
Eur. Phys. J. C (2018) 78:535
https://doi.org/10.1140/epjc/s10052-018-6016-5

Regular Article - Theoretical Physics

Mass and angular momentum of black holes in 3D gravity theories
with first order formalism

Soonkeon Nama, Jong-Dae Parkb

Department of Physics and Research Institute of Basic Science, Kyung Hee University, Kyungheedae-ro 26, Dongdaemun-gu, Seoul 02447,
South Korea

Received: 11 April 2017 / Accepted: 25 June 2018 / Published online: 29 June 2018
© The Author(s) 2018

Abstract We apply the Wald formalism to obtain masses
and angular momenta of black holes in three dimensional
gravity theories using the first order formalism. Wald formal-
ism suggests that the entropy of a black hole can be defined
by an integration of a conserved charge on the bifurcation
horizon, and mass and angular momentum of a black hole
as an integration of some charge variation form at spatial
infinity. The action of three dimensional gravity theories can
be represented by a form including some auxiliary fields.
As well-known examples we have calculated masses and
angular momenta of some black holes in topologically mas-
sive gravity and new massive gravity theories using the first
order formalism. We have also calculated mass and angular
momentum of BTZ black hole and new type black hole in
minimal massive gravity theory with the action represented
by the first order formalism. We have also calculated the
entropy and central charges of new type black hole. Accord-
ing to AdS/CFT correspondence we suggest that the left
and right moving temperatures should be equal to the Hawk-
ing temperature in the case of new type black hole in minimal
massive gravity.

1 Introduction

For last few decades there have been paid lots of attention to
three dimensional gravity theories. Studying for three dimen-
sional gravity theories provides an arena to explain some
conceptual feature of the realistic four dimensional general
relativity and some fundamental issues of quantum gravity.
In general three dimensional spacetime of the Einstein grav-
ity theory has no propagating degrees of freedom [1]. There
only exists a black hole solution, i.e. BTZ black hole, with the
negative cosmological constant [2,3]. A well known modi-
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fication of Einstein’s gravity theory in three dimensions is
the topologically massive gravity theory (TMG) which con-
sists of Einstein–Hilbert term, cosmological constant and
the gravitational Chern–Simons term [4–6], breaking parity
symmetry with a new mass scale parameter. The lineariza-
tion of this theory describes the existence of a single massive
graviton mode. This theory also allows some black hole solu-
tions having AdS asymptotics [7,8]. There have been many
investigations for this TMG theory from the viewpoint of
AdS/CFT correspondence [9–12].

A few years ago there was a new proposition, new mas-
sive gravity (NMG) theory, which is composed of Ricci scalar
with the cosmological constant and some specific combina-
tion of Ricci scalar square and Ricci tensor square [13]. The
original aim of the introduction of higher curvature terms in
NMG theory is to present the non-linear completion of the
Pauli–Fierz theory for massive spin 2 fields. This NMG the-
ory has the parity symmetry and two propagating massive
graviton modes contrary to TMG theory. There have been
found some black hole solutions such as BTZ, warped AdS
and new type black hole in NMG theory with a negative
cosmological constant [14–18]. It is natural to consider the
existence of the holographically dual conformal field theory
(CFT) on the boundary if we could get an AdS solution in
some gravity theory [19–22]. In the viewpoint of AdS/CFT
correspondence there was an attempt to extend this NMG the-
ory to a theory having higher than square curvature terms to
be consistent with the holographic c-theorem [23–25].

In the context of AdS/CFT correspondence there exists
an inconsistent problem between any three dimensional grav-
ity theories having asymptotic AdS geometry and its dual
CFT on the boundary. The central charge of a dual boundary
CFT becomes negative whenever the spin-2 graviton modes
propagating on the bulk have positive energy, implying the
dual CFT’s non-unitarity. It is closely related to a problem
that the asymptotic AdS3 black hole solution have negative
mass value whenever the bulk graviton modes have posi-
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tive energy, so-called “bulk vs. boundary clash”. In order to
circumvent this inconsistency there were some suggestions
like the Boulware–Deser ghost [26], “Zwei Dreibein Gravity
(ZDG)” as a viable alternative to NMG [27,28]. Recently
the new “minimal massive gravity (MMG)” theory has been
suggested to resolve this inconsistency and to represent an
alternative to TMG [29]. The field equation of MMG theory
is distinguished from the TMG’s one, including the addi-
tional symmetric curvature-squared terms while preserving
the single bulk graviton mode state. In the action level this
MMG theory can be represented by a “Chern–Simons-like
formulation” [28]. The action of the MMG theory include the
torsion term coupled with an auxiliary field h which have the
same odd-parity and dimension of mass with the spin con-
nection ω, and another parity-even ‘ehh’ term considering
h-squared term with a dimensionless parameter α. For more
details see some references and therein [29–33].

In spite of its difficulties there have been many studies
to obtain mass and angular momentum of black holes on
the curved background in three dimensional gravity theo-
ries. Arnowitt–Deser–Misner (ADM) have suggested a well-
known method to give some conserved charges in gen-
eral relativity, which describes an surface integral with lin-
earized metric at infinity in asymptotically flat spacetime
[34]. Another method to obtain mass and angular momen-
tum is to consider the integration of the stress–energy ten-
sors with their counterterms on the asymptotic AdS bound-
ary surface using Brown–York formalism [11,35]. Another
formalism has evolved to an extended formalism, so-called
Abott–Deser–Tekin (ADT) formalism, including higher cur-
vature gravity theories [36–38]. Wald has proposed a method
how to calculate conserved quantities using Noether charge
and symplectic potential on the covariant phase space estab-
lishing the first law of black hole thermodynamics in any
covariant gravity theory [39–42]. The ADT charge is given
by a surface integral of an antisymmetric ADT potential at
spatial infinity, which is related to a conserved current that is
described by a linearized field equation around an associated
constant background contracted with a background Killing
vector. There was a different suggestion to obtain mass and
angular momentum in asymptotically AdS spacetime using
AdS/CFT correspondence [43]. This explains that accord-
ing to AdS/CFT correspondence mass and angular momen-
tum can be obtained by some combination of E L and ER
which express left and right energies of dual CFT. These
energies can be represented by terms of left and right central
charges and their temperatures respectively. An interesting
method to find quasi-local conserved charges can be repre-
sented using the relation between off-shell ADT potential and
linearized Noether potential [44,45]. There are many works
to obtain mass and angular momentum of black holes on AdS
background using methods mentioned above [43–53]. Also
there have been some studies about conserved charges, cen-

tral charges and the behavior of the correlation functions of
dual CFT by using the holographic renormalization method
[54,55].

One purpose of this paper is an attempt to obtain mass
and angular momentum of black holes using the first order
formalism. As we consider MMG theory, the field equation
of this theory is composed of general TMG equation with a
parameter γ and an additional symmetric tensor Jμν which
comprises symmetric squared Shouten tensors in order to
evade “bulk vs. boundary clash”. The MMG field equation
is given by

σ̄Gμν + Λ̄0gμν + 1

μ
Cμν + γ

μ2 Jμν = 0, (1)

with some shifted parameters σ̄ , Λ̄0 and a non-zero dimen-
sionless parameter γ as a function of parameter α [29]. Since
parameters σ and Λ0 are no longer sign and cosmological
constant respectively, they should be replaced by σ̄ and Λ̄0.
This equation cannot be obtained from an action for the met-
ric alone by back-substituting the equation of the auxiliary
fields h into the MMG action. So, dealing with field equa-
tions including auxiliary fields seems more correct and con-
sistent way. Most of conserved charges are described by a
surface integral having some tensors which are induced by
the variation of a metric as its integrand. Using the first order
formalism with field equations including auxiliary fields, we
can obtain the charge variation which is represented by non-
tensorial form structures as we can see below (20). The con-
served charges and central charges in MMG theory have been
calculated by Tekin using ADT method [56]. The entropy of
BTZ black hole in MMG theory have been obtained by Setare
and Adami [57] with the first order formalism according to
Tachikawa’s method [58]. Also the conserved charges in gen-
eralized minimal massive gravity (GMMG) theory [28,59]
have been obtained by Setare and Adami with the same
method [60]. There were some studies of the properties of
the linearized equation and holographic renormalization in
MMG theory [61,62]. Nowadays there was a study about
black hole entropy as the horizon Noether charge for dif-
feomorphism and local Lorentz symmetry [63]. It has also
been performed some studies for the quasi-local conserved
charges by considering the Lorentz diffeomorphism invariant
gravity theories [64–67].

In this paper we use the Wald’s method to obtain mass
and angular momentum of black holes with the first order
formalism. In this method mass and angular momentum is
just defined by an integration of the variational form at spa-
tial infinity (22). Even though it is not an exact derivation of
the charge variation form with the first order formalism, it
is enough to get mass and angular momentum of the three
dimensional gravity theories. This method seems to work
well in cases of having some boundaries at infinity such as
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asymptotically Minkowski and AdS spacetime. We consider
well-known three dimensional gravity theories and deal with
field equations including auxiliary fields using the first order
formalism. We calculate well-known results of mass and
angular momentum of black holes as some examples. Next
we calculate mass and angular momentum of BTZ black hole
and new type black hole of MMG theory as a new result.

Another purpose of this paper is to find the thermodynamic
relation of new type black hole in MMG theory. The action of
the three dimensional gravity theories can be represented by
an integral of a Lagrangian three-form L constructed as a sum
of the wedge products of N “flavors” of Lorentz vector valued
one-form fields, {ar |r = 1, . . . , N }, such as the dreibein
ea , the spin-connection ωa and some proper auxiliary fields
ha, f a etc. to get a set of equivalent first-order equations. In
this formulation the “Chern–Simons-like” Lagrangian takes
the form [28,33]

LCSL = 1

2
grsa

r · das + 1

6
frst a

r · (as × at ), (2)

where grs is a symmetric invertible constant flavor metric
and frst defines a totally symmetric coupling constants on
the flavor space. The dot and cross represent the wedge prod-
uct including the contraction of Lorentz vectors with ηab and
εabc respectively. In order to get the boundary central charges
of new type black hole in MMG theory, we investigate the
Poisson brackets of the primary constraint functions by using
the Hamiltonian analysis [28,29]. Furthermore, we calculate
the entropy of new type black hole using the charge vari-
ation form including the gravitational Chern–Simons term
[58] with the first order formalism. According to the pre-
scription of the AdS/CFT , the entropy of a black hole can
be interpreted in terms of the quantities of the dual CFT side
through the Cardy formula [68,69]. It is also well known that
the conserved charges of the bulk gravity are related with the
energies EL and ER of the dual CFT which is represented in
terms of left and right moving central charges and square of
temperatures. Comparing the entropy and mass of new type
black hole with those of the Cardy formula and the charge
relations in accordance with AdS/CFT correspondence, we
should suggest that the left and right moving temperatures of
the dual CFT are equal to the Hawking temperature of new
type black hole.

This paper is organized as follows. In Sect. 2, we briefly
review about Wald’s method to define entropy, mass and
angular momentum of a black hole [39–42]. In Sect. 3, as
some examples we compute masses and angular momenta
of some black holes in TMG and NMG theories with the
charge variation form obtained by using the first order for-
malism. In Sect. 4, we obtain mass and angular momentum
of BTZ black hole and mass of new type black hole in MMG
theory as some new results. In Sect. 5, we calculate the cen-

tral charges and entropy of new type black hole. From these
results, we obtain Smarr relation between mass and entropy
of new type black hole. In Sect. 6, We summarize our results
and add some comments. Appendices are attached to the last
to explain some useful formulae to calculate mass and angu-
lar momentum of the warped AdS black hole in TMG theory.

2 Brief review of the Wald formalism

In this section we briefly survey the Wald formalism which
has established entropy, mass and angular momentum of
black holes. According to this formalism, black hole entropy
is the integral of the diffeomorphism Noether charge associ-
ated with the horizon-generating Killing field which vanishes
on the Killing horizon [39]. If there exists a black hole solu-
tion with a Killing vector ξ which generates a local symmetry
of the solution, then the corresponding canonical mass and
angular momentum of the solution are well defined at spatial
infinity.

Consider a diffeomorphism invariant theory defined by a
Lagrangian n-form L , where n is the spacetime dimension.
The variation δL is induced by a field variation δφ

δL = Eφδφ + dΘ(φ, δφ). (3)

where φ means the dynamical fields. The Eφ describes the
field equation Eφ = 0 which is constructed from the dynam-
ical variables φ and their first derivatives, and (n − 1)-form
Θ is the symplectic potential which is constructed by the
dynamical fields and their first variations. The (n − 1)-form
symplectic current is defined by the anti-symmetrized field
variation of Θ ,

ω(φ, δφ1, δφ2) = δ1Θ(φ, δ2φ) − δ2Θ(φ, δ1φ). (4)

Then the symplectic form can be defined by an integration
over a Cauchy surface Σ in globally hyperbolic spacetime

Ω(φ, δ1φ, δ2φ) =
∫

Σ

ω(φ, δ1φ, δ2φ), (5)

where this surface is the field configuration space with unper-
turbed solution.

Let ξ be a vector field on spacetime manifold and consider
the variation induced by a diffeomorphism generated by a
vector field ξ ,

δξφ = £ξφ. (6)

Then diffeomorphism invariant Lagrangian implies that the
variation of the Lagrangian is equal to the Lie derivative of
the Lagrangian under this variation,
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δξ L = £ξ L = diξ L . (7)

Because the above equation is a total derivative, it shows that
the vector fields ξ on a spacetime generate infinitesimal local
symmetries. According to the Eq. (3) under this variation a
Noether current (n − 1)-form Jξ , which is defined by

Jξ = Θ(φ, £ξ φ) − iξ L , (8)

can be associated to each vector ξa . Applying exterior deriva-
tive to this current gives

d Jξ = dΘ(φ, £ξ φ) − diξ L = −Eφ£ξφ. (9)

Therefore the current Jξ is closed when equations of motion
are satisfied, i.e. Eφ = 0. It means that the Noether current
can be represented by the exact form,

Jξ = dQξ , (10)

where (n − 2)-form Qξ is constructed from the fields and
derivatives that are appearing in Lagrangian with ξ .

In order to derive the first law of black hole mechanics for
the perturbations of a black hole in an arbitrary diffeormor-
phism covariant theory, we investigate an identity at first.
Consider φ to be any solution of the equations of motion.
Let δφ be an arbitrary variation of the dynamical field off
the solution φ. Then we survey the variation of the Noether
current

δ Jξ = δΘ(φ, £ξφ) − iξ δL . (11)

Here we put ξ to be an arbitrary fixed vector field in this
variation, i.e. δξ = 0. With (3),

iξ δL = iξ (Eφδφ + dΘ(φ, δφ))

= £ξΘ(φ, δφ) − diξΘ(φ, δφ),

where we apply the equations of motion, Eφ = 0. Therefore
the relation (11) becomes

δ Jξ = δΘ(φ, £ξφ) − £ξΘ(φ, δφ) + diξΘ(φ, δφ). (12)

The phase space is the space of solutions to the field equa-
tion in the covariant framework. The variation δξφ satisfying
equations of motion describes the flow vector of the phase
space corresponding to the 1-parameter family of diffeomor-
phisms generated by ξ . Then the variation of the Hamiltonian
Hξ conjugate to ξ is related to the symplectic form (5)

δHξ =
∫

Σ

ω(φ, δφ, £ξ φ), (13)

where Σ is a Cauchy surface. If ξ is a symmetry of all dynam-
ical fields, i.e. £ξφ = 0, and their variation δφ satisfy the

linearized equation. then the symplectic current is given by

ω(φ, δφ, £ξ φ) = δΘ(φ, £ξ φ) − £ξΘ(φ, δφ)

= δ Jξ − diξΘ(φ, δφ) = δdQξ − diξΘ.

Substituting the above formula into (13) then the variation of
the Hamiltonian becomes

δHξ =
∫

Σ

δdQξ − diξΘ

=
∮

∂Σ

δQξ − iξΘ, (14)

where the integral over ∂Σ . Because of £ξ φ = 0 the symplec-
tic current vanishes. So, Eq. (13) implies δHξ = 0. Therefore
the last line of the above formula becomes

0 =
∮

∂Σ

δQξ − iξΘ. (15)

Now consider a stationary black hole solution with a Killing
field ξ which generates a Killing horizon and vanishes on a
bifurcation surface H. If we choose the hypersurface Σ to
have its outer boundary at spatial infinity and interior bound-
ary at H, then the variational identity can be expressed with
two boundary terms

∫
H

δQξ =
∫

∞
δQξ − iξΘ. (16)

If we assume that the asymptotic symmetries have been
specified by the time translational Killing field and axial rota-
tional one with the horizon angular velocity ΩH, i.e.

ξ = ∂

∂t
+ ΩH

∂

∂φ
, (17)

then the outer boundary integral of (16) can be defined as
the total energy and the angular momentum. Comparing (16)
with the first law of thermodynamics

TH δS = δE − ΩHδJ , (18)

the left hand side gives the black hole entropy as the form

Sent = 2π

κ

∫
H

Qξ . (19)

If we re-express the charge variation as a form

δχξ = δQξ − iξΘ, (20)

the right hand side of (16) gives the suitable definition of the
total energy and the angular momentum up to constant, i.e.

δE =
∫

∞
δχξ

[
∂

∂t

]
, δJ = −

∫
∞

δχξ

[
∂

∂φ

]
. (21)
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In this paper we intend to deal with three dimensional gravity
theories. So we define the variation of the mass and angu-
lar momentum of a black hole in three dimensional gravity
theories as the form

δM = − 1

8πG

∫
∞

δχξ

[
∂

∂t

]
, δJ = 1

8πG

∫
∞

δχξ

[
∂

∂φ

]
,

(22)

where 1/8πG is a constant for three dimensional gravity
theories.

3 Masses and angular momenta of black holes in three
dimensional gravity theories: examples

3.1 Topologically massive gravity

We consider diffeomorphism invariant Lagrangians in three
dimensional gravity theories with the first order orthonor-
mal frame. In these cases the Lagrangian can be written in
terms of local Lorentz vector-valued 1-form frame fields ea

and connection 1-forms ωa
b. The spacetime metric tensor is

denoted by the relation

gμν = ηabe
a
μe

b
ν , (23)

where ηab is the Minkowski metric. The connection 1-form
ωa

b can be expressed by a dualised form ωa as

ωa = 1

2
εabcω

bc. (24)

Both ea and ωa are considered as independent variables to be
varied separately in the action. The action is represented by
the integral of the Lagrangian 3-form L which can be con-
structed from wedge products of the frame fields ea and con-
nections ωa . Firstly we consider three-dimensional gravita-
tional Chern–Simons theory or Topologically Massive Grav-
ity theory (TMG). The Lagrangian form of this theory (TMG)
is given by

L = −σe · R + Λ0

6
e · e × e

+ 1

2μ

(
ω · dω + 1

3
ω · ω × ω

)
+ h · T (ω), (25)

where Λ0 is a cosmological constant and σ is a sign. This
action is constructed with three Lorentz vector-valued 1-
forms (e, ω, h) and local Lorentz covariant torsion T (ω) and
curvature 2-form R(ω) which are defined by

T (ω) = De = de + ω × e, R(ω) = dω + 1

2
ω × ω.

(26)

In the action Lorentz indices a, b, c, . . . are suppressed, and
contractions of ηab and εabc with wedge products are repre-
sented by the sign ‘·’ and ‘×’ respectively. The third term of
the action with the factor 1/μ describes the ‘Local Lorentz
Chern–Simons’ term. The auxiliary field h is a Lagrange
multiplier for the torsion-free constraint and has the same
parity and dimension of ω.

The variation of the action is given by

δL = δe ·
(

− σ R + Λ0

2
e × e + Dh

)

+ δω ·
(

− σDe + 1

μ
R + e × h

)
+ δh · T (ω)

+ d

(
− σδω · e + 1

2μ
δω · ω + δe · h

)

= Eφδφ + dΘ, (27)

where D is the Lorentz covariant exterior derivative. From
the above variation we obtain equations of motion as follows

− σ R + Λ0

2
e × e + Dh = 0,

− σDe + 1

μ
R + e × h = 0,

T (ω) = De = 0, (28)

and symplectic potential

Θ = −σδω · e + 1

2μ
δω · ω + δe · h. (29)

Following the Wald’s formalism, we can find Noether current
using (8),

jξ = dQξ = Θ(φ, £ξ φ) − iξ L

= d

(
− σ iξω · e + 1

2μ
iξω · ω + iξ e · h

)
. (30)

So, from the above equation we can read the Noether charge

Qξ = −σ iξω · e + 1

2μ
iξω · ω + iξ e · h. (31)

From (16) we can calculate the following variation form

δχξ = δQξ − iξΘ = −σ(iξω · δe + δω · iξ e)
+ 1

μ
iξω · δω + iξ e · δh + δe · iξh. (32)

Now we consider a general metric form

ds2 = − f (r)2dt2 + dr2

f (r)2 + r2(dφ + N (r)dt)2. (33)
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In order to apply the first order orthonormal frame formalism
to this theory we need to take 1-form frame fields as follows,

e0 = f (r)dt, e1 = dr

f (r)
, e2 = r(dφ + N (r)dt). (34)

We firstly consider the third equation of (28) which means the
torsion free condition in (26). For convenience we express
functions f (r) and N (r) as the abbreviated form without r .
Then we can find connection 1-forms ωa ,

ω0 = 1

2
r N ′e0 + f

r
e2,

ω1 = 1

2
r N ′e1,

ω2 = −1

2
r N ′e2 + f ′e0, (35)

where ‘′’ denotes the differentiation of a function with respect
to r . It is easy to find curvature 2-forms and auxiliary field
ha by substituting (34), (35) into the definition of curvature
2-form (26) and second equation of (28).

For the first example we now consider BTZ black hole.
The metric of BTZ black hole with Λ0 = − 1

�2 is given by
the metric form (33) with functions

f (r) =
√

(r2 − r2+)(r2 − r2−)

�r
, N (r) = −r+r−

�r2 . (36)

Using the above functions (36), the auxiliary fields ha can be
simply expressed as

ha = 1

2μ�2 e
a . (37)

Now in order to compute mass and angular momentum of
a black hole we consider the charge variation (20). Using
the above formula (37), we can rephrase the charge variation
form (32) as follows

δχξ = −σ iξω · δe − σδω · iξ e
+ 1

μ
iξω · δω + 1

μ�2 iξ e · δe. (38)

The mass and angular momentum of a black hole is defined
by (22) on the boundary, i.e. spatial infinity. To compute the
charge variation form for mass and angular momentum of
a black hole we examine the interior products and varia-
tions of frame fields and connection 1-forms. Since we are
now dealing with the variation of Hamiltonian (14) at spatial
boundaries on the Cauchy surface, we only need to consider
dφ component to compute the charge variation form δχξ .
The variation forms of connection 1-forms to be related to
dφ component are given by

δω0 = δ f dφ, δω2 = −1

2
r2δN ′dφ. (39)

There are no variation forms of the frame fields related to dφ

component. Therefore the charge variation for a black hole
mass in TMG becomes

δχξ

[
∂

∂t

]
= σ

(
f δ f + 1

2
r3NδN ′

)
dφ

− 1

μ

{
f

(
N + 1

2
r N ′

)
δ f

+1

2
r2

(
f f ′ − 1

2
r2NN ′

)
δN ′

}
dφ. (40)

The variation of frame fields ea and connections ωa should
be performed by the coordinate of the horizons r+ and r−
since these horizon coordinates behave as physical quanti-
ties. In other words, variation means the difference between
solutions and background. Then from the definition of (22)
we can get the variation formula for the mass,

δM = − 1

8πG

∫
∞

δχξ

[
∂

∂t

]

= 1

4G

{
σ

�2 (r+δr+ + r−δr−) + 1

μ�3 (r+δr− + r−δr+)

}
.

(41)

Integrating and considering the total variation of the right
hand side of the above formula, we can get the mass of BTZ
black hole in TMG theory,

M = σ
r2+ + r2−

8G�2 + r+r−
4Gμ�3 , (42)

which is the same result in [7,8].
In order to get the angular momentum we need to consider

the asymptotic rotational symmetry, i.e. taking the Killing
vector as ξ = ∂

∂φ
. Following the same procedure with the

case of the mass the charge variation (38) with this rotation
Killing vector at spatial infinity is given by

δχξ

[
∂

∂φ

]
=

{
σ

1

2
r3δN ′ + 1

μ

(
− f δ f + 1

4
r4N ′δN ′

)}
dφ.

(43)

Substituting this form into the definition (22) for the angular
momentum formula, then we obtain

δJ = 1

8πG

∫
∞

δχξ

[
∂

∂φ

]

= 1

4G

{
σ

�
(r+δr− + r−δr+) + 1

μ�2 (r+δr+ + r−δr−)

}
.

(44)

Performing the integral and considering the total variation
of the above formula, the angular momentum of BTZ black
hole is given by
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J = σ
r+r−
4G�

+ r2+ + r2−
8Gμ�2 . (45)

These results are also the same with [7,8]. The charge vari-
ation (43) can be re-expressed by a total variation form. So,
we can represent the charge form χξ as

χξ

[
∂

∂φ

]
=

{
σ

1

2
r3N ′ + 1

2μ

(
− f 2 + 1

4
r4N ′2

)}
dφ. (46)

This value should be computed at spatial infinity. The part
of this value with negative power of r vanishes as r goes
to infinity. r2 term does not give any contribution to (43)
because there is no r+ and r− in this coefficient and this term
only means AdS background. So, considering the constant
term is enough to compute the charge form χξ . Then we can
obtain the same result (45) with the charge definition (22)
and (46).

Now we investigate the space-like warped AdS3 black
hole solution as the second example [43,53]. The metric of
the space-like warped black hole solution is given by

ds2 = −N (r)2dt2 + �4dr2

4R(r)2N (r)2

+ �2R(r)2(dθ + N θ (r)dt)2, (47)

where

R(r)2 = r

4

(
3(ν2 − 1)r + (ν2 + 3)(r+ + r−)

−4ν

√
r+r−(ν2 + 3)

)
,

N (r)2 = �2(ν2 + 3)(r − r+)(r − r−)

4R(r)2 ,

N θ (r) = 2νr − √
r+r−(ν2 + 3)

2R(r)2 . (48)

From the metric we can easily read off the 1-form frame fields

e0 = N (r)dt, e1 = �2dr

2R(r)N (r)
,

e2 = �R(r)(dθ + N θ (r)dt), (49)

and 1-form connections can be calculated using the third
equation of (28), i.e. torsion-free conditions, as follows

ω0 = R2N θ ′

�
e0 + 2N R′

�2 e2,

ω1 = R2N θ ′

�
e1,

ω2 = − R2N θ ′

�
e2 + 2RN ′

�2 e0. (50)

Concrete forms of curvature 2-forms and auxiliary fields for
the space-like warped AdS3 black hole are relegated to the
Appendix A.

In order to find the black hole mass we consider ξ = ∂
∂t ,

then non-vanishing interior products and variations of the
frame fields, connections and auxiliary fields can be repre-
sented by Appendix B. Then the charge variation δχξ for the
mass of the warped AdS3 black hole is given by

δχξ

[
∂

∂t

]
= −σ

{(
− R2N θ ′

�
�RN θ + 2RN ′

�2 N

)
�δR

−N
2

�
δ(N RR′) − �RN θ δ(R3N θ ′)

}
dθ

− 1

μ

{(
R2N θ ′

�
N + 2N R′

�2 �RN θ

)
2

�
δ(N RR′)

+
(

− R2N θ ′

�
�RN θ + 2RN ′

�2 N

)
δ(R3N θ ′)

}
dθ

+
[
�RN θ

{
�

2μ

(
ν2

�2 + 3(ν2 − 1)

�2

)
δR + �

μ
δ(FR)

}

+
{

1

2μ

(
ν2

�2 + 3(ν2 − 1)

�2 + 2F

)
�RN θ

+ 1

μ
GN

}
�δR + N

�

μ
δ(GR)

]
dθ. (51)

In this theory, the mass of the black hole can be obtained
using the formula

δM = − 1

8πG�

∫
∞

δχξ

[
∂

∂t

]

= 1

8πG�

∫
∞

�(ν2 + 3)

6

{
δr+ + δr−

−1

ν

√
r+r−(ν2 + 3)

2r+r−
(r−δr+ + r+δr−)

}
dθ,

where we replace the gravitational constant G with G� in the
definition (22). The metric for the warped AdS3 black hole
(47) is written as the form with dimensionless coordinates.
Only the cosmological constant � has a length dimension.
So, we should change these coordinates to be dimensionful
to give the correct result. Therefore integrating the above
formula we can get

M = (ν2 + 3)

24G

(
r+ + r− − 1

ν

√
r+r−(ν2 + 3)

)
, (52)

which is the same result with [43].
To find the black hole angular momentum we need to

consider ξ = ∂
∂θ

. Using the Appendix B, the charge variation
is given by

δχξ

[
∂

∂θ

]
= −σ

{
− R2N θ ′

�
�R�δR − �Rδ(R3N θ ′)

}
dθ

+ 1

μ

{
− 2N R′

�2 �R
2

�
δ(N RR′) + R2N θ ′

�
�Rδ(R3N θ ′)

}
dθ

+
[
�R

{
�

2μ

(
ν2

�2 + 3(ν2 − 1)

�2

)
δR + �

μ
δ(FR)

}
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+ 1

2μ

(
ν2

�2 + 3(ν2 − 1)

�2 + 2F

)
�R�δR

]
dθ. (53)

Since the above formula can be represented by the total vari-
ation form, we simplify this form to become a charge form

χξ

[
∂

∂θ

]
=

{
σ�R4N θ ′ − 2

μ�2 (N RR′)2 + 1

2μ
(R3N θ ′)2

+ �2

2μ

(
ν2

�2 + 3(ν2 − 1)

�2

)
R2 + �2

μ
R2F

}
dθ. (54)

When r goes to infinity the charge form (54) can be expressed
as a polynomial of r with r2 term as its highest order. The
coefficients of r2 and r vanish to leave the constant term
only. Substituting all functions into the above form with σ =
1, 1

μ
= �

3ν
, we obtain

χξ

[
∂

∂θ

]
= −�ν(ν2 + 3)

24

[(
r+ + r− − 1

ν

√
r+r−(ν2 + 3)

)2

− (5ν2 + 3)

4ν2 (r+ − r−)2
]
dθ. (55)

From the definition of the angular momentum Eq. (22), we
can get the angular momentum of the warped AdS3 black
hole

J = −�ν(ν2 + 3)

96G

[(
r+ + r− − 1

ν

√
r+r−(ν2 + 3)

)2

− (5ν2 + 3)

4ν2 (r+ − r−)2
]
. (56)

To obtain the above result we also consider the change of the
coordinate to be dimensionful. So, we change the gravita-
tional constant G to G�. Because these coordinates changes
the angular velocity’s dimension, so in order to have correct
dimension we need to change the angular velocity with 1/�

and rotational Killing vector with �. Then we can obtain the
correct angular momentum (56) which is the same result with
[43].

3.2 New Massive Gravity

The Lagrangian of New Massive Gravity (NMG) theory can
be represented by the first order form

LNMG = −σe·R+Λ0

6
e·e×e+h·De− 1

m2 f ·
(
R+1

2
e× f

)
,

(57)

where h and f are auxiliary fields and m is a mass parameter
[70,71]. The variation of NMG Lagrangian is given by

δL = d

(
− σδω · e − 1

m2 δω · f + δe · h
)

+ δh · De − 1

m2 δ f · (R + e × f )

+ δω ·
(

− σDe + h × e − 1

m2 Df

)

+ δe ·
(

− σ R + Λ0

2
e × e + Dh − 1

2m2 f × f

)

= Eφδφ + dΘ. (58)

From the above variation we can obtain equations of motion
as follows

De = 0, R + (e × f ) = 0, Df − m2(e × h) = 0,

Dh − σ R + Λ0

2
e × e − 1

2m2 f × f = 0v (59)

The symplectic potential of NMG Lagrangian can be read
off from the variation (58)

Θ = − σδω · e − 1

m2 δω · f + δe · h. (60)

Using the definition of the Noether current we can find the
Noether charge as

Qξ = − σ iξω · e − 1

m2 iξω · f + iξ e · h. (61)

From the above two results, i.e. symplectic potential and
Noether charge, we can calculate the charge variation

δχξ = −σ(iξω · δe + iξ e · δω) − 1

m2 (iξω · δ f + iξ f · δω)

+ iξ e · δh + iξh · δe. (62)

Firstly, we investigate BTZ black hole solution in NMG the-
ory. BTZ black hole is a solution of NMG theory with a
cosmological constant Λ0 which appears (64) below. So, we
can use the same metric form with (33), functions (36) and
the same frame 1-form fields (34). Using second and third
equations of motion of (59), we can get two auxiliary fields

f a = 1

2�2 e
a, ha = 0. (63)

With auxiliary fields solution (63) a parameter condition can
be appeared by solving the fourth equation of (59)

σ

�2 + Λ0 − 1

4m2�4 = 0. (64)

We can re-express the symplectic potentialΘ and the Noether
charge Qξ by inserting auxiliary fields (63) into (62) and then
calculate the charge variation as follows
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δχξ = −
(

σ + 1

2m2�2

)
(iξω · δe + iξ e · δω). (65)

Performing the interior products and variations of frame 1-
form fields and connection 1-forms with ξ = ∂

∂t we obtain

δχξ

[
∂

∂t

]
=

(
σ + 1

2m2�2

)(
f δ f + 1

2
r3NδN ′

)
dφ, (66)

as r goes to infinity. From the definition of the black hole
mass (22) we can get

δM = − 1

8πG

∫
∞

δχξ

[
∂

∂t

]

= 1

4G�2

(
σ + 1

2m2�2

)
(r+δr+ + r−δr−).

Therefore we can obtain the mass of BTZ black hole in NMG
theory,

M = r2+ + r2−
8G�2

(
σ + 1

2m2�2

)
. (67)

To find the angular momentum we consider the Killing vector
ξ = ∂

∂φ
. Then as r goes to infinity, the charge variation

becomes

δχξ

[
∂

∂φ

]
=

(
σ + 1

2m2�2

)
· 1

2
r3δN ′dφ. (68)

Applying the above formula to the definition of the angular
momentum (22), we can get

δJ = 1

8πG

∫
∞

δχξ

[
∂

∂φ

]

= 1

4G�

(
σ + 1

2m2�2

)
(r−δr+ + r+δr−).

Therefore we can obtain the angular momentum of the BTZ
black hole in NMG theory,

J = r+r−
4G�

(
σ + 1

2m2�2

)
. (69)

Now we investigate the new type black hole solution which
appears as another solution in NMG theory [14]. The metric
form of this black hole is given by

ds2 = − f (r)2dt2 + dr2

f (r)2 + r2dφ2, (70)

where

f (r) =
√

(r − r+)(r − r−)

�
. (71)

This non-rotating new type black hole solution is represented
by the general form (33) with N (r) = 0. Solving equations
of motion in (59), then we can find

e0 = f (r)dt, e1 = dr

f (r)
, e2 = rdφ, (72)

ω0 = f

r
e2, ω1 = 0, ω2 = f ′e0. (73)

Solving the second and third equations of motion in (59) with
(71), we can simply determine the auxiliary fields f a

f 0 = 1

2�2 e
0, f 1 = 1

2�2 e
1, f 2 = 1

2�2

(
1−r+ + r−

r

)
e2,

(74)

and all auxiliary fields ha vanish.
So, the charge variation (62) with the condition, ha = 0,

becomes

δχξ = −σ(iξω · δe + iξ e · δω)

− 1

m2 (iξω · δ f + iξ f · δω)v (75)

For the computation of the charge variation we need to get the
variations of frame fields, connection 1-forms and auxiliary
fields. The non-vanishingdφ components of useful variations
are given by

δω0 = δ f dφ, δ f 2 = δ( f f ′)dφ. (76)

All variations of the frame fields related to dφ component
vanish. Because we are dealing with the non-rotating new
type black hole, we only consider the computation of the
black hole mass. Performing the calculation of (75) for the
Killing vector ξ = ∂

∂t with the function (71), we can get the
charge variation

δχξ

[
∂

∂t

]
= − 1

2�2

(
σ + 1

2m2�2

)

·[(r − r−)δr+ + (r − r+)δr−]dφ

+ 1

4m2�4 (2r − r+ − r−)(δr+ + δr−)dφ.

Solving equations of motion in (59) we can get two parameter
conditions

σ

�2 + Λ0 − 1

4m2�4 = 0, − σ

2�2 + 1

4m2�4 = 0. (77)

From above conditions we should take a relation σ =
2m2�2 = 1, then the other condition gives a relation Λ0 =
− 1

2�2 . So we can rearrange the charge variation such as

δχξ

[
∂

∂t

]
= − 1

2�2 (r+ − r−)(δr+ − δr−)dφ. (78)
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Then the variation of the mass of the black hole with the
definition (22) is given by

δM = − 1

8πG

∫
∞

δχξ

[
∂

∂t

]
= 1

8G�2 (r+−r−)(δr+−δr−).

(79)

So we can obtain the mass of new type black hole

M = 1

16G�2 (r+ − r−)2. (80)

This result has been computed in [49,50,55].

4 Masses and angular momenta of black holes in
Minimal Massive Gravity theory

The Lagrangian of Minimal Massive Gravity (MMG) theory
is given by

LMMG = LTMG + α

2
e · h × h

= −σe · R + Λ0

6
e · e × e + h · T (ω)

+ 1

2μ

(
ω · dω + 1

3
ω · ω × ω

)
+ α

2
e · h × h,

(81)

where the gravitational Chern–Simons term and some addi-
tional term with auxiliary fields ha are included [29]. In order
to get equations of motion we investigate the variation of the
MMG Lagrangian, then the variation becomes

δLMMG = δLTMG + α

2
δ(e · h × h)

= δe ·
(

− σ R(ω) + Λ0

2
e × e + D(ω)h + α

2
h × h

)

+ δω ·
(

1

μ
R(ω) − σT (ω)

+ e × h

)
+ δh · (T (ω) + αe × h)

+ d

(
− σδω · e + 1

2μ
δω · ω + δe · h

)

= Eφδφ + dΘ.

From the above variation we can simply read equations of
motion as follows

T (ω) + αe × h = 0, R(ω) + μe × h − σμT (ω) = 0,

− σ R(ω) + Λ0

2
e × e + D(ω)h + α

2
h × h = 0. (82)

We can also read the symplectic potential Θ from the vari-
ation of the Lagrangian and calculate Noether charge using
(8),

Θ = − σδω · e + 1

2μ
δω · ω + δe · h,

Qξ = − σ iξω · e + 1

2μ
iξω · ω + iξ e · h.

The first equation of (82) does not guarantee the torsion free
condition in this theory. So we should make these equations
torsion free through shifting connections. Shifting connec-
tions ω to new dual spin-connections Ω = ω + αh, then
equations of motion (82) become

T (Ω) = 0,

R(Ω) + αΛ0

2
e × e + μ(1 + σα)2e × h = 0,

D(Ω)h − α

2
h × h + σμ(1 + σα)e × h + Λ0

2
e × e = 0.

(83)

Assuming the frame 1-form fields ea is invertible and 1 +
σα �= 0 then we can find the field equations condition,

e · h = 0, (84)

i.e. symmetric condition for hμν , using the following identi-
ties,

D(Ω)T (Ω) ≡ R(Ω) × e, D(Ω)R(Ω) = 0.

Noether charge and symplectic potential can be rearranged
using connection shifting Ω = ω + αh as follows

Qξ = −σ iξΩ · e + 1

2μ
iξΩ · Ω + (1 + σα)iξ e · h

− α

2μ
(iξΩ · h + iξh · Ω − αiξh · h),

Θ = −σδΩ · e + 1

2μ
δΩ · Ω + (1 + σα)δe · h

− α

2μ
(δΩ · h + δh · Ω − αδh · h). (85)

To get the above shifted symplectic potential we used the
relation δh · e = δe · h from the condition (84).

4.1 BTZ black hole in MMG

From now we investigate BTZ black hole which is a solution
of MMG theory. The metric of this black hole is the same with
(33) and frame 1-form fields are also the same with (34). To
find the shifted connection 1-form Ω we use the first equation
of (82), i.e. T (Ω) = de+Ω × e = 0, then these connection
1-forms are given by the same form with (35). Solving the
second equation of motion in (83) with functions (36) we can
simply represent the auxiliary fields

ha = − 1

μ(1 + σα)2

(
αΛ0

2
− 1

2�2

)
ea = −λea, (86)
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where we replace the constant part with λ for convenience.
Solving third equation of (83) we can find a parameter con-
dition

αλ2 + 2σμ(1 + σα)λ − Λ0 = 0. (87)

Using the above result ha = −λea , Noether charges and
symplectic potential can be reduced to

Qξ = −σ iξΩ · e + 1

2μ
iξΩ · Ω − λ(1 + σα)iξ e · e

+ λ
α

2μ
(iξΩ · e + iξ e · Ω + αλ iξ e · e),

Θ = −σδΩ · e + 1

2μ
δΩ · Ω − λ(1 + σα)δe · e

+ λ
α

2μ
(δΩ · e + δe · Ω + αλ δe · e). (88)

Therefore we can represent the charge variation form δχξ

using above Noether charge and symplectic potential

δχξ = −
(

σ − λ
α

μ

)
(iξΩ · δe + iξ e · δΩ) + 1

μ
iξΩ · δΩ

−
(

2λ(1 + σα) − λ2 α2

μ

)
iξ e · δe. (89)

From now we follow the procedure for BTZ black hole
in TMG and NMG. The non-vanishing variation forms of
shifted connection 1-forms related to dφ component are
given by the same results with (39). All variations of the frame
fields related to dφ are vanished. Performing the calculation
(89) for the Killing vector ξ = ∂

∂t , the charge variation for
BTZ black hole mass in MMG becomes

δχξ

[
∂

∂t

]
=

(
σ − λ

α

μ

)(
f δ f + 1

2
r3NδN ′

)
dφ

− 1

μ

{
f

(
N + 1

2
r N ′

)
δ f + 1

2
r2

(
f f ′ − 1

2
r3NN ′

)
δN ′

}
dφ.

(90)

Applying this result to the definition (22), we can obtain the
variation of black hole mass

δM = − 1

8πG

∫
∞

δχξ

[
∂

∂t

]

= 1

4G

{
1

�2

(
σ − λ

α

μ

)
(r+δr+ + r−δr−)

+ 1

μ�3 (r−δr+ + r+δr−)

}
. (91)

Substituting the λ value (86) into the above formula, then we
obtain the mass of BTZ black hole in MMG theory,

M = r2+ + r2−
8G�2

(
σ + α(1 − αΛ0�

2)

2μ2�2(1 + σα)2

)
+ r+r−

4Gμ�3 . (92)

To find the angular momentum of BTZ black hole in MMG
theory we consider the charge variation form for the Killing
vector ξ = ∂

∂φ
. Then the computation of the charge variation

form (89) is given by

δχξ

[
∂

∂φ

]
=

{
1

2

(
σ − λ

α

μ

)
r3δN ′

+ 1

μ

(
− f δ f + 1

4
r4N ′δN ′

)}
dφ. (93)

Adapting the definition of (22) the variation form of the angu-
lar momentum is given by

δJ = 1

8πG

∫
∞

δχξ

[
∂

∂φ

]

= 1

4G

{
1

�

(
σ − λ

α

μ

)
(r−δr+ + r+δr−)

+ 1

μ�2 (r+δr+ + r−δr−)

}
. (94)

Substituting the λ value (86) into the above formula then we
can obtain the angular momentum of BTZ black hole

J = r+r−
4G�

(
σ + α(1 − αΛ0�

2)

2μ2�2(1 + σα)2

)
+ r2+ + r2−

8Gμ�2 . (95)

As already mentioned in case of BTZ black hole in TMG
theory, we can re-express the charge variation form (93) as a
total variation form. Therefore the charge form for the angu-
lar momentum of the BTZ black hole in MMG theory can be
represented by

χξ

[
∂

∂φ

]
=

{
1

2

(
σ −λ

α

μ

)
r3N ′ + 1

2μ

(
− f 2 + 1

4
r4N ′2

)}
.

(96)

This result is the same with (46) except replacing the coeffi-
cient σ with σ − λ α

μ
. Only the constant term contributes to

the computation of the angular momentum. So, we can obtain
the angular momentum (95) of BTZ black hole in MMG the-
ory. The same results have been calculated by using ADT
formalism in [56].

From the metric form of BTZ black hole (33) and (36),
we can simply read the angular velocity as

ΩH = r−
�r+

. (97)

The entropy of BTZ black hole in MMG have been calculated
in [57]. The Hawking temperature of BTZ black hole is given
by

TH = r2+ − r2−
2π�2r+

. (98)
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With (97) and (98) the relation between the variation (91),
(94) and the variation of the entropy can give the first law of
black hole thermodynamics.

4.2 New type black hole in MMG

There exists a black hole solution in MMG at a special point,
i.e. “merger point” [31]. This black hole resembles new type
black hole solution in NMG theory. This solution is not
locally isometric to the AdS vacuum but asymptotically AdS
as r goes to infinity. There also exists a dS type solution but
we pay our attention to AdS type solution. The black hole
solution has the same form of (70) with (71). So we can
take same forms of frame 1-form fields ea (72), connection
1-forms ωa replaced by Ωa (73).

Solving the second equation of motion in (83) with the
function (71), we can determine the auxiliary fields ha as
detailed forms

h0 = 1

μ(1 + σα)2

(
1

2�2 − αΛ0

2

)
e0,

h1 = 1

μ(1 + σα)2

(
1

2�2 − αΛ0

2

)
e1,

h2 = 1

μ(1 + σα)2

{
1

2�2

(
1 − r+ + r−

r

)
− αΛ0

2

}
e2.

(99)

The charge variation (20) with Noether charge and symplec-
tic potential (85) can be represented by a simple form

δχξ = −σ(iξΩ · δe + iξ e · δΩ)

+ 1

μ
iξΩ · δΩ + (1 + σα)(iξ e · δh + iξh · δe)

−α

μ
(iξΩ · δh + iξh · δΩ − αiξh · δh). (100)

To compute this charge variation we need to find non-
vanishing variations of frame fields, connection 1-forms and
auxiliary fields. The dφ component of all variations of the
frame fields vanish. The non-vanishing variations are given
by the form

δΩ0 = δ f dφ, δh2 = 1

μ(1 + σα)2 δ( f f ′)dφ. (101)

Because this black hole solution is non-rotating one, so we
only need to perform the calculation of the black hole mass.
To obtain the mass of this black hole we should consider
the time-like Killing vector ξ = ∂

∂t . Then the non-vanishing
interior products of frame 1-forms, connection 1-forms and
auxiliary fields with this Killing vector are given by

iξ e
0 = f, iξΩ

2 = f f ′,

iξh
0 = 1

μ(1 + σα)2

{
( f f ′)′

2
− αΛ0

2

}
f = −λ f, (102)

where λ is the same constant with (86) whenever we consider
the function f of (71). Inserting (101) and (102) into (100) we
can find the charge variation form δχξ [ ∂

∂t ]. But this form of
charge variation can be simply reduced to the total variation
form, so we can obtain the charge form

χξ

[
∂

∂t

]
=

{
1

2

(
σ − λ

α

μ

)
f 2 − α

2μ2(1 + σα)2 ( f f ′)2
}
dφ.

(103)

Computing the third equation of (83) provides us with two
parameter conditions as follows

α

μ2(1 + σα)4

(
1

2�2 − αΛ0

2

)
− σ

1 + σα
= 0, (104)

α

μ2(1 + σα)4

(
1

2�2 − αΛ0

2

)2

− σ

�2(1 + σα)

− Λ0

1 + σα
= 0. (105)

The above two conditions are nothing but the “merger point”
condition appearing (2.5) in [31]. By the elimination of Λ0

these two conditions can be reduced to one condition

α

μ2�2(1 + σα)2 = 2σ + α. (106)

To calculate the charge form (103) we need to look over the
coefficients of f 2 and ( f f ′)2. The parameter λ to appear
in (103) is the same value of (86). So we can simplify the
coefficient of f 2 by using three conditions (104)–(106) as a
form

σ − λ
α

μ
= σ + α(1 − αΛ0�

2)

2μ2�2(1 + σα)2 = σ + σ(1 + σα)

= 2σ + α = α

μ2�2(1 + σα)2 . (107)

Therefore the coefficient of f 2 in (103) are the same that of
( f f ′)2. So, we can simplify the charge

χξ

[
∂

∂t

]
= 1

2

(
σ − λ

α

μ

)
( f 2 − �2( f f ′)2)dφ

= −
(

σ + α

2

)
1

4�2 (r+ − r−)2dφ. (108)

From the above result we can obtain the mass of new type
black hole in MMG

M = − 1

8πG

∫
∞

χξ

[
∂

∂t

]
= 1

16G�2

(
σ + α

2

)
(r+ − r−)2

= α

32Gμ2�4(1 + σα)2 (r+ − r−)2. (109)

This result is described by the square of the difference
between two horizons r+ and r−. It is the same form with that
of new type black hole in NMG theory except the parameter
shift σ + α/2.
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5 Thermodynamic properties of the new type black hole
in minimal massive gravity

In this section we briefly explain to find the central charge of
new type black hole and calculate the entropy of this black
hole using the method of [58]. we compare these result with
the Cardy formula for black hole entropy. According to the
description of AdS/CFT correspondence, we can represent
the relation between the black hole mass and the left and
right moving energies [68,69]. This result of black hole mass
is the same that we have calculated the above (109). From
these result we can obtain first law of thermodynamics of
new type black hole. Then we suggest the relation between
the Hawking temperature and the left and right temperatures
which come from the left and right moving energies.

5.1 Boundary central charges

The method to find the boundary central charge of this MMG
theory is described in detail by using the Poisson bracket alge-
bra and Hamiltonian analysis [28,29,70,72]. The Lagrangian
of the three dimensional gravity theories can be represented
by the Chern–Simons- like form as follows [28],

LCSL = 1

2
grsa

r · das + 1

6
frst a

r · (as × at ). (110)

The notation ar means a collection of Lorentz vector valued
1-forms araμ dxμ, where r is a “flavor” index running 1 · · · N .
Flavor N describes the fields of this MMG theory e, h and ω.
grs is the metric on the flavor space and frst is the coupling
constants. This description also includes other gravity theo-
ries, i.e. TMG, NMG, ZDG, even MMG theory. Performing
the separation of space-time component

ara = ara0 dt + arai dxi , (111)

with writing ε0i j = εi j , the Lagrangian density becomes

L = −1

2
εi j grsa

r
i · ȧsj + ar0 · φr , (112)

where the Lorentz vectors ar0 are Lagrange multipliers for
primary constraints

φr = εi j
(
grs∂i a

s
j + 1

2
frst a

s
i × atj

)
. (113)

The Hamiltonian density can be obtained with these primary
constraints

H = −1

2
εi j grsa

r
i · ∂0a

s
j − L = −ar0 · φr . (114)

In order to obtain the Poisson brackets of the primary con-
straints the smeared functionals should be defined by inte-
grating the constraint function (113) against a test function
ξ r (x) as follows

ϕ[ξ ] =
∫

Σ

d2xξ ra (x)φa
r (x) + Q[ξ ], (115)

where Σ is a space-like hypersurface and Q[ξ ] is a boundary
term to remove delta-function singularities in the brackets of
the constraints [28]. With this boundary term, ϕ is said to
be “differentiable” under a general variation of the fields.
In [28] the Poisson brackets of the constraint functions are
computed by using

{aria(x), asjb(y)}P.B. = εi j g
rsηabδ

(2)(x − y). (116)

They are given by

{ϕ[ξ ], ϕ[η]}P.B. = ϕ[[ξ, η]] +
∫

Σ

d2xξ raηsbP
ab
rs

−
∫

∂Σ

dxi ξ r · [grs∂iηs + frst (a
s
i × ηt )],

(117)

where

[ξ, η]tc = f trsε
ab
cξ

r
aηsc, (118)

and

Pab
rs = f tq[r fs]ptηabΔpq + 2 f tr [s fq]pt (V ab)pq ,

V pq
ab = εi j a p

iaa
q
jb, Δpq = εi j a p

i · aqj .
The Poisson brackets of the first-class constraints with the
dynamical fields of the theory generate local Lorentz trans-
formations and diffeomorphisms. The second term of (117) is
related to the secondary constraint associated with the consis-
tency condition guaranteeing time independence of the pri-
mary constraints. If we regard the test function ξ ra (x) as the
gauge parameters of boundary condition preserving gauge
transformation, then the Poisson bracket algebra is isomor-
phic to the Lie algebra of the asymptotic symmetries and
generally can be centrally extended [73].

The Chern–Simons-like model (110) is manifestly invari-
ant under diffeomorphism and local Lorentz transformations.
To understand these constraints which generate these sym-
metries, it is convenient to investigate the Poisson brackets
of the gauge transformation with the dynamical variables of
the theory. The calculations can be performed using (113),
(115) and (116) as a form

{ϕ[ξ ], ari } = ∂iξ
r + f rst a

s
i × ξ t . (119)
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The constraint ϕω[ξω] generate a local Lorentz transforma-
tion with ξω = ζ and ξ r = 0 for r �= ω, as follows

δζ ωi = {ϕω[ζ ], ωi } = ∂iζ + ωi × ζ, (120)

δζ ei = {ϕω[ζ ], ei } = ari × ζ. (121)

In (121), we have used a relation f rsω = grt ftsω = δrs where
a coupling constant frsω is given by grs . Diffeomorphisms
associated with a vector field ζμ are generated by an appro-
priate combinations of constraint functions

ϕdiff [ζ ] =
∑
r

ϕr [ζμarμ]. (122)

Then, by using (119) we can find

δζa
r
i = {ϕdiff [ζ ], ari } = £ζa

r
i + · · · , (123)

where £ζ describes the Lie derivative with respect to the vec-
tor field ζμ and · · · means the term proportional to equations
of motion. So, on-shell this gives the correct transformation
rule for the dynamical variables of the theory.

To find the boundary central charges from the Poisson
bracket algebra (117) we need to consider the two sets of
mutually commuting first class constraints

L±[ζ ] = ϕe[ζμeμ] + ϕh[ζμhμ] + a±ϕω[ζμeμ], (124)

with constant a±. Then the Poisson brackets should be

{L±[ξ ], L±[η]} = ∓2

�
L±[[ξ, η]], (125)

{L+[ξ ], L−[η]} = 0. (126)

To calculate above commutators, we firstly need to determine
the non-zero components of the metric grs and the coupling
constants frst on the “flavor” space in MMG theory. They
are given by

geω = −σ, ghe = 1, gωω = 1

μ
,

feωω = −σ, feee = Λ0, fhωe = 1,

fωωω = 1

μ
, fehh = α. (127)

Using (117), the Poisson brackets of the primary constraints
can be determined as follows,

{φa
ω, φb

ω}P.B. = εabcφ
c
ω, {φa

ω, φb
e }P.B. = εabcφ

c
e ,

{φa
ω, φb

h }P.B. = εabcφ
c
h, {φa

e , φb
e }P.B. = Λ0ε

ab
cφ

c
h,

{φa
h , φ

b
h }P.B. = αεabcφ

c
ω, {φa

e , φb
h }P.B. = αεabcφ

c
e

+ μ(1 + σα)εabcφ
c
ω + σμ(1 + σα)εabcφ

c
h . (128)

Let ē be the AdS background dreibein. By using the
“merger point” conditions (104), (105), the auxiliary field
(99) becomes h̄ = β ē where the parameter β is given by

β = σμ(1 + σα)

α
, (129)

on the AdS background. Also, for the new type black hole
case, we can find the Poisson brackets between smeared func-
tionals

{ϕe[ξ e], ϕe[ηe]}P.B. = Λ0ϕh[[ξ, η]],
{ϕh[ξ h], ϕh[ηh]}P.B. = β2αϕh[[ξ, η]],
{ϕh[ξ h], ϕω[ηe]}P.B. = βϕh[[ξ, η]],
{ϕω[ξ e], ϕe[ηe]}P.B. = ϕe[[ξ, η]],
{ϕω[ξ e], ϕω[ηe]}P.B. = ϕω[[ξ, η]],
{ϕe[ξ e], ϕh[ηh]}P.B. = βμ(1 + σα)ϕω[[ξ, η]]

+ βαϕe[[ξ, η]] + βσμ(1 + σα)ϕh[[ξ, η]], (130)

where ξ h = ξμhμ = βξ e and [ξ, η] = ξ e × ηe. With the
parameter

Λ0 = −μ2(1 + σα)2

α
= −αβ2, (131)

calculated from (104) and (105), we can take advantage of
(126)

{L+[ξ ], L−[η]} = (2βμ(1 + σα) + a+a−)ϕh[[ξ, η]]
+ (2βα + a+ + a−)

(
ϕe[[ξ, η]] + βϕh[[ξ, η]]) = 0,

(132)

to find conditions for two parameters a+ and a−. This com-
mutator gives two equations

2βα + a+ + a− = 0, (133)

2βμ(1 + σα) + a+a− = 0. (134)

So, we can obtain constants

a± = −βα

(
1 ±

√
1 + 2μ(1 + σα)

βα2

)

= −σμ(1 + σα)

(
1 ±

√
1 + 2σ

α

)
. (135)

Therefore we can use the above parametrization for a± and
two identities

a± = −σμ(1 + σα) ± 1

�
= −βα ± 1

�
, (136)

a2± + 2βμ(1 + σα) = 2
σμ2(1 + σα)2

α
= ±2

�
a±, (137)

to find out the Poisson bracket

{L±[ξ ], L±[η]} = ∓2

�
L±[[ξ, η]]

∓2

�

(
2σ + α ± 1

μ�

) ∫
∂Σ

dφξ e ·
[
∂φηe

+
(

ω̄φ ±
(

2

�
∓ a±

)
ēφ

)
× ηe

]
. (138)
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After including the proper normalizations of first class con-
straints, we can find the asymptotic symmetry algebra con-
sisting of two sets of Virasoro algebra with a central charge

cL ,R = 3�

2G

(
2σ + α ± 1

μ�

)
, (139)

whereG is the three dimensional Newton constant. We notice
that the central charges can not be reduced to the TMG rep-
resentations in the TMG limit α → 0, because there exist a
relation (106) between μ and α at “merger point” in MMG
theory. This is somewhat different case from the AdS back-
ground one since the solution of new type black hole in TMG
does not exist. The same result can also be obtained by using
the variation of the boundary charge Q±[ξ ]

δQ±[ξ ] = −
∫

∂Σ

dxi
(
gesξ

e + ghsξ
h + a±gωsξ

e
)

· δasi

=
(

2σ + α ± 1

μ�

) ∫
∂Σ

dφξ e ·
(

δω̄φ ±
(

2

�
∓ a±

)
δēφ

)
,

(140)

where s sums over e, h and ω. With some proper constants
the coefficient of the integral give the same central charges.

5.2 Thermodynamics

To find the thermodynamic relations for new type black hole
in MMG theory, we should use the previous result for the
mass in Sect. 4.2 and calculate the entropy of the black hole.
To obtain the black hole entropy of new type black hole, we
firstly consider the Lagrangian for the Chern–Simons-like
form (110). The variation for this Lagrangian is given by

δLCSL = d

(
1

2
grsδa

r ·as
)

+δar ·
(
grsda

s+ 1

2
frst a

s×at
)

,

(141)

where the first term gives the symplectic potential

Θ(a, δa) = 1

2
grsδa

r · as, (142)

and the second term describes equations of motion. Follow-
ing the Wald’s formalism, we can find Noether charge

Qξ = 1

2
grsiξa

r · as, (143)

with the on-shell condition. Let us consider the variation of
Noether charge

δQξ = 1

2
(grsiξ δa

r · as + grsδa
r · iξas). (144)

The Killing vector ξ vanishes on the bifurcation horizon H,
so the interior product of the symplectic potential should also
be vanished, i.e., iξΘ = 0. By using this condition, the first
term of the variation form (144) becomes the same one with
the second term. So, we can get

δQ′
ξ = grsiξa

r · δas, (145)

which is the same form of the charge variation form (20) on
the bifurcation horizon H, i.e., δQ′

ξ = δχξ . Therefore, we
can define the variation form of the entropy of a black hole
in the Chern–Simons-like gravity theory

κ

2π
δSBH = − 1

8πG

∫
H

δχξ . (146)

The calculation for the black hole entropy including the grav-
itational Chern–Simons term in the action has been per-
formed in [58]. The charge for the black hole entropy has
been defined by Q′

ξ = Qξ − Cξ where δCξ = iξΘ + Σξ

with a choice Σξ = 0. So, it is the same definition with
(146). Now we look for the entropy of new type black hole
in MMG theory. Then the entropy formula can be written by
the variational form

δSBH = − 1

8πG
· 2π

κ

∫
H

(
δχξ

[
∂

∂t

]
+ ΩHδχξ

[
∂

∂φ

])
,

(147)

which calculation should be performed at the event horizon of
a black hole H and ΩH is the angular velocity at the horizon
when we consider a rotating black hole case. Therefore we
just consider the first variational charge form. By using (103),
(106) and (107), we can obtain the charge variation form

δχξ

[
∂

∂t

]
= − 1

2�2

(
σ + α

2

)
(r+ − r−)(δr+ − δr−)dφ

= − α(r+ − r−)

4μ2�4(1 + σα)2 (δr+ − δr−)dφ, (148)

at the event horizon r = r+. The Hawking temperature is
given by

TH = κ

2π
= r+ − r−

4π�2 . (149)

Substituting (148) and (149) into (147) and then integrate
the variational form, we can obtain the entropy of new type
black hole in MMG theory as follows

SBH = π

2G

(
σ + α

2

)
(r+ − r−) = πα(r+ − r−)

4Gμ2�2(1 + σα)2 .

(150)
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Considering the mass formula (109), the only physical
parameter is the mass M of the new type black hole and
can also be given by the difference between two horizons
r+ − r−. So we can obtain the first law of black hole ther-
modynamics by using the variation of mass (109) and (150)

δM = TH δSBH . (151)

According to the usual description of AdS/CFT correspon-
dence, the black hole entropy can be represented by the Cardy
formula which depicts the entropy of a dual CFT in terms of
central charges cL and cR at the temperatures TL and TR as
follows

SBH = π2�

3
(cLTL + cRTR). (152)

In three dimensional gravity theories, the mass of an asymp-
totically AdS black hole can be obtained by

M = EL + ER, (153)

where the left and right moving energies of the dual CFT can
be defined as

EL = π2�

6
cLT

2
L , ER = π2�

6
cRT

2
R . (154)

Here, we suggest that the left moving and right moving tem-
peratures should be equal to the Hawking temperature such
as

TL = TR = TH , (155)

then relations (152) and (153) are given by the same results
(150) and (109) with the central charges (139). Therefore the
Smarr formula is given by

M = 1

2
THSBH . (156)

From the variation of this formula with r+ − r− we can also
derive the first law of black hole thermodynamics (151).

6 Conclusion

In this paper we have investigated the variation form (22) of
the mass and angular momentum of black holes through the
Wald formalism. These variations are satisfied with the first
law of black hole thermodynamics (18). It have been shown
that the Lagrangian for diverse three dimensional gravity the-
ories can be expressed by using first order formalism which
comprise with auxiliary fields [28–30]. Using the definition

of these variations (22), we have obtained masses and angu-
lar momenta of the asymptotically AdS3 black holes in three
dimensional gravity theories with the first order formalism.
Following the Wald formalism, we have calculated symplec-
tic potential and conserved Noether charge which consist
of dreibeins, spin connections and auxiliary fields. To find
conserved charges such as mass and angular momentum, we
need to calculate the value (20). Firstly, we have reproduced
well-known results of the mass and angular momentum for
some black holes in TMG and NMG as some examples. Sec-
ondly we have paid our attention to compute new results of
mass and angular momentum of BTZ and new type black
holes in MMG theory. These results are the same form with
one in TMG theory with a modified σ parameter which is a
function of α and Λ0. The mass of new type black hole in
MMG theory is also the same form with that of NMG theory.
Only the difference is a parameter σ + α/2 which include a
parameter α related to the auxiliary field h term in the action.

The MMG theory is an alternative modified theory to avoid
“bulk vs. boundary clash” [29]. MMG equation (1) can be
expressed by a simple modification of equation in TMG the-
ory including an auxiliary field term with a parameter α.
The elimination of the auxiliary fields from the MMG action
cannot make an action for the metric only. So in order to get
proper conserved charges such as mass and angular momen-
tum, we should make a certain formula including auxiliary
fields even though some results have obtained by using the
Eq. (1) in [60]. Definitions (22) are enough to find mass
and angular momentum in three dimensional gravity theories
while we are dealing with the integration at spatial infinity.

We also calculate the central charges of new type black
hole by investigation of the Poisson brackets of the constraint
functions coming from the “Chern–Simons-like” Lagrangian
form. We compute the entropy of new type black hole by tak-
ing use of the method in [58] with the first-order formalism.
From these results, we can read the Smarr relation (156)
which is also derived from the first law of black hole thermo-
dynamics (151). The entropy and mass can be compare with
the Cardy formula (152) and energy definition of the dual
CFT (153). This comparison leads us to suggest a relation
(155) that the left and right moving temperatures should be
equal to the Hawking temperature. Then the Smarr relation
is satisfied under this suggestion.

Many constructions of the conserved charge for black
holes are introduced in a review paper [74]. By using the
linearization of the metric on the asymptotically flat space-
time, the conserved charge has been constructed by Arnowitt,
Deser and Misner (ADM) [34]. This ADM formalism has
been extended to the covariant and higher curvature gravity
theories by Abbott, Deser and Tekin [36–38]. There was a
non-trivial generalization of the ADT charge formalism by
promoting to the off-shell level and including non-covariant
term like a gravitational Chern–Simons term [44,45]. In [74]
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the quasi-local conserved charge for the Chern–Simons-like
theories of gravity (110) has been constructed with the first
order formalism. To find this charge the authors of [74] have
used the off-shell ADT method and the field variation with
the Lorentz–Lie derivative

δξa
ra = Lξa

ra − δrωdλ̃a, (157)

where the definition of the Lorentz–Lie derivative L is given
by

Lξ e
a = £ξ e

a + λace
c, (158)

and λ̃a = 1/2 · εabcλ
bc is a generator of the local Lorentz

transformation. This derivative has been introduced to avoid
the divergence of the spin connection on the event horizon,
even though the interior product between spin connection
and Killing vector becomes finite on the bifurcation surface
[63].

In our approach, the Wald formalism for the diffeomor-
phism invariant Lagrangian has been adapted. Because the
variation of the field variables for a vector filed ξ can be
described by (123), the symplectic current ω(φ, δφ, £ξ φ) in
(13) vanishes when we take £ξφ = 0. So, we define the
charge variational form as follow the path of the solution on
the Cauchy surface Σ .
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Appendix A: Some calculations for the curvature two-
forms of the warped AdS3 black hole

In this appendix we summarize some useful functions and
relations to calculate curvature 2-forms of the warped AdS3

black hole. This black hole solution is represented by some
functions given by (48). The second function of (48) can be
represented by the form

RN = �
√

(ν2 + 3)

2

√
(r − r+)(r − r−). (A.1)

With all functions of (48) and their derivatives we can cal-
culate curvature 2-forms. From now we abbreviate all func-
tions as their abridged form without coordinate r including
the above formulae. Substituting connections (50) into the
second equation in (26), curvature two-forms are given by

R0 = e1 ∧ e2
[(

R2N θ ′

�

)2

+ 2(N R′)′

�2 · 2RN

�2 +
(

2N R′

�2

)2]

+ e1 ∧ e0
[

(R2N θ ′)′

�
· 2RN

�2 + 2N R′

�2 · 2R2N θ ′

�

]
,

R1 = e2 ∧ e0
[

−
(
R2N θ ′

�

)2

− 2RN ′

�2 · 2N R′

�2

]
,

R2 = e0 ∧ e1
[

3

(
R2N θ ′

�

)2

− 2(RN ′)′

�2 · 2RN

�2 −
(

2RN ′

�2

)2]

+ e1 ∧ e2
[

− (R2N θ ′)′

�
· 2RN

�2 − 2R2N θ ′

�
· 2N R′

�2

]
.

(A.2)

Solving the second equation of (28) with torsion free condi-
tion, then we obtain the auxiliary fields as follows

h0 = 1

μ

{
− 3

2

(
R2N θ ′

�

)2

− 1

2

(
2(N R′)′

�2 · 2RN

�2

+
(

2N R′

�2

)2)
+ 1

2
· 2RN ′

�2 · 2N R′

�2

+1

2

(
2(RN ′)′

�2 · 2RN

�2 +
(

2RN ′

�2

)2)}
e0

− 1

μ

{
(R2N θ ′)′

�
· 2RN

�2 + 2N R′

�2 · 2R2N θ ′

�

}
e2,

h1 = 1

μ

{
− 3

2

(
R2N θ ′

�

)2

+ 1

2

(
2(N R′)′

�2 · 2RN

�2

+
(

2N R′

�2

)2)
− 1

2

2RN ′

�2 · 2N R′

�2

+1

2

(
2(RN ′)′

�2 · 2RN

�2 +
(

2RN ′

�2

)2)}
e1,

h2 = 1

μ

{
5

2

(
R2N θ ′

�

)2

+ 1

2

(
2(N R′)′

�2 · 2RN

�2

+
(

2N R′

�2

)2)
+ 1

2
· 2RN ′

�2 · 2N R′

�2

−1

2

(
2(RN ′)′

�2 · 2RN

�2 +
(

2RN ′

�2

)2)}
e2

+ 1

μ

{
(R2N θ ′)′

�
· 2RN

�2 + 2N R′

�2 · 2R2N θ ′

�

}
e0.

(A.3)

We firstly consider the differentiation of all functions of (48)
with respect to r . The derivatives of these functions are given
by
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R′ = R

2r
+ 3(ν2 − 1)

8

r

R
,

N ′ = �
√

(ν2 + 3)
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{
1

R

r2 − r+r−
r
√

(r − r+)(r − r−)

−3(ν2 − 1)

4

r
√

(r − r+)(r − r−)

R3

}
,

N θ ′ =
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2

1

r R2

−3(ν2 − 1)

8

r

R4

(
2νr −

√
r+r−(ν2 + 3)

)
. (A.4)

From the above formulae and (48) we can get some relations

R2N θ ′
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=

√
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8�
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√
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·
(

1

r
+ 3(ν2 − 1)

4

r
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)
,
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(ν2 + 3)
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{
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(r − r+)(r − r−)

−√
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(
1
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4

r
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)}
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(A.5)

and their derivatives as follows
(
R2N θ ′

�

)′
= −

√
r+r−(ν2 + 3)

2�

1

r2 − 3(ν2 − 1)

8�

[
2νr
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]
,

(
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(A.6)

Now we use the previous results to calculate curvature 2-
forms (A.2). The calculations of the right hand side of (A.2)
are given by

(
R2N θ ′

�

)2

+ 2(N R′)′

�2 · 2RN

�2 +
(

2N R′

�2

)2

= ν2 + 3
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(A.7)

Substituting all the above results into (A.2) we can rearrange
curvature 2-forms for simple forms

R0 =
(

ν2

�2 + F(r)

)
e1 ∧ e2 + G(r)e1 ∧ e0,

R1 = −ν2

�2 e2 ∧ e0,

R2 =
(

− ν2

�2 + 3(ν2 − 1)

�2 + F(r)

)
e0 ∧ e1 − G(r)e1 ∧ e2,

(A.8)

where

F(r) = 3(ν2 − 1)(ν2 + 3)

4�2 · 1

R2 (r − r+)(r − r−),

G(r) = −3(ν2 − 1)
√

(ν2 + 3)

4�2
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· 1

R2

(
2νr −

√
r+r−(ν2 + 3)

)√
(r − r+)(r − r−).

With (A.5) and (A.6) we can calculate the coefficients of the
dreibeins in (A.3), then the auxiliary fields ha are simply
given by

h0 = 1

2μ

(
ν2

�2 − 3(ν2 − 1)

�2 − 2F
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e0 − 1

μ
Ge2,
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)
e1,

h2 = 1

2μ

(
ν2

�2 + 3(ν2 − 1)

�2 + 2F

)
e2 + 1

μ
Ge0. (A.9)

Appendix B: Some useful formulae for the charge vari-
ations of the warped AdS3 black hole in Topologically
Massive Gravity

To calculate the charge variation for the warped AdS3

black hole we should make the variation of some functions
appeared in Eq. (51). The useful variations for (51) is as fol-
lows

δR = (ν2 + 3)
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R2 δR

− 1

R

[
(r − r−)δr+ + (r − r+)δr−
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. (B.1)

In order to get the charge variation (51) and (53), we consider
the variations of frame fields, i.e. dreibein, connections 1-
forms and auxiliary fields. The charge variations are defined
by the integral over a certain Cauchy surface with constant
time and two boundaries at horizon surface and infinity. So,
we only need to consider the variation of the angle θ part,
i.e. dθ terms. The non-vanishing variations for dreibein (49)
and connection 1-forms (50) are as follows

δe2 = �δRdθ, δω0 = 2

�
δ(N RR′)dθ,

δω2 = −δ(R3N θ ′)dθ. (B.2)

The variations of auxiliary fields (A.9) are given by

δh0 = − �

μ
δ(GR)dθ,

δh2 =
{

�

2μ

(
ν2

�2 + 3(ν2 − 1)

�2

)
δR + �

μ
δ(FR)

}
dθ. (B.3)

To find the black hole mass variations we should find some
interior product of dreibeins, connection 1-forms and auxil-
iary fields with ξ = ∂

∂t . The non-vanishing interior products
of dreibeins and connections are given by

iξ e
0 = N , iξ e

2 = �RN θ ,

iξω
0 = R2N θ ′

�
N + 2N R′

�2 �RN θ ,

iξω
2 = − R2N θ ′

�
�RN θ + 2RN ′

�2 N , (B.4)

and those of auxiliary fields are given by

iξh
0 = 1

2μ

(
ν2

�2 − 3(ν2 − 1)
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)
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G�RN θ ,

iξh
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)
�RN θ + 1

μ
GN .

(B.5)

To find the black hole angular momentum variations with
ξ = ∂

∂θ
the non-vanishing interior products are given by

iξ e
2 = �R, iξω

0 = 2N R′

�2 �R, iξω
2 = − R2N θ ′

�
�R,

(B.6)

and

iξh
0 = − �

μ
GR, iξh

2 = �

2μ

(
ν2

�2 + 3(ν2 − 1)

�2 + 2F

)
R.

(B.7)
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To compute the angular momentum (54) we need to use the
following some functions

R4N θ ′ = −3ν(ν2 − 1)

4
r2

+R

(
R

2r
+ 3(ν2 − 1)

8

r

R

)√
r+r−(ν2 + 3),

(N RR′)2 = �2(ν2 + 3)

4
(r − r+)(r − r−)

·
(
R

2r
+ 3(ν2 − 1)

8

r

R

)2

,

(R3N θ ′)2 =
{

− 3ν(ν2 − 1)

4

r2

R

+
(
R

2r
+ 3(ν2 − 1)

8

r

R

)√
r+r−(ν2 + 3)

}2

,

R2F = 3(ν2 − 1)(ν2 + 3)

4�2 (r − r+)(r − r−). (B.8)

Owing to the above formulae the charge variation for the
angular momentum (54) can be expressed by the following
form

χξ
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dθ. (B.9)

As r goes to the infinity the previous result can be expanded
as a series expansion of r . The useful asymptotic expansions
including R(r) described by (48) are given by
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,

where

C = ν2 + 3

3(ν2 − 1)
(r+ + r−) − 4ν

3(ν2 − 1)

√
r+r−(ν2 + 3).

Using the above approximations we can re-express the charge
(B.9) with σ = 1 and 1

μ
= �

3ν
. So, rearranging the charge

with respect to r orders becomes
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1
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dθ, (B.10)

where the coefficients of r2 and r are vanished. Therefore it
gives the result (55).
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