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Abstract For the search for scalar leptons in the minimal
supersymmetric standard model (MSSM) as well as for future
precision analyses of these particles an accurate knowledge
of their production and decay properties is mandatory. We
evaluate the cross sections for the slepton production at e+e−
colliders in the MSSM with complex parameters (cMSSM).
The evaluation is based on a full one-loop calculation of
the production mechanisms e+e− → l̃gs l̃gs′ including soft
and hard photon radiation. The dependence of the slepton
production cross sections on the relevant cMSSM parame-
ters is analyzed numerically. We find sizable contributions
to many production cross sections. They amount to roughly
15% of the tree-level results but can go up to 40% or higher
in extreme cases. Also the dependence on complex parame-
ters of the one-loop corrections for the production of charged
sleptons was found non-negligible. The full one-loop contri-
butions are thus crucial for physics analyses at a future linear
e+e− collider such as the ILC or CLIC.

1 Introduction

One of the important tasks at the LHC is to search for physics
beyond the standard model (SM), where the minimal super-
symmetric standard model (MSSM) [1–4] is one of the lead-
ing candidates. Two related important tasks are the investi-
gation of the mechanism of electroweak symmetry breaking,
including the identification of the underlying physics of the
Higgs boson discovered at ∼ 125 GeV [5,6], as well as the
production and measurement of the properties of Cold Dark
Matter (CDM). Here the MSSM offers a natural candidate
for CDM, the Lightest Supersymmetric Particle (LSP), the
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lightest neutralino, χ̃0
1 [7,8] (see below). These three (related)

tasks will be the top priority in the future program of particle
physics.

Supersymmetry (SUSY) predicts two scalar partners for
all SM fermions as well as fermionic partners to all SM
bosons. Contrary to the case of the SM, in the MSSM
two Higgs doublets are required. This results in five phys-
ical Higgs bosons instead of the single Higgs boson in the
SM. These are the light and heavy CP-even Higgs bosons,
h and H , the CP-odd Higgs boson, A, and the charged
Higgs bosons, H±. In the MSSM with complex parame-
ters (cMSSM) the three neutral Higgs bosons mix [9–13],
giving rise to the CP-mixed states h1, h2, h3. The neutral
SUSY partners of the (neutral) Higgs and electroweak gauge
bosons are the four neutralinos, χ̃0

1,2,3,4. The corresponding

charged SUSY partners are the charginos, χ̃±
1,2.

If SUSY is realized in nature and the scalar quarks and/or
the gluino are in the kinematic reach of the (HL-)LHC, it is
expected that these strongly interacting particles are even-
tually produced and studied. On the other hand, SUSY par-
ticles that interact only via the electroweak force, e.g., the
scalar leptons, have a much smaller production cross section
at the LHC. Correspondingly, the LHC discovery potential
as well as the current experimental bounds are substantially
weaker [14,15].

At a (future) e+e− collider sleptons, depending on their
masses and the available center-of-mass energy, could be pro-
duced and analyzed in detail. Corresponding studies can be
found for the ILC in Refs. [16–21] and for CLIC in Refs. [21–
23] (Results on the combination of LHC and ILC results can
be found in Refs. [24–26]). Such precision studies will be
crucial to determine their nature and the underlying (SUSY)
parameters.

In order to yield a sufficient accuracy, one-loop corrections
to the various slepton production and decay modes have to
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be considered. Full one-loop calculations in the cMSSM to
(heavy) scalar tau decays was evaluated in Ref. [27], where
the calculation can easily be taken over to other slepton
decays. Sleptons can also be produced in SUSY cascade
decays. Full one-loop evaluations in the cMSSM exist for
the corresponding decays of Higgs bosons [28] as well as
from charginos and neutralinos [29–32]. In this paper we
take the next step and concentrate on the slepton production
at e+e− colliders, i.e. we calculate

σ(e+e− → ẽ±
gs ẽ

∓
gs′) s, s′ = 1, 2, (1)

σ(e+e− → ν̃g ν̃
∗
g) g = 1, 2, 3, (2)

with ẽgs = {ẽs, μ̃s, τ̃s}, ν̃g = {ν̃e, ν̃μ, ν̃τ }, generation index
g and slepton index s. Our evaluation of the two chan-
nels (1) and (2) is based on a full one-loop calculation, i.e.
including electroweak (EW) corrections, as well as soft, hard
and collinear QED radiation. The renormalization scheme
employed is the same one as for the decay of sleptons [27].
Consequently, the predictions for the production and decay
can be used together in a consistent manner.

Results for the cross sections (1) and (2) at various levels of
sophistication have been obtained over the last three decades.
Tree-level results were published for e+e− → ẽ±

gs ẽ
∓
gs′ and

e+e− → ν̃g ν̃
∗
g in the MSSM with real parameters (rMSSM)

in Ref. [33], and later in a specific supergravity (SUGRA)
model in Ref. [34]. Tree-level results in the cMSSM were
published only for the process μ+μ− → τ̃±

s τ̃∓
s′ in Ref. [35].

Several works dealt with the slepton production cross sec-
tion at threshold [36,37], also taking into account the elec-
tron/positron polarization [38], which is outside the scope
of this article. Full one-loop corrections in the rMSSM
were presented for e+e− → ẽ±

s ẽ
∓
s′ , μ̃

±
s μ̃∓

s′ [39] and for
e+e− → ν̃g ν̃

∗
g [40]. Using a renormalization scheme close to

ours (see below), stop, sbottom, and stau production at e+e−
colliders was evaluated in Ref. [41] in the rMSSM at the full
one-loop level. Third generation sfermion production at the
full one-loop level in the rMSSM, including staus and tau
sneutrinos were presented in Refs. [42–44].

In this paper we present for the first time a full and con-
sistent one-loop calculation in the cMSSM for scalar lepton
production at e+e− colliders. We take into account soft, hard
and collinear QED radiation and the treatment of collinear
divergences. Again, here it is crucial to stress that the same
renormalization scheme as for the decay of sleptons [27] (and
for slepton production from Higgs boson decays [28] as well
as from chargino and neutralino decays [29–32]) has been
used. Consequently, the predictions for the production and
decay can be used together in a consistent manner (e.g., in
a global phenomenological analysis of the slepton sector at
the one-loop level). We analyze all processes w.r.t. the most
relevant parameters, including the relevant complex phases.

In this way we go substantially beyond the existing analyses
(see above). In Sect. 2 we briefly review the renormaliza-
tion of the relevant sectors of the cMSSM and give details as
regards the calculation. In Sect. 3 various comparisons with
results from other groups are given. The numerical results for
the production channels (1) and (2) are presented in Sect. 4.
The conclusions can be found in Sect. 5.

Prolegomena

We use the following short-hands in this paper:

• FeynTools ≡ FeynArts + FormCalc +
LoopTools.

• full = tree + loop.
• sw ≡ sin θW , cw ≡ cos θW .
• tβ ≡ tan β.

They will be further explained in the text below.

2 Calculation of diagrams

In this section we give some details regarding the renor-
malization procedure and the calculation of the tree-level
and higher-order corrections to the production of sleptons
in e+e− collisions. The diagrams and corresponding ampli-
tudes have been obtained with FeynArts (version 3.9)
[45–47], using our MSSM model file (including the MSSM
counterterms) of Ref. [48]. The further evaluation has been
performed with FormCalc (version 9.5) and LoopTools
(version 2.14) [49,50].

2.1 The complex MSSM

The cross sections (1) and (2) are calculated at the one-loop
level, including soft, hard and collinear QED radiation; see
the next section. This requires the simultaneous renormaliza-
tion of the gauge-boson sector, the lepton sector as well as the
slepton sector of the cMSSM. We give a few relevant details
as regards these sectors and their renormalization. More
details and the application to Higgs-boson and SUSY par-
ticle decays can be found in Refs. [27–32,48,51–55]. Simi-
larly, the application to Higgs-boson and chargino/neutralino
production cross sections at e+e− colliders are given in
Refs. [56–58].

The renormalization of the fermion and gauge-boson sec-
tor follows strictly Ref. [48] and the references therein (see
especially Ref. [59]). This defines in particular the coun-
terterm δtβ , as well as the counterterms for the Z boson
mass, δM2

Z , and for the sine of the weak mixing angle, δsw

(with sw = √
1 − c2

w =
√

1 − M2
W /M2

Z , where MW and
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MZ denote the W and Z boson masses, respectively). For the
fermion sector we use the default values as given in Ref. [48].

The renormalization of the slepton sector is implemented
just as the “mb, Ab DR” (RS2) scheme of Refs. [52–54], but
extended to sleptons and all generations, also including the
corresponding sfermion shifts.1

The up-type squarks (ũg = {ũ, c̃, t̃}), the neutrino-type
sleptons (ν̃g = {ν̃e, ν̃μ, ν̃τ }), the down-type squarks (d̃g =
{d̃, s̃, b̃}), and the electron-type sleptons (ẽg = {ẽ, μ̃, τ̃ })
are renormalized on-shell. The latter two via option O2 of
Refs. [52,53].

The “mb, Ab DR” scheme of Refs. [52–54], extended to
all generations is herein after referred to asmixed scheme, of
course not to be confused with the mixed scheme of Ref. [48].

The schemes affecting ẽg and d̃g are chosen with the vari-
able $SfScheme[t,g]:

$SfScheme[2, g] = DR[s] mixed scheme with Aeg DR

$SfScheme[4, g] = DR[s] mixed scheme with Adg DR

The sfermions are on-shell, i.e. the sfermion index s runs
over both values 1, 2.

dMSfsq1[1, 1, 1, g] ≡ δm2
ν̃g1

= R̃e
(
	ν̃g (m

2
ν̃g1

)
)

11,

(3a)

dMSfsq1[s, s, 2, g] ≡ δm2
ẽgs

= R̃e
(
	ẽg (m

2
ẽgs

)
)
ss,

(3b)

dMSfsq1[s, s, 3, g] ≡ δm2
ũgs

= R̃e
(
	ũg (m

2
ũgs

)
)
ss,

(3c)

dMSfsq1[s, s, 4, g] ≡ δm2
d̃gs

= R̃e
(
	d̃g

(m2
d̃gs

)
)
ss .

(3d)

The non-diagonal entries of the up-type mass matrix are
determined by [52,53]

dMSfsq1[1,2,3, g] ≡ δYug = 1

2
R̃e

(
	ũg (m

2
ũg1

)

+ 	ũg (m
2
ũg2

)
)

12, (3e)

dMSfsq1[2,1,3, g] ≡ δY ∗
ug = 1

2
R̃e

(
	ũg (m

2
ũg1

)

+ 	ũg (m
2
ũg2

)
)

21. (3f)

For clarity of notation we furthermore define the auxiliary
constants

1 The main difference between the renormalization in Ref. [48] and the
one used in this paper is that we impose a further on-shell renormal-
ization condition for the dg- and eg-type sfermion masses, including an
explicit restoration of the SU (2)L relation; see below.

dMsq12Sf1[2, g] ≡δM2
ẽg,12 = meg (δA

∗
eg − μδtβ − tβ δμ)

+ (A∗
eg − μ tβ) δmeg , (4a)

dMsq12Sf1[4, g] ≡δM2
d̃g,12

= mdg (δA
∗
dg − μδtβ − tβ δμ)

+ (A∗
dg − μ tβ) δmdg . (4b)

For the bottom quark we choose: δmb = δmDR
b .

In the mixed scheme the down-type off-diagonal mass
counterterms are related as

dMSfsq1[1,2,2, g] ≡ δYeg

= 1

|U ẽg
11 |2 − |U ẽg

12 |2
{
U

ẽg
11U

ẽg∗
21

(
δm2

ẽg1
− δm2

ẽg2

)

+U
ẽg
11U

ẽg∗
22 δM2

ẽg,12 −U
ẽg
12U

ẽg∗
21 δM2∗

ẽg,12

}
, (5a)

dMSfsq1[2,1,2, g] = δY ∗
eg , (5b)

dMSfsq1[1,2,4, g] ≡ δYdg

= 1

|U d̃g
11 |2 − |U d̃g

12 |2
{
U

d̃g
11U

d̃g∗
21

(
δm2

d̃g1
− δm2

d̃g2

)

+U
d̃g
11U

d̃g∗
22 δM2

d̃g,12
−U

d̃g
12U

d̃g∗
21 δM2∗

d̃g,12

}
, (5c)

dMSfsq1[2,1,4, g] = δY ∗
dg . (5d)

The trilinear couplings A ftg ≡ (
A ft

)
gg are renormalized by

dAf1[2, g, g] ≡ δAeg =
{

1

meg

[
U

ẽg
11U

ẽg∗
12 (δm2

ẽg1
− δm2

ẽg2
)

+U
ẽg
11U

ẽg∗
22 δY ∗

eg +U
ẽg∗
12 U

ẽg
21δYeg

− (Aeg − μ∗tβ) δmeg

]

+ tβ δμ∗ + μ∗δtβ
}

[div]
, (6a)

dAf1[3, g, g] ≡ δAug = 1

mug

[
U

ũg
11U

ũg∗
12 (δm2

ũg1
− δm2

ũg2
)

+U
ũg
11U

ũg∗
22 δY ∗

ug +U
ũg∗
12 U

ũg
21 δYug

− (
Aug − μ∗/tβ

)
δmug

]

+ δμ∗/tβ − μ∗δtβ/t2
β, (6b)

dAf1[4, g, g] ≡ δAdg =
{

1

mdg

[
U

d̃g
11U

d̃g∗
12 (δm2

d̃g1
− δm2

d̃g2
)

+U
d̃g
11U

d̃g∗
22 δY ∗

dg +U
d̃g∗
12 U

d̃g
21 δYdg

− (Adg − μ∗tβ) δmdg

]

+ tβ δμ∗ + μ∗δtβ
}

[div]
, (6c)

where the subscripted [div] means to take the divergent part
in the mixed scheme only, to effect DR renormalization of
Aeg and Adg [52,53].
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The squark and slepton Z -factors are derived in the OS
scheme and can be found in Section 3.6.1 and 3.6.2 of
Ref. [48].

As now all the sfermion masses are renormalized as on-
shell an explicit restoration of the SU (2)L relation is needed.
Requiring the SU (2)L relation to be valid at the one-loop
level induces the following shifts in the soft SUSY-breaking
parameters:

M2
L̃
(ẽg) = M2

L̃
(ν̃g) + δM2

L̃
(ν̃g) − δM2

L̃
(ẽg), (7)

M2
Q̃
(d̃g) = M2

Q̃
(ũg) + δM2

Q̃
(ũg) − δM2

Q̃
(d̃g) (8)

with

δM2
L̃,Q̃

( f̃ ) = |U f̃
11|2δm2

f̃1
+ |U f̃

12|2δm2
f̃2

−U f̃
22U

f̃ ∗
12 δY f

−U f̃
12U

f̃ ∗
22 δY ∗

f − 2m f δm f

+ M2
Z c2β Q f δs2

w − (I 3
f − Q f s

2
w)(c2β δM2

Z

+ M2
Z δc2β). (9)

Now M2
L̃
(ẽg) and M2

Q̃
(d̃g) are used in the scalar electron-

and down-type mass matrix instead of the parameters M2
L̃,Q̃

in the sfermion mass matrix when calculating the values of
m ẽgs and m d̃gs

. However, with this procedure, both (s = 1, 2)
sfermion masses are shifted, which contradicts our choice of
independent parameters. To keep this choice, also the right-
handed soft SUSY-breaking mass parameters MẼ,D̃ receive
a shift:

M2
Ẽ

= m2
eg |A∗

eg − μ tβ |2
M2

L̃
(ẽg) + m2

eg + M2
Zc2β(I 3

eg − Qeg s
2
w) − m2

ẽgs

− m2
eg − M2

Zc2βQeg s
2
w + m2

ẽgs
, (10)

M2
D̃

=
m2

dg
|A∗

dg
− μ tβ |2

M2
Q̃
(d̃g) + m2

dg
+ M2

Zc2β(I 3
dg

− Qdg s
2
w) − m2

d̃gs

− m2
dg − M2

Zc2βQdg s
2
w + m2

d̃gs
(11)

with our choice of mass ordering, m f̃1
< m f̃2

, we have

s =
⎧
⎨

⎩

1 for M2
L̃

> M2
Ẽ

and/or M2
Q̃

> M2
D̃
,

2 for M2
Ẽ

> M2
L̃

and/or M2
D̃

> M2
Q̃
.

(12)

Taking into account the shift Eq. (10) in MẼ and Eq. (11) in
MD̃ , up to one-loop order,2 the new resulting mass parame-
ters m ẽgs and m d̃gs

are the same as the on-shell masses:

2 In the case of a pure OS scheme for the rMSSM the shifts Eqs. (7),
(8), (10), and (11) result in mass parameters m d̃gs

and m d̃gs
, which are

exactly the same as in Eqs. (13) and (14). This constitutes an important
consistency check of these two different methods.

(
mOS

ẽgs

)2 = (
m ẽgs

)2 + (
δmdep.

ẽgs

)2 − R̃e
(
	ẽg (m

2
ẽgs

)
)
ss, (13)

(
mOS

d̃gs

)2 = (
m

d̃gs

)2 + (
δmdep.

d̃gs

)2 − R̃e
(
	d̃g

(m2
d̃gs

)
)
ss (14)

where δmdep.
ẽgs

and δmdep.
d̃gs

are the dependent mass countert-
erms.

A slightly different slepton sector renormalization is also
described in detail in Ref. [48] and references therein.

2.2 Contributing diagrams

Sample diagrams for the process e+e− → ẽ±
gs ẽ

∓
gs′ and

e+e− → ν̃g ν̃
∗
g are shown in Fig. 1. Not shown are the

diagrams for real (hard and soft) photon radiation. They
are obtained from the corresponding tree-level diagrams by
attaching a photon to the (incoming/outgoing) electron or
slepton. The internal particles in the generically depicted dia-
grams in Fig. 1 are labeled as follows: F can be a SM fermion
f , chargino χ̃±

c or neutralino χ̃0
n ; S can be a sfermion f̃s

or a Higgs (Goldstone) boson h0, H0, A0, H± (G,G±); U
denotes the ghosts uV ; V can be a photon γ or a massive SM
gauge boson, Z orW±. We have neglected all electron–Higgs
couplings and terms proportional to the electron mass when-
ever this is safe, i.e. except when the electron mass appears in
negative powers or in loop integrals. We have verified numer-
ically that these contributions are indeed totally negligible.
For internally appearing Higgs bosons no higher-order cor-
rections to their masses or couplings are taken into account;
these corrections would correspond to effects beyond one-
loop order.3

Moreover, in general, in Fig. 1 we have omitted diagrams
with self-energy type corrections of external (on-shell) par-
ticles. While the contributions from the real parts of the loop
functions are taken into account via the renormalization con-
stants defined by OS renormalization conditions, the contri-
butions coming from the imaginary part of the loop functions
can result in an additional (real) correction if multiplied by
complex parameters. In the analytical and numerical evalu-
ation, these diagrams have been taken into account via the
prescription described in Ref. [48].

Within our one-loop calculation we neglect finite width
effects that can help to cure threshold singularities. Conse-
quently, in the close vicinity of those thresholds our calcula-
tion does not give a reliable result. Switching to a complex
mass scheme [60] would be another possibility to cure this
problem, but its application is beyond the scope of our paper.

The tree-level formulas σtree(e+e− → ẽ±
gs ẽ

∓
gs′) and

σtree(e+e− → ν̃g ν̃
∗
g) are given in Refs. [34,36,40], respec-

3 We found that using loop corrected Higgs-boson masses in the loops
leads to a UV divergent result.
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Fig. 1 Generic tree, self-energy, vertex, box, and counterterm dia-
grams for the process e+e− → l̃gs l̃gs′ (l̃gs = {ẽgs , ν̃g}; g =
1, 2, 3; s, s′ = 1, 2). The additional diagrams, which occur only in
the case of first generation slepton production, are denoted with l̃1s . F

can be a SM fermion, chargino or neutralino; S can be a sfermion or
a Higgs/Goldstone boson; V can be a γ , Z or W±. It should be noted
that electron–Higgs couplings are neglected
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Fig. 2 Phase space slicing
method. The different
contributions to the one-loop
corrections δσ (e+e− → ẽ+

1 ẽ
−
2 )

for our input parameter scenario
S (see Table 1 below) as a
function of �E/E with fixed
�θ/rad = 10−2

sum
hard + coll
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e+e− → ẽ+1 ẽ−
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ΔE/E δσ/fbarn

10−1 3.460 ± 0.003
10−2 3.365 ± 0.007
10−3 3.358 ± 0.011
10−4 3.359 ± 0.015
10−5 3.361 ± 0.020
10−6 3.342 ± 0.023
10−7 3.299 ± 0.028
10−8 3.231 ± 0.028

δσ/fb

tively. Concerning our evaluation of σ(e+e− → ẽ±
gs ẽ

∓
gs′) we

define:

σ(e+e− → ẽ±
gs ẽ

∓
gs′) ≡ σ(e+e− → ẽ+

gs ẽ
−
gs′)

+ σ(e+e− → ẽ−
gs ẽ

+
gs′) ∀ s 	= s′,

(15)

if not indicated otherwise. Differences between the two
charge conjugated processes can appear at the loop level
when complex parameters are taken into account, as will
be discussed in Sect. 4.2.

2.3 Ultraviolet, infrared and collinear divergences

As regularization scheme for the UV divergences we have
used constrained differential renormalization [61], which has
been shown to be equivalent to dimensional reduction [62,63]
at the one-loop level [49,50]. Thus the employed regulariza-
tion scheme preserves SUSY [64,65] and guarantees that the
SUSY relations are kept intact, e.g., that the gauge couplings
of the SM vertices and the Yukawa couplings of the corre-
sponding SUSY vertices also coincide to one-loop order in
the SUSY limit. Therefore no additional shifts, which might
occur when using a different regularization scheme, arise.
All UV divergences cancel in the final result.

Soft photon emission implies numerical problems in the
phase space integration of radiative processes. The phase
space integral diverges in the soft energy region where the
photon momentum becomes very small, leading to infrared
(IR) singularities. Therefore the IR divergences from dia-
grams with an internal photon have to cancel with the ones
from the corresponding real soft radiation. We have included
the soft photon contribution via the code already imple-
mented in FormCalc following the description given in
Ref. [66]. The IR divergences arising from the diagrams
involving a photon are regularized by introducing a photon
mass parameter, λ. All IR divergences, i.e. all divergences in

the limit λ → 0, cancel once virtual and real diagrams for
one process are added. We have numerically checked that
our results do not depend on λ or on �E = δs E = δs

√
s/2

defining the energy cut that separates the soft from the hard
radiation. As one can see from the example in Fig. 2 this
holds for several orders of magnitude. Our numerical results
below have been obtained for fixed δs = 10−3.

Numerical problems in the phase space integration of the
radiative process arise also through collinear photon emis-
sion. Mass singularities emerge as a consequence of the
collinear photon emission off massless particles. But already
very light particles (such as electrons) can produce numeri-
cal instabilities. For the treatment of collinear singularities in
the photon radiation off initial state electrons and positrons
we used the phase space slicing method [67–70], which is
not (yet) implemented in FormCalc and therefore we have
developed and implemented the code necessary for the eval-
uation of collinear contributions; see also Refs. [56,57].

In the phase space slicing method, the phase space is
divided into regions where the integrand is finite (numeri-
cally stable) and regions where it is divergent (or numerically
unstable). In the stable regions the integration is performed
numerically, whereas in the unstable regions it is carried out
(semi-) analytically using approximations for the collinear
photon emission.

The collinear part is constrained by the angular cut-off
parameter �θ , imposed on the angle between the photon and
the (in our case initial state) electron/positron.

The differential cross section for the collinear photon radi-
ation off the initial state e+e− pair corresponds to a convo-
lution

dσcoll(s) = α

π

∫ 1−δs

0
dz dσtree(

√
zs)

×
{[

2 ln

(
�θ

√
s

2me

)
− 1

]
Pee(z) + 1 − z

}
,

(16)
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Fig. 3 Phase space slicing
method. The different
contributions to the one-loop
corrections δσ (e+e− → ẽ+

1 ẽ
−
2 )

for our input parameter scenario
S (see Table 1 below) as a
function of �θ/rad with fixed
�E/E = 10−3

sum
hard
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δσ

with Pee(z) = (1 + z2)/(1 − z) denoting the splitting func-
tion of a photon from the initial e+e− pair. The electron
momentum is reduced (because of the radiated photon) by
the fraction z such that the center-of-mass frame of the hard
process receives a boost. The integration over all possible
factors z is constrained by the soft cut-off δs = �E/E , to
prevent over-counting in the soft energy region.

We have numerically checked that our results do not
depend on the angular cut-off parameter �θ over several
orders of magnitude; see the example in Fig. 3. Our numerical
results below have been obtained for fixed �θ/rad = 10−2.

The one-loop corrections of the differential cross section
are decomposed into the virtual, soft, hard, and collinear parts
as follows:

dσloop = dσvirt(λ) + dσsoft(λ,�E) + dσhard(�E,�θ)

+ dσcoll(�E,�θ). (17)

The hard and collinear parts have been calculated via Monte
Carlo integration algorithms of the CUBA library [71,72] as
implemented in FormCalc [49,50].

3 Comparisons

In this section we present the comparisons with results from
other groups in the literature for slepton production in e+e−
collisions. These comparisons were restricted to the MSSM
with real parameters, with one exception for tree-level tau
slepton pair production. The level of agreement of such com-
parisons (at one-loop order) depends on the correct trans-
formation of the input parameters from our renormalization
scheme into the schemes used in the respective literature,
as well as on the differences in the employed renormaliza-
tion schemes as such. In view of the non-trivial conversions
and the large number of comparisons such transformations
and/or change of our renormalization prescription are beyond

the scope of our paper. In the following we list all relevant
papers in the literature and explain either our comparison, or
why no (meaningful) comparison could be performed.

• In Ref. [33] the production of slepton and squark pairs in
e+e− annihilation and Z decay have been calculated in
the rMSSM at tree level (including arbitrarily polarized
beams). Unfortunately, in Ref. [33] not sufficient infor-
mation as regards their input parameters where given,
rendering a comparison impossible.

• Selectron pair production at e+e− colliders in SUGRA
models were presented in Ref. [34] at tree level. We omit-
ted a comparison with Ref. [34], since implementing the
SUGRA spectrum is beyond the scope of our paper.

• Tree-level tau slepton pair production at muon collid-
ers in the cMSSM were analyzed in Ref. [35] including
CP violation. The center-of-mass energy was assumed
to be around the resonances of the heavy neutral Higgs
bosons, at

√
s � 500 GeV. We used their input param-

eters as far as possible, but we differ from their results,
especially in the case of complex input parameters. This
can most likely be attributed to the differences in the
Higgs-boson mass calculations employed in Ref. [35]
and the current version 2.13.0 of FeynHiggs [59,73–
79], which we use. The cross section (close to the heavy
Higgs boson thresholds) depends strongly on tiny mass
differences of the two heavy neutral Higgs bosons, which
deviate clearly between the two employed calculations,
rendering this comparison not significant.

• In Refs. [36,37] pair production of smuons and selectrons
near threshold in e+e− and e−e− collisions have been
computed in the rMSSM, including Coulomb rescatter-
ing effects.4 Because these near production threshold
effects are beyond the scope of our paper we have omitted
a comparison with Refs. [36,37].

4 It should be noted that Ref. [36] is mainly an extraction of Ref. [37].
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• Ref. [38] deals with selectron pair production at e−e−
and e+e− colliders with polarized beams. The calcula-
tions have been computed in the rMSSM near the pro-
duction threshold. Again, these effects are beyond the
scope of our paper and we have omitted a comparison
with Ref. [38].

• Also Ref. [39] is (mainly) based on Ref. [37]. The gen-
eral production of scalar leptons at linear e+e− collid-
ers has been computed in Ref. [39], including multi-
photon initial state radiation and polarized beams. The
authors used (older versions of)FeynArts,FeynCalc
[80] and LoopTools for their calculations. As input
parameters they used the mSUGRA parameter point
SPS1a [81], translated from the DR to on-shell val-
ues; see the appendix of Ref. [39]. We also used this
parameter point (as far as possible) and reproduced suc-
cessfully their tree-level results in their Figs. 2 and 3a
(see Ref. [39]) in the upper row of our Fig. 4. Our
(relative) one-loop results are in qualitative agreement
with the ones in their Figs. 17 and 18a of Ref. [39];
see the lower row in our Fig. 4. The quantitative
numerical differences can be explained with the dif-
ferent renormalization schemes, slightly different input
parameters, and the different treatment of the photon
bremsstrahlung, where they have included multi-photon
emission while we kept our calculation atO(α). It should
also be kept in mind that the relative one-loop corrections
are sensitive to every kind of difference.

• Ref. [40] is an addendum to Ref. [39] dealing with
e+e− → ν̃g ν̃

∗
g . As input parameters they used the SUSY

parameter point SPS1a translated from the DR to on-
shell values; see Ref. [81]. We reproduced successfully
e+e− → ν̃μν̃∗

μ and e+e− → ν̃τ ν̃
∗
τ of Ref. [40] in our

Fig. 5. The (quantitative) difference in the relative loop
corrections can be explained with the different renormal-
ization schemes, slightly different input parameters, and
the different treatment of the photon radiation, where
they have included multi-photon emission while we kept
our calculation at O(α). The process e+e− → ν̃eν̃

∗
e , on

the other hand, while in rather good qualitative agree-
ment, differ quantitative significantly already at the tree
level. Unfortunately, we were not able to trace back the
source of the difference. However, since (in our auto-
mated approach) we agree with other tree-level calcula-
tions, we are confident that our results are correct.

• We performed a comparison with Ref. [41] using their
input parameters (as far as possible). They have calcu-
lated (third generation) scalar fermion production in the
rMSSM within an on-shell scheme close to ours at the
“full” one-loop level (but without explicit QED radia-
tion). They also used (older versions of)FeynTools for
their calculations. We found very good agreement with
their Fig. 13, as can be seen in our Fig. 6. The tiny differ-

ences can easily be explained with the slightly different
SM input parameters and the slightly different renormal-
ization scheme.

• In Refs. [42,43] the “complete” one-loop corrections
to e+e− → f̃s f̃ ∗

s′ (third generation) in the rMSSM
were analyzed numerically including photon correc-
tions.5 However, their numerical results have been pre-
sented taking into account only weak corrections. They
used (an older version of) LoopTools for their calcu-
lations and their own on-shell renormalization procedure
together with a α(MZ )|MS = 1/127.934 scheme. We
used their “Scenario 1- gaugino” (as far as possible) for
our comparison. We are in rather good agreement with
their Figs. 4c, f, 7a, d which can be seen in our Fig. 7.
The minor differences can be explained (as usual) with
the slightly different input parameters and the different
renormalization scheme.6

• Finally, in Refs. [43,44] fullO(α) corrections to e+e− →
f̃s f̃ ∗

s′ have been calculated in the MSSM with real param-
eters. Polarized electrons and multi-photon bremsstrahlung
were included in the phenomenological analysis (where
for the latter, based on the O(α) corrections as detailed
in Ref. [39], we roughly estimate an effect at the per-
cent level). As input parameters they used the mSUGRA
parameter point SPS1a′ [81], translated from the DR to
on-shell values. We also used this parameter point (as
far as possible) and reproduced parts of their results in
their Figs. 7 and 8 (see Ref. [44]) in our Fig. 8. We are
in good agreement for the processes e+e− → τ̃+

2 τ̃−
2 and

e+e− → τ̃±
1 τ̃∓

2 , while we disagree in e+e− → τ̃+
1 τ̃−

1
and e+e− → ν̃τ ν̃

∗
τ already at tree-level. Unfortunately,

we were not able to track down the source of the dif-
ferences. However, since we agree (in our automated
approach) with other tree-level calculations, we are con-
fident that our results are correct.

To conclude, in most cases where a meaningful compari-
son could be performed, we found good agreement with the
literature where expected, and the encountered differences
can be traced back to different renormalization schemes, cor-
responding mismatches in the input parameters and small dif-
ferences in the SM parameters. Nevertheless, in some cases
we disagree already significantly at tree-level but we were
not able to track down the source of these differences. This
does not disprove the reliability of our calculation because
our computational method/code has already been success-

5 It should be noted that Ref. [43] is the “source” of Refs. [42,44].
6 It should be noted that the sum, but not the individual contributions,
of vertex (vert) and propagator (prop) contributions (in our upper right
plot of Fig. 7) are (nearly) the same as the corresponding sum in Fig. 4f
of Ref. [42]. This is because of the different renormalization of the
(charged) slepton sector.
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Fig. 4 Comparison with Ref. [39] for e+e− → ẽs ẽs′ , μ̃s μ̃s′ . Born cross sections (upper row) and complete relative one-loop results (lower row)
are shown for the SPS1a parameter point as given according to Ref. [39] as a function of

√
s

fully tested and compared with quite a few other programs;
see Refs. [27–29,31,48,51,52,54,55]. After comparing with
the existing literature we would like to stress again that here
we present for the first time a full one-loop calculation of
σ(e+e− → ẽ±

gs ẽ
∓
gs′) and σ(e+e− → ν̃g ν̃

∗
g) in the cMSSM,

using the scheme that was employed successfully already
for the full one-loop decays of the (produced) sleptons. The
various calculations can readily be used together for the full
production and decay chain.

4 Numerical analysis

In this section we present our numerical analysis of slepton
production at e+e− colliders in the cMSSM. In the figures
below we show the cross sections at the tree level (“tree”)
and at the full one-loop level (“full”), which is the cross sec-
tion includingall one-loop corrections as described in Sect. 2.

TheCCN[1] renormalization scheme (i.e. OS conditions for
the two charginos and the lightest neutralino) has been used
for most evaluations. In cases where the CCN[1] scheme
is divergent (i.e. M2 = μ) and/or unreliable, also some
CNN[c, n, n′] schemes (OS conditions for one chargino and
two neutralinos) have been used, as indicated below; see
Ref. [48] for further informations to these renormalization
schemes. It should be noted that within the CCN[1] scheme
at μ = M2 a divergence already in the tree-level result can
be induced by δμ through the shifted scalar lepton masses:7

δμ in Eq. (4a) enters via Eq. (5a) into Eq. (9) from which
the slepton shifts are calculated. The divergence is suppressed
withmeg (see Eq. (4a)). In several analyses in Sect. 4 in order
to overcome the problem with a divergent tree-level result,
we switched to the tree-level result of the CNN[1,2,3]

7 We use the same (shifted) sfermion masses for the tree-level and the
full one-loop corrected cross section.
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Table 1 MSSM default parameters for the numerical investigation;
all parameters (except of tβ ) are in GeV. The values for the trilinear
sfermion Higgs couplings, A f are chosen to be real (except for Aeg
which can be complex) and such that charge- and/or color-breaking
minima are avoided [85–91]. It should be noted that we chose com-

mon values MQ̃,Ũ ,D̃ = 2000 GeV for all squark generations, and
ML̃ = MẼ + 50 GeV for all slepton generations. For the sleptons
we show the tree-level values as well as their OS masses in our DR[2]
renormalization scheme; see Sect. 2.1

Scen.
√
s tβ μ MH± MQ̃,Ũ ,D̃ MẼ Aug Adg |Aeg | |M1| M2 M3

S 1000 10 350 1200 2000 300 2600 2000 2000 400 600 2000

m ν̃e,μ,τ
mẽ1 mẽ2 mμ̃1 mμ̃2 m τ̃1 m τ̃2

Tree 344.129 303.013 353.212 303.012 353.213 302.664 353.519

OS 344.129 303.013 352.973 303.012 352.974 302.664 353.264

scheme, which is free of such a divergence. When several
schemes are shown in one plot, a full comparison would
require the transition of the relevant input parameters (which
are varied). However, we do not intend to perform an analysis
of the advantages and disadvantages of the various renormal-
ization schemes. We want to demonstrate, however, that it is
always possible to choose a “good” renormalization scheme,
i.e. a scheme that leads to stable and not excessively large
higher-order corrections. Consequently, the above mentioned
parameter conversion is not (yet) included in our calculation.

We first define the numerical scenario for the cross sec-
tion evaluation. Then we start the numerical analysis with the
cross sections of e+e− → ẽ±

gs ẽ
∓
gs′ (g = 1, 2, 3; s, s′ = 1, 2)

in Sect. 4.2, evaluated as a function of
√
s, MẼ , μ, |M1|

and/or M2, ϕAeg
or ϕM1 , the phase of M1. In some cases also

the tβ dependence is shown. Then we turn to the processes
e+e− → ν̃g ν̃

∗
g in Sect. 4.3. All these processes are of partic-

ular interest for ILC and CLIC analyses [16–20,22,23] (as
emphasized in Sect. 1).

4.1 Parameter settings

The renormalization scale μR has been set to the center-of-
mass energy,

√
s. The SM parameters are chosen as follows;

see also [82]:

• Fermion masses (on-shell masses, if not indicated differ-
ently):

me = 0.5109989461 MeV, mνe = 0,

mμ = 105.6583745 MeV, mνμ = 0,

mτ = 1776.86 MeV, mντ = 0,

mu = 70.59 MeV, md = 70.59 MeV,

mc = 1.280 GeV, ms = 96.00 MeV,

mt = 173.1 GeV, mb = 2.954 GeV. (18)

According to Ref. [82], ms is an estimate of a so-called
“current quark mass” in the MS scheme at the scale

μ ≈ 2 GeV. mc ≡ mc(mc) is the “running” mass in the
MS scheme andmb ≡ mDR

b is the DR bottom quark mass
as calculated in Ref. [54].mu andmd are effective param-
eters, calculated through the hadronic contributions to

�α
(5)
had(MZ ) = α

π

∑

f =u,c,d,s,b

Q2
f

(

ln
M2

Z

m2
f

− 5

3

)

≈ 0.02764.

(19)

• Gauge–boson masses:

MZ = 91.1876 GeV, MW = 80.385 GeV. (20)

• Coupling constant:

α(0) = 1/137.035999139. (21)

The SUSY parameters are chosen according to the sce-
nario S, shown in Table 1. This scenario is viable for the
various cMSSM slepton production modes, i.e. not pick-
ing specific parameters for each cross section. They are in
particular in agreement with the relevant SUSY searches of
ATLAS and CMS: Our electroweak spectrum is not cov-
ered by the latest ATLAS/CMS exclusion bounds. Two limits
have to be distinguished. The limits not taking into account
a possible intermediate slepton exclude a lightest neutralino
only well below 300 GeV [83,84], whereas in S we have
mχ̃0

1
≈ 323 GeV. Limits with intermediary sleptons often

assume a chargino decay to lepton and sneutrino, while in
our scenario mχ̃±

1
< m ν̃e,μ,τ

. Furthermore, the exclusion
bounds given in the mχ̃0

1
-mχ̃0

2
mass plane (with mχ̃0

2
≈ mχ̃±

1
assumed) above mχ̃0

2
∼ 300 GeV do not cover a com-

pressed spectrum [83,92] for χ̃0
1 , χ̃0

2 , and χ̃±
1 . In particu-

lar our scenario S assumed masses of mχ̃0
1

≈ 323 GeV and
mχ̃0

2
≈ 354 GeV, which are not excluded.

It should be noted that higher-order corrected Higgs–
boson masses do not enter our calculation.8 However, we

8 Since we work in the MSSM with complex parameters, MH± is cho-
sen as input parameter, and higher-order corrections affect only the neu-
tral Higgs-boson spectrum; see Ref. [93] for the most recent evaluation.
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ensured that over larger parts of the parameter space the
lightest Higgs-boson mass is around ∼ 125±3 GeV to indi-
cate the phenomenological validity of our scenarios. In our
numerical evaluation we will show the variation with

√
s (up

to 3 TeV, shown in the upper left plot of the respective fig-
ures), MẼ (from 100 to 500 GeV, upper right plot), μ (starting
at μ = 100 GeV up to μ = 1000 GeV, shown in the mid-
dle/lower left plots), |M1| or M2 (from 100 to 1000 GeV,
middle/lower right plots), and ϕAeg

or ϕM1 (between 0◦ and
360◦, lower right plots). The dependence of tβ turned out to
be rather small, therefore we show it only in a few cases,
where it is of special interest.

Concerning the complex parameters, some more com-
ments are in order. Potentially complex parameters that enter
the selectron and electron sneutrino production cross sections
at tree level (via the t-channel exchange of a neutralino or
chargino) are the soft SUSY-breaking parameters M1 and M2

as well as the Higgs mixing parameter μ. Also trilinear slep-
ton couplings Aeg enter the tree-level production cross sec-
tions. However, when performing an analysis involving com-
plex parameters it should be noted that the results for physical
observables are affected only by certain combinations of the
complex phases of the parameters μ, the trilinear couplings
A f and the gaugino mass parameters M1,2,3 [94,95]. It is
possible, for instance, to rotate the phase ϕM2 away. Experi-
mental constraints on the (combinations of) complex phases
arise, in particular, from their contributions to electric dipole
moments of the electron and the neutron (see Refs. [96–
98] and the references therein), of the deuteron [99] and of
heavy quarks [100,101]. While SM contributions enter only
at the three-loop level, due to its complex phases the MSSM
can contribute already at one-loop order. Large phases in
the first two generations of sfermions can only be accom-
modated if these generations are assumed to be very heavy
[102,103] or large cancellations occur [104–106]; see, how-
ever, the discussion in Ref. [107]. A review can be found in
Ref. [108]. Recently additional constraints at the two-loop
level on some CP phases of SUSY models have been inves-
tigated in Ref. [109]. Accordingly (using the convention that
ϕM2 = 0, as done in this paper), in particular, the phase ϕμ is
tightly constrained [110], and we set it to zero. On the other
hand, the bounds on the phases of the third-generation tri-
linear couplings are much weaker. Consequently, the largest
effects on the slepton production cross sections at the tree
level are expected from the complex gaugino mass parame-
ter M1, i.e. from ϕM1 . As mentioned above, the only other
phase entering at the tree level, is ϕAeg

. This motivates our
choice of ϕM1 and ϕAeg

as parameters to be varied.
Since now complex parameters can appear in the cou-

plings, contributions from absorptive parts of self-energy
type corrections on external legs can arise. The corresponding
formulas for an inclusion of these absorptive contributions

via finite wave function correction factors can be found in
Refs. [48,54].

The numerical results shown in the next subsections are
of course dependent on the choice of the SUSY parameters.
Nevertheless, they give an idea of the relevance of the full
one-loop corrections.

4.2 The process e+e− → ẽ±
gs ẽ

∓
gs′

In Figs. 9, 10, 11, 12, 13, 14, 15, 16, and 17, we show
the results for the processes e+e− → ẽ±

gs ẽ
∓
gs′ (g =

1, 2, 3; s, s′ = 1, 2) as a function of
√
s, MẼ , μ, |M1|,

M2, tβ , ϕM1 , and ϕAeg
. It should be noted that for s → ∞

decreasing cross sections ∝ ln (s)/s for the first and ∝ 1/s
for the second and third slepton generations are expected; see
Ref. [39]. We also remind the reader that σ(e+e− → ẽ±

gs ẽ
∓
gs′)

denotes the sum of the two charge conjugated processes
∀ s 	= s′; see Eq. (15).

We start with the process e+e− → ẽ+
1 ẽ

−
1 shown in Fig. 9.

Away from the production threshold, loop corrections of
∼ +6% at

√
s = 1000 GeV are found in scenario S (see

Table 1), with a maximum of 27 fb at
√
s ≈ 1700 GeV. The

relative size of the loop corrections increase with increas-
ing

√
s and reach ∼ +21% at

√
s = 3000 GeV. A “tree

crossing” (i.e. where the loop corrections become zero and
therefore cross the tree-level result) can be found at

√
s ≈

825 GeV.
The cross sections are decreasing with increasing MẼ due

to kinematics, and the full one-loop result has its maximum
of ∼ 28 fb at MẼ = 100 GeV. Analogously the relative cor-
rections are decreasing from ∼ +13% at MẼ = 100 GeV to
∼ −30% at MẼ = 490 GeV. The tree crossing takes place
at MẼ ≈ 375 GeV. For higher MẼ values the loop cor-
rections are negative, where the relative size becomes large
due to the (relative) smallness of the tree-level results, which
goes to zero for MẼ ≈ 500 GeV due to kinematics. For the
other parameter variations one can conclude that a cross sec-
tion roughly twice as large can be possible for very low MẼ
(which, however, are challenged by the current ATLAS/CMS
exclusion bounds).

With increasing μ in S (middle left plot) we find a
decrease of the loop corrected production cross section
within CCN[1] (green dashed line). The relative loop cor-
rections reach ∼ +18% at μ = 100 GeV (at the bor-
der of the experimental exclusion bounds) and ∼ +7% at
μ = 600-1000 GeV. One can see the expected breakdown
of the CCN[1] scheme for μ = M2, i.e. in our case at
μ ≈ M2 = 600 GeV (see also Refs. [31,32]). Therefore,
in the middle left plot of Fig. 9 also the corresponding results
are shown for the CNN[1,2,3] (yellow dash-dotted line)
and CNN[2,1,3] (black dash-dotted line) schemes, which
are smooth at μ = M2. Outside the region of μ ∼ M2
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Fig. 9 σ(e+e− → ẽ+
1 ẽ

−
1 ). Tree-level and full one-loop corrected cross

sections are shown with parameters chosen according to S; see Table 1.
The upper plots show the cross sections with

√
s (left) and MẼ (right)

varied; the middle plots show μ (left) and |M1| (right) varied; the lower
plots show M2 (left) and ϕM1 (right) varied. All masses and energies
are in GeV

123



Eur. Phys. J. C (2018) 78 :536 Page 15 of 29 536

full
tree

e+e− → ẽ±
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1 ẽ∓
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Fig. 10 σ(e+e− → ẽ±
1 ẽ

∓
2 ). Tree-level and full one-loop corrected

cross sections are shown with parameters chosen according to S; see
Table 1. The upper plots show the cross sections with

√
s (left) and MẼ

(right) varied; the middle plots show μ (left) and |M1| (right) varied;
the lower plots show M2 (left) and ϕM1 (right) varied. All masses and
energies are in GeV
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Fig. 11 σ(e+e− → ẽ+
2 ẽ

−
2 ). Tree-level and full one-loop corrected

cross sections are shown with parameters chosen according to S; see
Table 1. The upper plots show the cross sections with

√
s (left) and MẼ

(right) varied; the middle plots show μ (left) and |M1| (right) varied;
the lower plots show M2 (left) and ϕM1 (right) varied. All masses and
energies are in GeV
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1 ). Tree-level and full one-loop corrected cross sections are shown with parameters chosen according to S; see Table 1.
The plots show the cross sections with
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s (left) and MẼ (right) varied. All masses and energies are in GeV
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Fig. 13 σ(e+e− → μ̃±
1 μ̃∓

2 ). Tree-level and full one-loop corrected cross sections are shown with parameters chosen according to S; see Table 1.
The plots show the cross sections with

√
s (left) and MẼ (right) varied. All masses and energies are in GeV and the cross sections are in attobarn

the scheme CCN[1] is expected to be reliable (in most
cases), since each of the three OS conditions is strongly con-
nected to one of the three input parameters, |M1|, M2 and
μ. Similarly, CNN[1,2,3] is expected to be reliable for
μ smaller than M2, as in this case, again each of the three
OS renormalization conditions is strongly connected to the
three input parameters. This behavior can be observed in the
plot: for μ <∼ M2 = 600 GeV CNN[1,2,3] is reliable,
while for μ >∼ M2 = 600 GeV it becomes unreliable. While
δμ in the CNN[2,1,3] scheme has a strong minimum at
μ ≈ 421 GeV, dominating the loop corrections, it approxi-
mates CCN[1] very good for μ >∼ 500 GeV. A rising devia-
tion between the schemes can be observed for μ < 250 GeV,
where the schemes CNN[1,2,3] and CNN[2,1,3] are
nearly constant, i.e. independent of μ. Overall, it is possible

to find for every value of μ a renormalization scheme that
behaves stable and “flat” w.r.t. the tree-level cross section.

With increasing |M1| in S (middle right plot) we find
a strong decrease of the production cross section, due to
the change in the interference of the χ̃0

1 (dominant for

|M1| <∼ 340 GeV), χ̃0
3 (dominant for 340 GeV <∼ |M1| <∼

610 GeV), and χ̃0
4 (dominant for |M1| >∼ 610 GeV) in the

t-channel. It should be noted that there is no tree crossing
in this plot. The loop corrections decrease from ∼ +11%
at |M1| = 100 GeV to ∼ +3.8% at |M1| = 530 GeV and
then increase to ∼ +15% at |M1| = 920 GeV. However,
for |M1| >∼ 700 GeV the production cross section becomes
relatively small.

The dependence on M2 of the cross section in S is shown
in the lower left plot. One can clearly see the expected break-
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1 ). Tree-level and full one-loop corrected cross sections are shown with parameters chosen according to S; see Table 1.
The upper plots show the cross sections with

√
s (left) and MẼ (right) varied; the lower plots show tβ (left) and ϕAeg
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Fig. 16 σ(e+e− → τ̃±
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2 ). Tree-level and full one-loop corrected
cross sections are shown with parameters chosen according to S; see
Table 1. The upper plots show the cross sections with

√
s (left) and

MẼ (right) varied; the middle plots show μ (left) and M2 (right) varied;
the lower plots show tβ (left) and ϕAeg

(right) varied. All masses and
energies are in GeV
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s (left) and MẼ (right) varied; the lower plots show tβ (left) and ϕAeg
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down of the CCN[1] scheme for M2 = μ, i.e. in our case
at M2 ≈ μ = 350 GeV (see also Refs. [31,32]) and the
smooth behavior of CNN[2,2,3] (red dashed line) around
M2 ∼ μ = 350 GeV. Within CCN[1] the cross section
even turns out to be negative for M2 < 154 GeV due to a
maximum of δM1 at M2 ≈ 20 GeV, dominating the loop
corrections. This renders the CCN[1] scheme to be unre-
liable for M2

<∼ μ. For M2
>∼ μ, on the other hand, the

scheme CCN[1] is expected to be reliable, since each of the
three OS conditions is strongly connected to one of the three
input parameters, |M1|, M2 and μ. The loop corrections at
the level of ∼ +6% are found to be nearly independent of M2

for M2
>∼ μ within the CCN[1] scheme. And corrections of

∼ +7% are found to be (nearly) independent of M2 within
the CNN[2,2,3] scheme.

Now we turn to the dependence on complex parameters.
We find that the dependence on the complex phase ϕM1 of
the cross section in S is large for CCN[1] (lower right plot,

green dashed line). Loop corrections at the level of ∼ +6%
at ϕM1 = 0◦, 360◦ and ∼ −48% at ϕM1 = 180◦ are found. It
should be noted here, that there is no divergency or threshold
at ϕM1 = 180◦, the cross section is smooth/finite; see the
inlay in the lower right plot. This large structure is caused
by a strong (local) minimum of the renormalization constant
δM1 at ϕM1 = 180◦, dominating the loop corrections. Using
another renormalization scheme (e.g.CNN[2,2,3]) the dip
disappears, as can be seen in the plot. The one-loop correc-
tions then reach ∼ +7% and are nearly independent from
ϕM1 . The loop effects of ϕAeg

, on the other hand, are tiny and
therefore not shown explicitely.

The relative corrections for the process e+e− → ẽ±
1 ẽ

∓
2 , as

shown in Fig. 10, are rather large for the parameter set chosen;
see Table 1. In the upper left plot of Fig. 10 the relative cor-
rections grow from ∼ +16.6% at

√
s ≈ 1000 GeV (i.e. S)

up to ∼ +35% at
√
s ≈ 3000 GeV. The tree crossing takes

place at
√
s ≈ 730 GeV (where the higher-order corrections
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are relatively small around the crossing) and the maximum
cross section of 52 fb is reached at

√
s ≈ 850 GeV.

The dependence on MẼ is shown in the upper right plot of
Fig. 10 and follows the same pattern as for e+e− → ẽ+

1 ẽ
−
1 ,

i.e. a strong decrease with increasing MẼ as obvious from
kinematics. The loop corrections decrease from ∼ +28% at
MẼ = 100 GeV to ∼ −31% at MẼ = 470 GeV (the latter
is due to the smallness of the tree-level cross section), with
a tree crossing at MẼ = 425 GeV.

We show the dependence on the Higgs mixing parameter
μ in the middle left plot. It is rather linear and decreasing from
∼ 48.6 fb at small μ down to ∼ 46.9 fb at μ = 1000 GeV.
The relative corrections are ∼ +17.5% at μ = 100 GeV
and ∼ 16.6% at μ = 1000 GeV. In this case the (expected)
breakdown of the CCN[1] scheme for μ ≈ M2 = 600 GeV
is rather weakly pronounced. The corresponding results are
shown for the CNN[1,1,2] and CNN[2,1,3] schemes,
which are smooth at μ = M2. For small and large values of
μ CNN[1,1,2] differs from CCN[1], whereas the other
scheme, CNN[2,1,3], is very close to CCN[1]. While
the CNN[2,1,3] scheme has a strong (local) minimum of
δμ at μ ≈ 421 GeV, dominating the loop corrections, it
approximates CCN[1] rather good for all other values of μ.

The dependence on |M1| is shown in the middle right
plot of Fig. 10. A strong dependence of the tree-level cross
section can be observed (from the dominant neutralino t-
channel exchange), which is amplified at the one-loop level.
The size of the loop corrections varies from ∼ +16.6% at
|M1| = 350 GeV (i.e. S) to ∼ +15.2% at |M1| = 750 GeV
and then increase again to ∼ +16.1% at |M1| = 1000 GeV.

The cross section dependence on M2 in S is shown in
the lower left plot. Again, one can see the (expected) break-
down of the CCN[1] scheme for M2 ≈ μ = 350 GeV and
the smooth behavior of CNN[2,2,3] around M2 ≈ μ =
350 GeV. For M2

>∼ μ the scheme CCN[1] is expected to
be reliable, while CNN[2,2,3] is reliable for all values of
M2; see above. The combined (reliable) one-loop corrections
of CCN[1] and CNN[2,2,3] at the level of ∼ +16% are
found to be only weakly dependent of M2.

The dependence on the complex phase ϕM1 of the cross
section in S is shown in the lower right plot of Fig. 10.
In this case it turns out to be substantial, already changing
the tree-level cross section by up to 3.7%. The relative loop
corrections (σloop/σtree) vary with ϕM1 between ∼ +14.6%
at ϕM1 = 180◦ and ∼ +17.3% at ϕM1 = 158◦, 203◦
for CCN[1]. Again, the cross section does not diverge at
ϕM1 = 180◦. This structure is caused by a minimum of δM1

at ϕM1 = 180◦, dominating the loop corrections. Using the
CNN[2,2,3] scheme (red dashed line) the dip disappears,
as can be seen in the plot. The relative loop corrections reach
∼ +17.7% at ϕM1 = 180◦. For our parameter set S, with
the complex phase ϕM1 , the CP asymmetry turns out to be
(numerically) zero, which can be seen from the identical

green dashed (ẽ+
1 ẽ

−
2 ) and yellow dash-dotted (ẽ−

1 ẽ
+
2 ) lines.

Finally the variation with ϕAeg
is again negligible and not

shown here.
We now turn to the process e+e− → ẽ+

2 ẽ
−
2 shown in

Fig. 11, which is found to be of O(10 fb). As a function of√
s (upper left plot) the loop corrections range from ∼ −3%

at
√
s = 1000 GeV (i.e. S) to ∼ −10% at

√
s = 3000 GeV.

The cross sections are decreasing with increasing MẼ due
to kinematics, and the full one-loop result has its maximum
of ∼ 11.6 fb at MẼ = 100 GeV. Analogously the relative
corrections are decreasing from ∼ +4% at MẼ = 100 GeV
to ∼ −23% at MẼ = 440 GeV. The tree crossing takes place
at MẼ ≈ 190 GeV. For higher MẼ values the loop correc-
tions are negative, where the relative size becomes large due
to the (relative) smallness of the tree-level results, which goes
to zero for MẼ ≈ 450 GeV due to kinematics. For the other
parameter variations one can conclude that a cross section
twice as large can be possible for very low MẼ (which how-
ever are challenged by the current ATLAS/CMS exclusion
bounds).

The dependence on μ (middle left plot) is rather small.
The one-loop corrections within the CCN[1] scheme are
∼ +2% at μ = 100 GeV, ∼ −2% at μ = 1000 GeV
and have a tree crossing at μ ≈ 150 GeV. The correspond-
ing smooth9 results CNN[1,1,2] and CNN[1,2,3] are
shown, but both differ for small values (and CNN[1,2,3]
also for large values) of μ significantly fromCCN[1]. There-
fore, in addition we also show the CNN[2,1,3] scheme
(black dash-dotted line) which approximates CCN[1] very
good for all values of μ except for μ ≈ 421 GeV where
δμ has a strong (local) minimum, that dominates the loop
corrections in this part of the parameter space.

With increasing |M1| inS (middle right plot) we find again
a strong decrease of the production cross section, due to the
change in the interference of the (dominant) neutralinos in
the t-channel. It should be noted that there is no tree cross-
ing in this plot. The loop corrections are rather small and
decrease from ∼ −0.6% at |M1| = 100 GeV to ∼ −3%
at |M1| = 470 GeV and then increase to ∼ −0.9% at
|M1| = 1000 GeV.

The dependence on M2 of the cross section inS is shown in
the lower left plot of Fig. 11. The tree cross section decreases
strongly from ∼ 62 fb at M2 = 120 GeV down to ∼ 2 fb at
M2 = 1000 GeV, because of the change in the interference
of the χ̃0

1 (dominant for M2
<∼ 300 GeV), χ̃0

3 (dominant

for 300 GeV <∼ M2
<∼ 480 GeV), and χ̃0

4 (dominant for

M2
>∼ 480 GeV) in the t-channel. As before, one can see

the breakdown of the CCN[1] scheme for M2 ≈ μ = 350,
and the smooth behavior of CNN[2,2,3] (red dashed line)

9 The peak at μ ≈ 437 GeV in the CNN[1,1,2] scheme is the
anomalous threshold generated by the C0(s,m2

ẽ2
,m2

ẽ2
,m2

χ̃0
1
,m2

χ̃0
4
,m2

e)

function.
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around M2 ≈ μ = 350 GeV. Again, CCN[1] is reliable
for M2

>∼ 400 GeV while CNN[2,2,3] is reliable for all
values of M2 and very close to CCN[1]. The (reliable) one-
loop corrections of CCN[1] and CNN[2,2,3] are at the
level of ∼ ±5%. The CNN[1,2,3] scheme (not shown) is
also smooth for all values of M2 and can reach ∼ +20% at
M2 ≈ 800 GeV.

Now we turn to the dependence on complex parameters.
We find that the dependence on the complex phase ϕM1 of
the cross section in S is rather large (lower right plot) for the
CCN[1] scheme. Loop corrections at the level of ∼ −3% at
ϕM1 = 0◦, 360◦ and ∼ −22% at ϕM1 = 180◦ are found. It
should be noted again, that there is no divergency or threshold
at ϕM1 = 180◦, the cross section does not diverge; see the
inlay in the lower right plot. This large structure is caused
by a strong minimum of δM1 at ϕM1 = 180◦, dominat-
ing the loop corrections. The CNN[2,2,3] scheme (red
dashed line) is close to CCN[1] at the level of ∼ −3%
without this peculiar structure. In contrast the full correc-
tions of CNN[1,2,3] reach ∼ +13 %. The loop effects of
ϕAeg

, on the other hand, are tiny and therefore not shown
explicitely.

We now turn to the production of charged sleptons of the
second generation. The process e+e− → μ̃+

1 μ̃−
1 is shown

in Fig. 12, which is found in S at the level of 10 fb, but
can be substantially larger by roughly a factor of two for
small MẼ ; see below. Away from the production thresh-
old, loop corrections of ∼ +14 % at

√
s = 1000 GeV (i.e.

S) are found. They reach their maximum of ∼ +35% at√
s = 3000 GeV. The tree crossing takes place at

√
s ≈

725 GeV.
The cross section depends strongly on MẼ , as can be seen

in the right plot. It is decreasing with increasing MẼ and
the full correction has its maximum of ∼ 28 fb at MẼ =
100 GeV. The variation of the relative corrections are rather
large, ∼ +33% at MẼ = 100 GeV, with a tree crossing at
MẼ = 440 GeV, and ∼ −25% at MẼ = 490 GeV where
the cross section goes to zero due to kinematics.

The dependence on the remaining parameters is (rather)
negligible and therefore we have omitted showing the corre-
sponding plots here.

The process e+e− → μ̃±
1 μ̃∓

2 is shown in Fig. 13. It should
be noted that the smuon (and stau) tree-level process consist
of only one Z exchange diagram (see Fig. 1) and is10

10 With no slepton mixing (i.e. no off diagonal entries in the slepton
mixing matrix) there is no tree-level cross section at all. On the other
hand, large off diagonal entries (e.g. in our case large tβ ) should be able
to enhance σtree; see below.

σtree ∝ |U ẽg
22U

ẽg∗
12 |2 = | −U

ẽg
21U

ẽg∗
11 |2 = m2

eg |Aeg − μ∗tβ |2
(m2

ẽg1
− m2

ẽg2
)2

,

(22)

with the generation index g = 2, 3. (In the case of selec-
trons there is an additional tree-level diagram with neutralino
exchange; see Fig. 1.) Setting ML̃ = MẼ +m and neglecting
off-diagonal contributions, D-terms, and m2

eg contributions
in the slepton mass matrix, yields

(m2
ẽg1

− m2
ẽg2

)2 = m2 (2MẼ + m + . . .)2 + . . . , (23)

and consequently

σtree ∝ m2
eg |Aeg − μ∗tβ |2

m2 (2MẼ + m + . . .)2 + . . .
∝ m2

eg

m2 . (24)

For vanishing m the cross section can be relatively large (but
remains finite).

In our scenarioS we have chosen a (more realistic) setting
with ML̃ 	= MẼ (with an off-set of m = 50 GeV). Therefore
within this scenario the cross section for e+e− → μ̃±

1 μ̃∓
2

turns out to be strongly suppressed by m2
μ/m2, of O(0.1 ab);

see the left plot in Fig. 13. This is below the reach of a lin-
ear collider. For this reason we refrain from a more detailed
discussion here. The only expected exception is the variation
with tβ (see footnote 10) which we show in the right plot
of Fig. 13. The loop corrected cross section increases from
O(0.01 ab) at small tβ to ∼ 23 ab at tβ = 50, as expected.
The relative corrections for the tβ dependence are increasing
from ∼ −12 % at tβ = 10 to ∼ −7% at tβ = 50.

Now we turn to the process e+e− → μ̃+
2 μ̃−

2 shown in
Fig. 14. As a function of

√
s (left plot) we find relative cor-

rections of ∼ −5% at
√
s = 1000 GeV (i.e.S), and ∼ +10%

at
√
s = 3000 GeV with a tree crossing at

√
s ≈ 1200 GeV.

In the analysis as a function of MẼ (right plot) the cross
section is decreasing with increasing MẼ , but can vary
roughly by a factor of two w.r.t. S. The full (relative) one-
loop correction has its maximum of ∼ 26 fb (∼ +12%)
at MẼ = 100 GeV, decreasing to ∼ 0.1 fb (∼ −40 %) at
ML̃ = 440 GeV with a tree crossing at MẼ ≈ 245 GeV.

The dependence on the other parameters is again (rather)
negligible and therefore not shown here.

Turning to the production of charged sleptons of the third
generation, the process e+e− → τ̃+

1 τ̃−
1 is shown in Fig. 15.

As a function of
√
s we find loop corrections of ∼ +14% at√

s = 1000 GeV (i.e. S), a tree crossing at
√
s ≈ 725 GeV

(where the one-loop corrections are between ±10% for√
s <∼ 900 GeV) and ∼ +35% at

√
s = 3000 GeV, very

similar to e+e− → μ̃+
1 μ̃−

1 .
In the analysis as a function of MẼ (upper right plot) the

cross sections are decreasing with increasing MẼ as obvious
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from kinematics and the full corrections have their maxi-
mum of ∼ 28 fb at MẼ = 100 GeV, more than two times
larger than in S. The relative corrections are changing from
∼ +33 % at MẼ = 100 GeV to ∼ −25% at MẼ = 490 GeV
with a tree crossing at MẼ = 415 GeV.

Here we show in the lower left plot of Fig. 15 the depen-
dence on tβ . Contrary to other slepton production cross sec-
tions analyzed before,11 σfull(e+e− → τ̃+

1 τ̃−
1 ) increases

with tβ . The relative corrections for the tβ dependence vary
between ∼ +14.2% at tβ = 5 and ∼ +13.4% at tβ = 50.

The dependence on the complex phase ϕAeg
of the cross

section in S is shown in the lower right plot of Fig. 15. The
loop correction increases the tree-level result by ∼ +14%.
The phase dependence of the relative loop correction is very
small and found to be below 0.2%. The variation with ϕM1

is negligible and therefore not shown here.
The process e+e− → τ̃±

1 τ̃∓
2 is shown in Fig. 16. The

overall size of this cross section turns out to be rather small,
including all analyzed parameter variations, but enhanced
w.r.t. e+e− → μ̃±

1 μ̃∓
2 by about a factor of m2

τ /m
2
μ; see

Eq. (24). The loop corrections have a noticeable impact, as
can be seen in all six panels of Fig. 16, but never lift the cross
section above 2 fb.

As a function of
√
s (upper left plot) we find relative

corrections of ∼ −11% at
√
s = 1000 GeV (i.e. S), and

∼ +19% at
√
s = 3000 GeV with a tree crossing at√

s ≈ 1300 GeV.
As for other slepton production cross sections, σ(e+e− →

τ̃±
1 τ̃∓

2 ) depends strongly on MẼ , where values one order
of magnitude larger than in S (with MẼ = 300 GeV) are
possible for small MẼ . One can see that the full corrections
have their maximum of ∼ 0.8 fb at MẼ = 100 GeV. The
relative corrections are decreasing from ∼ +6, % at MẼ =
100 GeV to ∼ −51% at MẼ = 470 GeV with a tree crossing
at MẼ ≈ 170 GeV.

With increasing μ in S (middle left plot) we find a nearly
linear increase of the production cross section. While the
CCN[1] scheme has its expected singularity12 at μ =
600 GeV, the CNN[1,2,3] scheme is smooth around this
point. The relative loop corrections are nearly identical for
both schemes and reach ∼ −10% at μ = 350 GeV (i.e. S)
and go up to ∼ −7% at μ = 1000 GeV. It should be noted

11 We have omitted showing these plots because the dependence on tβ
was indeed negligible (with exception of e+e− → μ̃±

1 μ̃∓
2 ; see above).

12 It should be noted that, as discussed in the beginning of Sect. 4,
within the CCN[1] scheme a small divergence in the tree-level result
(at μ = M2 = 600 GeV) is induced by δμ through the shifted scalar
tau masses. δμ in Eq. (4a) enters via Eq. (5a) into Eq. (9) from which
the slepton shifts are calculated. The divergence is suppressed with
meg (see Eq. (4a)) and therefore not visible in the tree-level results for
selectron production; see above. In order to overcome the problem with
a divergent tree-level result, we used here the tree-level result of the
CNN[1,2,3] scheme, which is free of such a divergence.

that the tree cross section is zero at μ = 200 GeV where
U ẽ3

11,22 = 0 (U ẽ3
12,21 = 1); see Eq. (22).

The M2 dependence of the cross section in S is shown in
the middle right plot. One can see again the (expected) break-
down of the CCN[1] scheme for M2 = μ = 350 GeV and
the smooth behavior of CNN[1,2,3] and CNN[2,2,3]
around M2 ∼ μ = 350 GeV. The loop corrections at
the level of ∼ −5% at M2 = 120 GeV and ∼ −7% at
M2 = 1000 GeV are found to be rather independent of M2

within all three schemes. The tiny dip (hardly visible) at
M2 ≈ 644 GeV in all three schemes is the chargino pro-
duction threshold mχ̃±

1
+ mχ̃±

2
= √

s = 1000 GeV.
Here we also show the variation with tβ in the lower left

plot of Fig. 16. The loop corrected cross section increases
from O(0.1 ab) at small tβ to ∼ 1.7 fb at tβ = 50. The
relative corrections for the tβ dependence are changing from
∼ −12% at tβ = 10 to ∼ −10% at tβ = 50.

The dependence on the complex phase ϕAeg
of the cross

section in S is shown in the lower right plot of Fig. 16. It is
very pronounced and can vary σfull(e+e− → τ̃±

1 τ̃∓
2 ) from

0.03 fb to 0.3 fb. The (relative) loop corrections are at the
level of ∼ 10% and vary with ϕAeg

below ±4.5% w.r.t. the
tree cross section. For our parameter set S, with the complex
phase ϕAeg

, the CP asymmetry turns out to be very small, as
can be seen in the inlay.

Finally we turn to the process e+e− → τ̃+
2 τ̃−

2 shown in
Fig. 17, which turns out to be sizable at the level of 10 fb. As
a function of

√
s (upper left plot) we find loop corrections

of ∼ −5% at
√
s = 1000 GeV (i.e. S), and ∼ +10% at√

s = 3000 GeV, with a tree crossing at
√
s ≈ 1200 GeV.

The dependence on MẼ is shown in the upper right plot.
The relative corrections are ∼ +12% at MẼ = 100 GeV,
∼ −5% at MẼ = 300 GeV (i.e. S), and ∼ −39% at
MẼ = 440 GeV, where the cross section goes to zero at
μ = 450 GeV (because of the choice ML̃ = MẼ +50 GeV).
The tree crossing is found at μ ≈ 245 GeV.

Again, here we show in the lower left plot of Fig. 17 the
dependence on tβ . Contrary to other slepton production cross
sections analyzed before, σfull(e+e− → τ̃+

2 τ̃−
2 ) decreases

with tβ . The relative corrections for the tβ dependence vary
between ∼ −5.4% at tβ = 5 and ∼ −4.4% at tβ = 34. A
dip (not visible) in the dotted line at tβ ≈ 46 is the threshold
m τ̃1 + Mh = m τ̃2 .

The dependence on the complex phase ϕAeg
of the cross

section in S is shown in the lower right plot of Fig. 17. The
loop correction decreases the tree-level result by ∼ −5%.
The phase dependence of the relative loop correction is small
and found to be below 0.5%. The variation withϕM1 is (again)
negligible and therefore not shown here.

Overall, for the pair production of charged sleptons we
observed a decreasing cross section ∝ ln (s)/s for the first
and ∝ 1/s for the second and third slepton generations for
s → ∞; see Ref. [39]. The (loop corrected) cross sections
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for the slepton pair production can reach a level of O(10 fb),
depending on the SUSY parameters, but is very small for the
production of two different smuons μ̃1μ̃2 at the O(10 ab).
This renders these processes difficult to observe at an e+e−
collider.13 The full one-loop corrections are very roughly
15% of the tree-level results, vary strongly as a function of
MẼ and in the case of selectrons also as a function of M1 or
M2. Depending on the in particular these parameters the loop
corrections can be either positive or negative. This shows that
the loop corrections, while being large, have to be included
point-by-point in any precision analysis. The dependence on
ϕM1 (ϕAeg

) was found at the level of ∼ 15% (∼ 8%), but
can go up to ∼ 18% (∼ 14%) for the extreme cases. The
relative loop corrections varied by up to 2% (4%) with ϕM1

(ϕAeg
). Consequently, the dependence on complex param-

eters must be taken into account as well. Finally, for our
parameter set S the CP asymmetries turn out to be very
small, well below ±1% (hardly measurable in future e+e−
collider experiments).

For all parameter choices it was possible to identify at
least one renormalization scheme that exhibited a “smooth”
behavior. It appears to be possible for any parameter vari-
ation to find a combination of schemes that yield a numer-
ically stable (and nearly constant) one-loop level contribu-
tion. A detailed analysis of which scheme yields this desired
behavior as a function of the underlying SUSY parameters,
however, is beyond the scope of this paper.

4.3 The process e+e− → ν̃g ν̃
∗
g

In Figs. 18, 19 and 20 we present the results for scalar neutrino
production at e+e− colliders. It should be noted that for s →
∞ decreasing cross sections ∝ ln (s)/s for the first and ∝ 1/s
for the second and third slepton generations are expected;
see Ref. [40]. We start with the process e+e− → ν̃eν̃

∗
e that

is shown in Fig. 18.
In the analysis of the production cross section as a function

of
√
s (upper left plot) we find the expected behavior: a strong

rise close to the production threshold, followed by a decrease
with increasing

√
s, where the s-channel dominates. We find

a very small shift w.r.t.
√
s around the production threshold.

Away from the production threshold, loop corrections of ∼
−12% at

√
s = 1000 GeV are found in scenario S (see

Table 1). The relative size of the loop corrections amount up
to ∼ −8% at

√
s = 1650 GeV and then reach ∼ −10 % at√

s = 3000 GeV.
The cross section as a function of MẼ is shown in the upper

right plot of Fig. 18. The masses of the electron sneutrinos are
governed by ML̃ = MẼ + 50 GeV. Consequently, a strong,

13 The limit of 10 ab corresponds to ten events at an integrated luminos-
ity of L = 1 ab−1, which constitutes a guideline for the observability
of a process at a linear collider.

nearly linear decrease can be observed from ∼ 140 fb down
to zero for MẼ = 450 GeV (i.e. the sneutrino production
threshold), as can be expected from kinematics. In scenario
S we find a non-negligible decrease of the cross sections
from the loop corrections. They start at MẼ = 100 GeV
with ∼ −3% and reach ∼ −53% at MẼ ≈ 450 GeV. In the
latter case these large loop corrections are due to the (relative)
smallness of the tree-level results, which goes to zero at the
sneutrino production threshold.

With increasing μ in S (lower left plot) we find a small,
rather linear decrease of the production cross section within
CCN[1], mainly induced by the change in the chargino t-
channel contribution (χ̃±

2 is dominant for μ <∼ 570 GeV

and χ̃±
1 dominant for μ >∼ 570 GeV). The relative loop

corrections within CCN[1] (green dashed line) reach ∼
−10% at μ = 100 GeV (at the border of the experi-
mental limit), ∼ −12% at μ = 350 GeV (i.e. S) and
∼ −11.5% at μ = 1000 GeV. While CCN[1] is unreli-
able for 500 GeV < μ < 700 GeV, CNN[2,1,3] (black
dash-dotted line) yields reliable higher-order corrections for
μ < 600 GeV and CNN[1,2,3] (yellow dash-dotted line)
for μ > 600 GeV; as can be seen in the lower left plot of
Fig. 18. Again, in the CNN[2,1,3] scheme δμ has a strong
minimum at μ ≈ 421 GeV, dominating the loop corrections.

The dependence on M2 of the cross section in S is shown
in the lower right plot of Fig. 18, where again the chargino
t-channel exchange plays a dominant role (χ̃±

1 is dominant

for M2
<∼ 380 GeV and χ̃±

2 dominant for M2
>∼ 380 GeV).

Again, one can see the (expected) breakdown of the CCN[1]
scheme for M2 = μ = 350 GeV. Outside the region
M2 ≈ μ the scheme CCN[1] is expected to be reliable,
since each of the three OS conditions is strongly connected
to one of the three input parameters, |M1|, M2 and μ. The
loop corrections are ∼ −12% at M2 = 600 GeV (i.e. S)
and ∼ −14% at M2 = 1000 GeV, with a tree crossing at
M2 ≈ 130 GeV. The CNN[2,2,3] scheme (red dashed
line) is smooth for all values of M2 shown and a perfect
approximation for CCN[1].

Due to the absence of ϕM1 in the tree-level production
cross section the effect of this complex phase is expected to
be small. Correspondingly we find that the dependence on
the phase ϕM1 of the cross section in our scenario is tiny.
The same holds for the variation with ϕAeg

, it also remains
tiny and unobservable. Therefore we omit showing these two
complex phases explicitely.

In Fig. 19 we present the cross sections σ(e+e− → ν̃μν̃∗
μ).

In the analysis as a function of
√
s (left plot) we find as before

a tiny shift w.r.t.
√
s, where the position of the maximum cross

section shifts by about +50 GeV. The relative corrections
are found to be of ∼ −9 % at

√
s = 1000 GeV (i.e. S), and

∼ +5% at
√
s = 3000 GeV.
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Fig. 18 σ(e+e− → ν̃e ν̃
∗
e ). Tree-level and full one-loop corrected cross sections are shown with parameters chosen according to S; see Table 1.

The upper plots show the cross sections with
√
s (left) and MẼ (right) varied; the lower plots show μ (left) and M2 (right) varied. All masses and

energies are in GeV
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Fig. 19 σ(e+e− → ν̃μν̃∗
μ). Tree-level and full one-loop corrected cross sections are shown with parameters chosen according to S; see Table 1.

The plots show the cross sections with
√
s (left) and MẼ (right) varied. All masses and energies are in GeV

123



536 Page 26 of 29 Eur. Phys. J. C (2018) 78 :536

full
tree

e+e− → ν̃τ ν̃τσ/fb

√
s

30002500200015001000500

5

4.5

4

3.5

3

2.5

2

1.5

1

0.5

0

full
tree

e+e− → ν̃τ ν̃τσ/fb

MẼ
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Fig. 20 σ(e+e− → ν̃τ ν̃
∗
τ ). Tree-level and full one-loop corrected cross sections are shown with parameters chosen according to S; see Table 1.

The plots show the cross sections with
√
s (left) and MẼ (right) varied. All masses and energies are in GeV

As a function of MẼ (right plot) the cross section decreases
rather linearly. The relative corrections change from ∼
+10% at MẼ = 100 GeV to ∼ −60, % at MẼ = 450 GeV,
with a tree crossing at MẼ ≈ 200 GeV.

The dependence on the other parameters is (again) negli-
gible and therefore not shown here.

We finish the e+e− → ν̃g ν̃
∗
g analysis with σ(e+e− →

ν̃τ ν̃
∗
τ ) in Fig. 20. The results are very similar as for

σ(e+e− → ν̃μν̃∗
μ) (see above), since the sneutrino masses

are the same for all three generations, as are the contributing
higher-order diagrams.

Overall, for the sneutrino pair production we observed a
decreasing cross section ∝ ln (s)/s for the first and ∝ 1/s
for the second and third slepton generations for s → ∞;
see Ref. [40]. The full one-loop corrections are very roughly
10% of the tree-level results, but depend strongly on the size
of MẼ , where larger values result even in negative loop cor-
rections. The cross sections are largest for e+e− → ν̃eν̃

∗
e

and roughly smaller by one order of magnitude for e+e− →
ν̃μν̃∗

μ and e+e− → ν̃τ ν̃
∗
τ . This is caused by the absence of

the chargino t-channel diagram (i.e. a χ̃∓
c e± ν̃g coupling),

which only contributes to e+e− → ν̃eν̃
∗
e ; see Fig. 1. The

variation of the cross sections with ϕM1 and ϕAeg
are found

extremely small and have not been shown explicitely.
As for the production of charged sleptons, for all param-

eter choices it was possible to identify at least one renor-
malization scheme that exhibited a “smooth” behavior. Also
for sneutrino production it appears to be possible for any
parameter variation to find a combination of schemes that
yield numerically stable (and nearly constant) one-loop level
contributions.

5 Conclusions

We have evaluated all slepton production modes at e+e− col-
liders with a two-particle final state, i.e. e+e− → ẽ±

gs ẽ
∓
gs′ and

e+e− → ν̃g ν̃
∗
g allowing for complex parameters. In the case

of discovery of sleptons a subsequent precision measurement
of their properties will be crucial to determine their nature
and the underlying (SUSY) parameters. In order to yield suf-
ficient accuracy, one-loop corrections to the various slepton
production modes have to be considered. This is particularly
the case for the anticipated high accuracy of the slepton prop-
erty determination at e+e− colliders [21].

The evaluation of the processes (1) and (2) is based on
a full one-loop calculation, also including hard, soft and
collinear QED radiation. The renormalization is chosen to
be identical as for the slepton decay calculations [27], or
slepton production from heavy Higgs-boson decay [28], as
well as from chargino and neutralino decays [29–32]. Con-
sequently, the predictions for the production and decay can
be used together in a consistent manner (e.g., in a global phe-
nomenological analysis of the slepton sector at the one-loop
level).

We first briefly reviewed the relevant sectors including
some details of the one-loop renormalization procedure of
the cMSSM, which are relevant for our calculation. In most
cases we follow Ref. [48]. We have discussed the calcula-
tion of the one-loop diagrams, the treatment of UV, IR, and
collinear divergences that are canceled by the inclusion of
(hard, soft, and collinear) QED radiation. As far as possible
we have checked our result against the literature, and in most
cases where a meaningful comparison could be performed
we found good agreement; parts of the differences can be
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attributed to problems with input parameters and/or different
renormalization schemes (conversions).

For the analysis we have chosen a standard parameter set
(see Table 1), which allows for the production of all com-
binations of sleptons at an e+e− collider with a center-of-
mass energy up to

√
s = 1000 GeV. In the analysis we

investigated the variation of the various production cross
sections with the center-of-mass energy

√
s, the Higgs mix-

ing parameter μ, the gaugino mass parameters |M1| and/or
M2, the slepton soft SUSY-breaking parameter MẼ (ML̃ =
MẼ +50 GeV) and the complex phases ϕAeg

(of the trilinear
Higgs-slepton coupling, Aeg ; g = 1, 2, 3) and ϕM1 (of the
gaugino mass parameter M1), respectively. Where relevant
we also showed the variation with tβ .

In our numerical scenarios we compared the tree-level pro-
duction cross sections with the full one-loop corrected cross
sections. The numerical results we have shown are, of course,
dependent on the choice of the SUSY parameters. Neverthe-
less, they give an idea of the relevance of the full one-loop
corrections. For the slepton pair production, e+e− → ẽ±

gs ẽ
∓
gs′

and e+e− → ν̃g ν̃
∗
g we observed for s → ∞ a decreasing

cross section ∝ ln (s)/s for the first and ∝ 1/s for the sec-
ond and third slepton generations. The (loop corrected) cross
sections for the production of charged slepton pairs can reach
a level of 10 fb, depending on the SUSY parameters, but are
very small for the production of two different smuons μ̃1μ̃2

at the O(10 ab) (and with the cross section of τ̃1τ̃2 enhanced
by a factor of m2

τ /m
2
μ). This renders these processes difficult

to observe at an e+e− collider.14 The full one-loop correc-
tions are very roughly 15% of the tree-level results, but vary
strongly with the size of MẼ and in the case of selectrons
also with the size of M1 or M2. According to in particular
these parameters the loop corrections can be either positive
or negative. The dependence on ϕM1 (ϕAeg

) was found at the
level of ∼ 15% (∼ 8%), but can go up to ∼ 18% (∼ 14%) for
the extreme cases. The relative loop corrections varied by up
to 2% (4%) with ϕM1 (ϕAeg

). This shows that the loop correc-
tions, including the complex phase dependence, have to be
included point-by-point in any precision analysis, or any pre-
cise determination of SUSY parameters from the production
of cMSSM sleptons at e+e− linear colliders.

Concerning scalar neutrino production, the full one-loop
corrections are very roughly 10% of the tree-level results,
but depend strongly on the size of ML̃ , where larger values
result even in negative loop corrections. The cross sections
are largest for e+e− → ν̃eν̃

∗
e and roughly smaller by one

order of magnitude for e+e− → ν̃μν̃∗
μ and e+e− → ν̃τ ν̃

∗
τ .

The variation of the cross sections with ϕM1 and ϕAeg
is

found extremely small. Also for scalar neutrino production

14 The limit of 10 ab corresponds to ten events at an integrated luminos-
ity of L = 1 ab−1, which constitutes a guideline for the observability
of a process at a linear collider.

the loop corrections have to be included point-by-point in
any precision analysis at e+e− linear colliders.

For all cross section calculations and for all parameter
choices it was possible to identify at least one renormaliza-
tion scheme that exhibited a “smooth” behavior. It appears
to be possible for any parameter variation to find a combi-
nation of schemes that yield numerically stable (and nearly
constant) one-loop level contributions. A detailed analysis
of which scheme yields this desired behavior as a function
of the underlying SUSY parameters, however, is beyond the
scope of this paper.

We emphasize again that our full one-loop calculation can
readily be used together with corresponding full one-loop
corrections to slepton decays [27] or other slepton production
modes [28–32].
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42. K. Kovařík, C. Weber, H. Eberl, W. Majerotto, Phys. Lett. B 591,

242 (2004). arXiv:hep-ph/0401092
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