. without any references to any scalar field) and
see whether a little jump discontinuity might bring any sort of
order there. Let’s consider for simplicity a universe filled with
just dark energy. The equation of state for the dark energy
can be written in the following form:

p = −ρ − f (ρ) , (38)

where f (ρ) is some function (we will get to the claims about
its behaviour and continuity a bit later). For the phantom
energy f (ρ) > 0. Then from the Friedmann equations, one
can get the following expression for the time variable t :

t − t0 = 1

3

∫ ρ

ρ0

dρ

ρ1/2 f (ρ)
. (39)

Let’s choose t0 = 0 as a present time. If the universe
expands, the phantom energy density starts increasing with
time (ρ > ρ0). It is interesting to ponder the question of a
possibility of dephantomization, i.e. of the equation of state
crossing the line w = −1. There are two possibilities.

Sudden dephantomization
Say, the function f (ρ) has a jump discontinuity and

changes its sign at the moment t = ts . The second derivative
of the scale factor is undefined at the very moment of a jump.
Such cosmological evolution can be called a sudden dephan-
tomization if f (ρ) changes sign from “+” to “–” (similarly,
it can be called a sudden phantomization if the change is
reversed).

For illustration pick a solution for the phantom energy
with a constant equation-of-state parameter p = w0ρ, w0 =
−1 − ε/3, ε > 0:

a−(t) = ac
(tBR − t)2/ε

, (40)
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where ac is a constant and tBR is the time of a BRS (Big
Rip singularity). But if we assume that at some moment ts
a sudden dephantomization occurs, we would instead have a
following solution for the scale factor

a+(t) = as exp(λ(t − ts)), t > ts . (41)

One can choose parameters ac, λ and ts so that both the scale
factor and its first derivative are continuous. The conditions
are:

ac
(tBR − ts)2/ε

= as,

2

ε(tBR − ts)
= λ.

For given ac and tBR one can obtain λ and as as function
of ts . The second derivative of the scale factor has a jump
discontinuity at t = ts :

ä+(ts)

as
− ä−(ts)

as
= − 2

ε(tBR − ts)2 .

The same process can also be performed for a universe filled
with both the vacuum energy and the ordinary matter after
t > ts . It would yield similar results.

Smooth dephantomization
Another interesting scenario to consider is the one of a

smooth dephantomization. This scenario is possible when
some particular value of density ρ = ρm corresponds to
f (ρm) = 0. In order for (39) to converge the function f (ρ)

in a close vicinity of the aforementioned point ρ = ρm shall
behave as g(ρ) ∼ C(ρm − ρ)α , 0 < α < 1. Then, after
reaching the separation line w = −1, two alternatives would
exist: (i) universe starts contracting and the energy density
increases. Then the energy density and the pressure (as a
function of density) will be continuous at the moment t = ts ,
but the first derivative of the scale factor and the deriva-
tive dp/dρ would be ill defined. (ii) The universe continues
to expand and the energy density decreases. The equation
of state essentially splits into two possible branches, with
the dephantomization phenomena occurring exactly at the
branch point.

Naturally, the scheme described above allows for an easy
generalization. For the equations of state with the branch
points the evolution of the universe undergoes the dephan-
tomization and the so-called Quasi-Rip epochs.

For the purpose of illustration let’s consider the following
equation of state

p =
{

−ρ − 2
3α2(ρm − ρ)1/2, a ≤ aT ,

−ρ + 2
3α2(ρm − ρ)1/2, a ≥ aT ,

(42)

where ρ ≤ ρm and aT = a0 exp(ρ
1/2
m /α2) is a value of scale

factor at which the dephantomization occurs (a0 is the scale

factor at the moment when ρ = 0). In this moment the value
of DE energy-density reaches the maximal value ρm .

For the scale factor as a function of time we have

a(t) = a0 exp

(
ρ

1/2
m

α2 (1 − cos α2t)

)
, 0 ≤ t <

π

α2 ,

At t = π/2α2 the dephantomization happens and the uni-
verse’s expansion suffers a decceleration. Note, however, that
at this moment (which corresponds to the universe crossing a
phantom “division line”) the derivative dp/dρ is ill defined.
If we choose the EoS for the dark energy at a > aT in another
form it would be the third derivative of a scale factor at t = tT
that ceases to exist. For example, pick

p = −ρ, t ≥ ts = π

2α2 .

After t = tT the universe expands according to de Sitter law

a+ = a0 exp

(
ρ

1/2
m

α2

)
exp(ρ

1/2
m (t − ts)), t ≥ tT ,

so that a third derivative of a scale factor experiences a jump:

d3a+(ts)

dt3 − d3a−(ts)

dt3 = α4ρ
1/2
m a0 exp

(
ρ

1/2
m

α2

)
.

5 Conclusion and discussion

In this article we have discussed a number of cosmological
models predicting a whole new classes of singularities. The
key factor in our derivations was the assumption that either
the scale factor or its derivatives might have a discontinu-
ity of the first type. In particular, a new interesting class of
singularities denoted as “wc-singularities” arises when the
scale factor is allowed to experience a finite jump at some
moment of time. In the resulting model the first derivative of
the scale factor diverges and so does the matter density – and
yet, despite all this, the parameter of state w = p/ρ remains
finite. Moreover, one can actually construct the cosmologi-
cal models with a finite pressure – even at the threshold of
singularity (w = 0). For a scalar field the latter corresponds
to a finite Lagrangian density at the moment of singularity.

The possibility of a finite jump of the first derivative of a
scale factor allows one to construct the cosmological mod-
els with what we have termed a “survivable sudden future”
singularity. If the model in question describes a “bouncing”
universe in which the first derivative of a scale factor changes
sign, the energy density is shown to remain continuous.

The consideration of the jump points for the higher order
derivatives of a scale factor should not be overlooked, since
they also leads to a number of interesting features. The jump
suffered by the second derivative might correspond to a sud-
den dephantomization, i.e. the moment when a parameter of
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state suddenly becomes equal to or exceed the value w = −1
(or vice versa if it is the phantomization we are after). As illus-
tration we have considered a particular cosmological evolu-
tion that instantaneously transits from the accelerated expan-
sion phase governed by the phantom energy to the phase of
a de Sitter expansion. The only possible downside would be
the fact that the pressure in such a universe shall experience
a finite jump at the very moment of aforementioned singu-
larity. This, however, appears to be a rather small price to
pay, compared to the fact that such a scenario actually allows
for the evolution of the universe (not to mention its possible
inhabitants) to be extended well beyond this singularity. The
importance of this is further emphasized if one is to recall
that the general solution of the cosmological equations for
at least some scalar field potentials cross the phantom line
only to experience the ultimate wrath of the phantom fields:
the big rip singularity (BRS). But, as we have said before, it
is possible to merge two such solutions with w > −1 com-
pletely cutting out both the phantom zone and the BRS. In
this case it is the third derivative of the scale factor that will
suffer a jump at the cut.

And so, we come to the last point of this article. As our
reader no doubt recalls, we have been resolute in answering
the first of the objections, summarized in Sect. 1, namely:
whether the inclusion of the jump points into the cosmolog-
ical considerations yields any noticeable difference to the
familiar cosmological scenarios. We entertain the hope that
this article has provided well enough material to thoroughly
refute any such doubts. However, it is the second objection we
haven’t really touched: whether these new phenomena, sum-
moned by our introduction of the jump points, have any plau-
sibility for the description of the real material universe. After
all, is it not possible that the models henceforth described
are but a mathematical trifle, a curiosity with no physical
meaning whatsoever?.. We do not think so, and we base our
reasoning on two observations. First is the phenomena of the
crossing to the phantom zone. Second one deals with recent
works that cast new doubts on the validity of the Strong Cos-
mic Censorship principle (SCC).

Let us start with the former. We already know that many
of the physically plausible scalar field potentials produce the
cosmological dynamics that at some moment of time pushes
the universe into the phantom zone, thereby changing the sign
of the kinetic term φ̇2/2. If we are to accept this, then we are
also forced to conclude that the function φ̇ actually becomes
imaginary – a conclusion that would be a very hard pill to
swallow for any physicist. It is possible to avoid this, but only
by means of literal cutting-and-pasting of two cosmological
solutions, thus eliminating both the phantom zone and its
unpleasant constituents (including, but not limited to the Big
Rip Singularity). However, as we have just discussed, such
a mathematical operation leaves a mark on the behaviour of
the scale factor: its third order derivative must experience a

jump!.. Therefore, we are facing two possibilities: either to
accept the existence of the phantom zone and treat the nega-
tivity of the kinetic term as physical (which is frankly a rather
dim perspective), or to reject it as unphysical by accepting
the possibility of a single jump discontinuity in at least some
of the cosmological variables (scale factor, pressure, density
and/or their derivatives). We believe the latter option to be
much more palatable, but we leave the final decision to our
reader.

Now let us turn to the second observation, which revolves
around the deterministic character of General Relativity The-
ory (GR). It is a known fact that the ultimate plague of any
deterministic theory is the growth of the Cauchy horizons in
its models. In particular, an emergence of a Cauchy horizon in
the solutions of the Einstein equations poses a serious threat
for the deterministic nature of GR, since the dynamics of any
object (observer) after it crossed the Cauchy horizon can not
be predicted, even in theory. Until recently the usual repar-
tee to this problem was that such a “pathologic” behaviour
shall be endemic solely to the equally “pathologic” regions
of space-time – the black holes, where it will be essentially
nullified by the Penrose’s strong cosmic censorship (SCC)
principle. However, one recent article [49] has cast a serious
doubt on this reasoning. The article in question was dedicated
to studying the massless scalar fields in the exterior of the
Reissner-Nordström-de Sitter black holes (RNdS) by means
of the computation of the quasinormal modes (QNMs). The
conclusion was nothing short of staggering: it appears that
SCC might actually be violated! If this conclusion will hold
in the subsequent inquiries, this would mean that inside of
RNdS black holes the General Relativity ceases to be deter-
ministic.

This rather unexpected discovery will undoubtedly have a
lot of ramifications for various areas of physics, but here we
are interested in just one: the effect the SCC violation might
have on the global cosmology at large. In order to understand
this effect (and to figure out why there might be any at all)
let us consider a Hubble volume of radius H−1 situated in a
flat Friedmann universe. Say, we want to calculate the total
mass of this volume. Naturally, it will be equal to the product
of the total volume, which is proportional to H−3 and the
critical density, proportional to H2. Then we ask ourselves:
what would be the gravitational radius of this Hubble vol-
ume? Amazingly, the answer is exactly H−1! This surpris-
ing fact led different researches to reason that the argumen-
tation originally developed for the black holes might actu-
ally be applicable to the observable universe; one might, for
example, study the holographic dynamics of our universe or
even derive the Friedmann equations from the holographic
principle. Furthermore, it is conceivable that similar argu-
ments might relate the observable universe with such partic-
ular species of black holes as RNdS black holes, or, alterna-
tively, that the mechanisms that allow for an SCC violations
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would also be discovered in other types of black holes (per-
haps those better “suited” to reflect the parameters of our
observable universe).3 If that would be the case, any proper
cosmological model will have to include a certain point ts
where a break in purely deterministic evolution will occur,
manifesting itself as a jump in either the scale factor of some
of its higher derivatives at the very moment t = ts .

Indeed, if we are forbidden from analytically continuing
the solution beyond the moment ts , then in order to actu-
ally describe the dynamics of the universe at that moment
we’ll have to to construct it by joining the solution a−(t) (for
t < ts) at t = ts with the solution a+(t), chosen from the
(probably infinite) class of solutions for t > ts . This very
act then would naturally produce a solution whose n-th order
derivative dna/dtn will have a jump discontinuity at t = ts .
The easiest way to visualise this would be via the already
discussed smooth dephantomization from Sect. 4. Indeed,
consider an exact solution of the Friedmann equations which
describes two consequent phantom zones. The crossing of
the phantom zone I occurs at t (I )1 (the beginning of the phan-

tom zone) and t (I )2 (when the universe ceases to be phantom),

whereas the phantom zone II will stretch from t = t (I I )1 to

t = t (I I )2 (naturally, t (I )1 < t (I )2 < t (I I )1 < t (I I )2 ). Both of
those phantom zones might produce their own Big Rip sin-

gularities, one belonging to the interval t ∈
(
t (I )1 ; t (I )2

)
, and

another at
(
t (I I )1 ; t (I I )2

)
. We can eradicate both by eliminat-

ing the corresponding phantom zones via the formalism of
dephantomization from Sect. 4. However, there is not one,
but two different ways to perform such an operation. On the
one hand, we can surgically remove two phantom zones sep-
arately from each other, first suturing the points t (I )1 with

t (I )2 , and then t (I I )1 with t (I I )2 . Then again, we can perform

one major operation, stitching together the points t (I )1 and

t (I I )2 . What kind of solutions will we end up with? In the first
case it will be a solution with two jump discontinuities of the
third order derivative of a(t), and the second solution will
have just one. By uniting them together with the Big Rips-
infested original, we therefore end up with not one or two,
but three different cosmological solutions stemming from
the identical initial conditions and, in fact, sharing exactly
he same history up to the point t = t (I )1 , yet seriously diverg-
ing there. This perfectly exemplifies the types of dynamics
one can expect at the moments of a breakage of determinacy
in the scale factor and serves as a fitting point to conclude
our discussion.

3 Of course, it has to be owned that we are still quite far from under-
standing the intriguing correspondence between the gravitational radius
of our universe and the horizon’s radius H−1. Until we actually reach
that point, the claims about the “similarities” between our universe and
the black holes of certain types shall only be acknowledged in a strictly
Pickwickian sense [50].
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