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Abstract The Lovelock gravity is a natural extension of the
Theory of General Relativity (TGR) to higher dimensions,
which presents the criteria of general covariance and whose
field equations are of second order. Its action contains higher
order curvature terms and is reduced to the Einstein–Hilbert
action when we consider a four dimensional spacetime. In
this work, we obtain solutions corresponding to static spher-
ically symmetric black holes with a cloud of strings and sur-
rounded by quintessence. The study of the thermodynamical
properties of these black holes is performed, with special
emphasis on the mass, entropy, Hawking temperature and
heat capacity. The graphs corresponding to the mass and the
Hawking temperature are shown for different dimensions of
spacetime, namely, D = 4, 5, 6 and 7. Concerning Hawking
radiation, it is shown that the radiation spectrum is related
to the change of entropy which codifies the presence of the
cloud of strings as well as of the quintessence.

1 Introduction

The Theory of General Relativity (TGR) is indubitable the
theory that describes the gravitational phenomena at large
distances. On the other limit, namely at short distances, we
expect that some corrections should be done in order to
describe gravity appropriately. Thus, taking into account that
TGR is a low energy effective theory, we can, in principle,
extend it in order to describe the regime of high energy. One
of those extensions is obtained by introducing high powers of
curvature tensors in the standard Einstein–Hilbert action, in
such way that we recover this action by taking the dimension
of spacetime equal to four. Among this class of extensions for
higher dimensional gravity, we can mention Lovelock grav-
ity [1], which can be obtained as the low energy limit of a
string theory [2].
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The Lovelock gravity is a natural extension of the TGR
for D ≥ 5, in the sense that it contains the most general
tensor satisfying properties of the Einstein tensor in high
dimensional spacetime [1]. This extension, which represents
one of a class of general higher order curvature theories [3],
has some desirable characteristics, as for example, it satisfies
the general covariance criteria and its fields equations are of
second order in the derivatives of the metric. In addition, it
is free from ghosts, which means that there is no problem in
which concerns unitarity.

Black holes are very important and fascinating structures
which appear in any theory of gravity. They can provide some
insight with respect to the understanding of aspects concern-
ing an eventual formulation of quantum gravity, as well as
some comprehension of their thermodynamical properties.
In view of these points and many others, there has been dur-
ing last years an interest in these structures, specially in the
context of higher dimensions. Then, there are good reasons
to obtain black hole solutions in different theories of gravity.
In special, some exact solutions describing black holes were
obtained in the framework of Lovelock gravity [4–9], when a
cloud of strings is taken into account [10–12] as well as when
the black holes are surrounded by quintessence [13,14]. Oth-
ers studies concerning the scenario with a cloud of strings
include the analysis of the thermodynamical properties [15]
and the tensor quasinormal modes [16].

The main idea of the string theory is that the building
blocks of nature are one-dimensional strings, instead of par-
ticles, which are zero-dimensional objects. An extension of
this idea is to consider a cloud of strings and study its possible
measurable effects on long range gravitational fields of some
sources, as for example, black holes. On the other hand, the
possible existence of strings in the early universe is in accor-
dance with observations. These two points suggest us that it is
necessary and important take these objects into account with
the proposal to know all the features of strings in different
scenarios, in gravitational and cosmological scales.
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The theoretical analysis of these cloud of strings was per-
formed by Letelier [17]. In this context, Letelier [17] obtained
a generalization of the Schwarzschild solution corresponding
to a black hole surrounded by a spherically symmetric cloud
of strings as well as some others interesting results [18,19].
Thus, assuming that these strings are fundamental objects, it
seems natural to consider their extension to gravitational the-
ories that go beyond Einstein’s gravity, since the low energy
limit of string theory implies the natural generalization of
the TGR to higher dimensions, as for example in Lovelock
gravity [1] which we are interested in this paper.

In the last twenty years, high-precision data obtained
through the observation have confirmed the possible exis-
tence of a kind of cosmic dark energy which is gravitation-
ally repulsive at global scale and for this reason should be the
source responsible for the accelerated expansion [20]. This
possible candidate for dark energy, which is characterized by
a equation of state pq = ωqρq , where pq is the pressure, ρq
is the energy density and ωq is a parameter assuming values
in the interval −1 < ωq < −1/3, has nature and origin still
unknown. It is called quintessential dark energy or simply
quintessence. Its effects has been measured accurately [20].
The quintessence is not the only possible candidate to pro-
duce this accelerated expansion. In fact, there are other can-
didates as the cosmological constant [21,22], among others.

At astrophysics scales, the presence of quintessence
surrounding black holes should produces some additional
effects, as for example, the shift of light coming from dis-
tant stars [23]. Therefore, in order to understand these effects
produced by black holes in any theory of gravity and know
the different insights they could provide, it is necessary
to consider a scenario in which black hole surrounded by
quintessence are considered and, for this source, solve the
Einstein equations. The analytical solutions with spherical
symmetry were first obtained by Kiselev [24], in which
case quintessence surrounds a static black hole. It was also
obtained the generalization of the Kiselev solutions [24] by
constructing their rotating counterpart [25,26].

Therefore, taking into account the role played by Lovelock
gravity among the class of generalizations of TGR to higher
dimensions and the importance of black holes, it seems to
be relevant to analyse how higher order curvature correc-
tions changes substantially the gravitational field generated
by these objects and, as a consequence, their physical prop-
erties.

The study of black hole thermodynamics is a powerful
tool to give us some insights about different aspects of the
black hole physics, specially, due to the fact that the thermo-
dynamical properties of the black holes are strongly related
to statistical mechanics [27–29]. In this scenario, we find a
result which tells us that black holes emit radiation with a
black body spectrum [30]. This radiation is called Hawking
radiation.

It is the purpose of this paper to obtain exact solutions
corresponding to static spherically symmetric black holes
with a cloud of string and surrounded by quintessence in the
Lovelock gravity and explicitly show the effect of the cloud
of strings as well as of quintessence in this context. Thus,
we analyse some aspects of thermodynamics of these black
holes through the calculation of entropy, heat capacity and
Hawking temperature.

This paper is organized as follows. In Sect. 2, we present
a brief review of the Lovelock gravity, cloud of strings and
quintessence. In Sect. 3, we obtain the static black hole solu-
tions with a cloud of strings and surrounded by quintessence.
Section 4 is devoted to thermodynamics and Sect. 5 to Hawk-
ing radiation. Finally, in Sect. 6, we present the concluding
remarks. We will adopt units for which G = c = 1 and the
metric signature (+,−,−,−).

2 Lovelock gravity

Lovelock gravity represents a generalization of TGR to
higher dimensions. It was proposed in the early seventies
of the last century by Lovelock [1] and corresponds to the
most general extension of the TGR to higher dimensions that
preserves the order of derivatives in relation to metric, and
thus the equation of motion are of second order. It is also
connected with string theory [31].

In Lovelock gravity in D-dimensions, the action is given
by [13,32]:

I = IL + IM = 1

2

∫
M

dxD
√−gL + IM (1)

where IM is the action related to the matter fields and

L =
(D−1)/2∑

p=0

αpLp, (2)

where αp are coupling constants and

Lp = 1

2p
δ
μ1···μpν1···νp
α1···αpβ1···βp

Rα1β1
μ1ν1

· · · Rαpβp
μpνp . (3)

The generalized Kronecker delta, δ
μ1···μpν1···νp
α1···αpβ1···βp

, is totaly
antisymmetric by permutation of any index and could be
obtained by

δ
μ1···μp
α1···αp = p!δμ1···μp

[α1···αp]. (4)

For L1 = R and αp = 0, for p �= 1, we reobtain the
Einstein–Hilbert action. In the particular case where αp = 0,
for p > 3, we get the Lagrangian of Gauss–Bonnet gravity.
The parameter α0 is such that α0 = −2Λ, where Λ is the

123



Eur. Phys. J. C (2018) 78 :534 Page 3 of 12 534

cosmological constant. Taking the variation of the Lovelock
action with respect to the metric, we find the generalized
Einstein equation

Gμν = −α0

2
gμν + GE

μν + Gμν = Tμν, (5)

where GE
μν is the Einstein tensor, Tμν is the energy-

momentum tensor given by

Tμν = 2√−g

δIM
δgμν

, (6)

and

Gμν = 2√−g

δIL
δgμν

. (7)

3 Cloud of strings and quintessence

3.1 Cloud of strings

The first studies concerning a formalism to treat gravity with a
cloud of strings as source, in the framework of TGR, was pre-
sented by Letelier [17]. By using this formalism, he obtained
a generalization of the Schwarzschild solution corresponding
to a black hole surrounded by a spherically symmetric cloud
of strings, whose energy-momentum tensor is given by

T t
t = T r

r = ρc = a

r2 (8a)

T θ
θ = T φ

φ = 0, (8b)

where ρc is the energy density of the cloud and a is an integra-
tion constant associated with the presence of the string. Solv-
ing the Einstein’s equations taking into account the source
given by Eq. (8), he found that the space-time metric is given
by [17]

ds2 =
(

1 − a − 2M

r

)
dt2 −

(
1 − a − 2M

r

)−1

dr2 − r2dΩ2. (9)

On the other hand, the solution corresponding to a black
hole with a cloud of strings, in a D-dimensional spacetime,
is given by the general form [11]

ds2 = f (r)dt2 − 1

f (r)
dr2 − r2dΩ2

D−2, (10)

with the energy–momentum tensor corresponding to a spher-
ically symmetric cloud of strings being given by[11,12]

Tμ
ν = a

r D−2 [1, 1, 0, . . . , 0]. (11)

In this case, we find

f (r) = 1 − μ

r D−3 − 2a

(D − 2)r D−4 , (12)

where

μ = 2M

(D − 2)ΣD−2
, (13)

and

ΣD−2 = 2π(D−1)/2

Γ [(D − 1)/2] . (14)

is the volume of a D−2 dimensional sphere with radius equal
to unit. In this work we will consider, for simplicity, M =
8πMo, where Mo is the black hole mass in the Schwarzschild
solution.

3.2 Quintessential dark energy

Recently, it was obtained the solution corresponding to a
black hole immersed in quintessence, whose line element is
given by [24]

ds2 =
(

1 − 2M

r
− q

r3ωq+1

)
dt2

−
(

1 − 2M

r
− q

r3ωq+1

)−1

dr2 − r2dΩ2 (15)

where M is the mass of the black hole, ωq is the quintessential
state parameter and q is the quintessential parameter associ-
ated to the density of quintessence defined bellow. The pres-
sure and density of quintessence are related by the equation
of state pq = ωqρq , with ρq given by

ρq = −q

2

3ωq

r3(ωq+1)
. (16)

In order to get the scenario of accelerated expansion, it is
necessary to impose that −1 < ω < −1/3. As to q, it is a
positive parameter and note that, when q = 0, we recover
the Schwarzschild solution.

Following the results given by Kiselev [24], the energy–
momentum tensor will be given by

T t
t = T r

r = ρq (17a)

T θ
θ = T φ

φ = −1

2
ρq(3ωq + 1). (17b)

Thus, in D-dimensions, the solution corresponding to a
black hole surrounded by quintessence is written in the same
form of Eq. (10), where [13]

f (r) = 1 − μ

r D−3 − q

r (D−1)ωq+D−3
, (18)
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where μ and q are constants. The energy-momentum tensor
is given by

T t
t = T r

r = ρq = −ωqq(D − 1)(D − 2)

2r (D−1)(ωq+1)
(19a)

T θ1
θ1

= · · · = T θD−2
θD−2

= − 1

D − 2
ρq [(D − 1)ωq + 1], (19b)

where θi (i = 1, 2, . . . , D−2) are the D−2 variables which
describe the space-time section with constant curvature.

4 D-dimensional Lovelock black holes with a cloud of
strings and surrounded by quintessence

Let us assume that [6,9,13]

f (r) = κ − r2F(r), (20)

where F(r) is a solution of the polynomial equation

P(F) =
m∑
p=0

α̃pF
p = 2M

(D − 2)ΣD−2r D−1

+ q

r (D−1)(ωq+1)
− 2a

(D − 2)r D−2 , (21)

with

α̃0 = α0

(D − 1)(D − 2)
(22a)

α̃1 = 1 (22b)

α̃p =
2p∏
i=3

(D − i)αp, p > 1. (22c)

Thus, we get the results for 4-dimensional space-time, in
which case f (r) is written as

f (r) = 1 − a − 2M

r
− q

r3ωq+1 , (23)

when we take κ = 1 and αp = 0 for p ≥ 2. In general, for
D > 4 and κ = 1, αp = 0, p ≥ 2, we find

f (r) = 1 − μ

r D−3 − q

r (D−1)ωq+D−3
− 2a

(D − 2)r D−4 . (24)

The behaviour of this function, for different values of ωq

and a, are represented by Figs. 1 and 2 in the case of D-
dimensional gravity.

The Gauss–Bonnet solution is obtained when α2 �= 0 and
αp = 0, for p ≥ 3.

Considering the method above described, we obtain two
classes of black holes appropriately described by taking the
function f+(r) or f−(r), which are given by

Fig. 1 The function f (r) in D-dimensional gravity for ωq = −2/3,
q = 0.1, M = 1 and for differents values of a and D

f± = 1 + r2

2α̃2

×
(

1 ±
√

1 + 8α̃2M

(D − 2)ΣD−2r D−1 + 4qα̃2

r (D−1)(ωq+1)
− 8aα̃2

(D − 2)r D−2

)
.

(25)

where

α̃2 = (D − 3)(D − 4)α2. (26)

Note that when r → ∞ and taking q = 0, which means
that there is no quintessence, we obtain [11]:

f+ → 1 + r2

α̃2
, f− → 1. (27)

Thus, we verified that f− tends to the flat spacetime very
far from the black hole. Otherwise, f+, at large distances
from the black hole, gives us the anti-de Sitter metric. If we
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Fig. 2 The function f (r) in D-dimensional gravity for ωq = −2/3,
a = 0.8, M = 1 and for differents values of q and D

take into account the quintessence (q �= 0), we have the
behaviors influenced by this quantity, as explicitly shown in
Eq. (25). For different values of ωq and a, the function f+(r)
is represented in Figs. 3 and 4 in the case of Gauss–Bonnet
gravity.

5 Black hole thermodynamics

In this section, we will analyze the thermodynamics of
black holes with a cloud of strings and surrounded by
quintessence in the Lovelock gravity in D-dimensions, fol-
lowing straightforwardly the results recently obtained in the
literature [6,9,13]. From Eq. (20), we find that the coordi-
nates rh of the event horizon are calculated from

r2
h = κ

F(rh)
. (28)

Fig. 3 The function f (r) in the Gauss–Bonnet gravity for ωq = −2/3,
M = 1 and α2 = 1

Thus, using Eq. (21), we find that the mass of the black
hole is

M = (D − 2)ΣD−2

2

⎡
⎣ m∑

p=0

α̃pκ
p

r−(D−2p−1)
h

− q

r
(D−1)ωq
h

− 2arh
D − 2

]
. (29)

The Hawking temperature is calculated from the expres-
sion

T = f ′(r)
4π

= 1

4πN (rh)

⎡
⎣ m∑

p=0

α̃pκ
p(D − 2p − 1)

r2p+2
h

+ qωq(D − 1)

r
(D−1)ωq+D+1
h

− 2a

(D − 2)r Dh

]
, (30)
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Fig. 4 The function f (r) in the Gauss–Bonnet gravity for ωq = −2/3,
M = 1 and α2 = 1

where

N (rh) =
m∑
p=1

α̃p pκ p−1

r2p+1
h

. (31)

According to the first law of thermodynamics, the entropy
is calculated using the following expression

S =
∫

dM

T
=

∫
1

T

dM

drh
drh, (32)

and is given explicitly by [13]

S = 2π(D − 2)ΣD−2

m∑
p=1

α̃pκ
p−1 p

(D − 2)r−(D−2p)
h

. (33)

From the above result, we conclude that the area law is
fulfilled when κ = 0. In this case, we find

S = 2πr D−2
h ΣD−2 = 2π AD−2 = AD−2

4
. (34)

The heat capacity is given by

C = dM

dT
= dM

drh

drh
dT

= 2π(D − 2)ΣD−2
c1c2

2

c3
, (35)

where

c1 =
m∑
p=0

(D − 2p − 1)̃αpκ
p

r−D+2p+2
h

+ (D − 1)ωqq

r (D−1)ωq+1
− 2a

D − 2

(36a)

c2 =
m∑
p=1

α̃p pκ p−1

r−(D−2p−1)
h

(36b)

c3 =
m∑

p,s=0

(D − 2s − 1)(2p − 2s − 1)
α̃pα̃sκ

p+s−1s

r−2(D−s−p−2)
h

−
m∑
p=1

[
(D − 1)ωq + 1 + (D − 2p − 1)

]

×qωq(D − 1)

r
(D−1)ωq+1
h

α̃p pκ p−1

r−(D−2p−2)
h

+ 2a

D − 2

α̃p pκ p−1

r−(D−2p−2)
h

. (36c)

5.1 D-dimensional black hole

In this section, we will use previous results to analyze the
thermodynamics of a D-dimensional black hole with a cloud
of strings and surrounded by quintessence, by considering
αp = 0, p ≥ 2, and D > 4. Note that, in this case, the mass
of the black hole (Figs. 5, 6) can be written as

M = (D − 2)ΣD−2

2

[
r (D−3)
h − q

r
(D−1)ωq
h

− 2arh
D − 2

]
.

(37)

The Hawking temperature (Figs. 7, 8) is given by

T = r3
h

4π

[
D − 3

r4
h

+ qωq(D − 1)

r
(D−1)ωq+D+1
h

− 2a

(D − 2)r Dh

]
. (38)

It is worth calling attention to the fact that, in this case,
the entropy is proportional to the area of the event horizon,
namely,

S = 2πΣD−2r
D−2
h , (39)
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Fig. 5 Mass of black holes in D-dimensional TGR as a function of rh
for different values of a

as in the case of TGR in 4-dimensions.
For a black hole in D-dimensional spacetime, we can cal-

culate the heat capacity using Eq. (35), with

c1 = D − 3

r−D+4
h

+ (D − 1)ωqq

r (D−1)ωq+1
− 2a

D − 2
(40a)

c2 = 1

r−D+3
h

(40b)

c3 = 3 − D

r−2(D−4)
h

− [(D − 1)ωq + 1 + (D − 3)]

× (D − 1)qωq

r
(D−1)ωq+1
h

1

r−(D−4)
h

2a

D − 2

1

r−(D−4)
h

. (40c)

In Figs. 9 and 10, we show the heat capacity of the black
hole for different values of the quintessential parameter as
well as for the parameter which takes care of the presence of
the cloud of strings.

The heat capacity can be used as criterium to study
the stability of a thermodynamical system [13,33]. As an

Fig. 6 Mass of black holes in D-dimensional TGR as a function of rh
for different values of q

example, we can mention that when the heat capacity is nega-
tive, then the system is thermodynamically unstable, as in the
case of Schwarzschild black hole. Otherwise, the presence
of quintessence can induces the stabilization of a Reissner–
Nordstrom black hole [34].

Analyzing Figs. 9 and 10, we conclude that there are some
regions of stability which depends on the values of q, as
well as on the dimension of spacetime. It is worth calling
attention to the fact that there is a phase transition for a certain
value of the coordinate of the horizon, rh . In Fig. 9, it is
shown separately the particular case D = 4, in which is
evident the existence of regions in which the black hole is
unstable, as well as regions in which it is stable, from the
thermodynamical point of view. In the same way, it is shown
in Fig. 10 the particular case D = 4, separately, in order to
evidentiate the fact that for the chosen value of q, the black
hole is thermodynamically unstable.
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Fig. 7 The Hawking temperature in D-dimensional TGR as function
of rh for different values of a

5.2 Black hole in Gauss–Bonnet gravity

Now, let us consider the same black holes in the framework of
Gauss–Bonnet gravity (Figs. 11, 12). In this case, we impose
that α̃1 = α̃2 = 1 and α̃p = 0, for p > 2. The mass parameter
will be given by

M = (D − 2)ΣD−2

2

[
r D−3
h + r D−5

h − q

r
(D−1)ωq
h

− 2arh
D − 2

]
,

(41)

whose behavior is given in Fig. 9.
Otherwise, the Hawking temperature is given by

T = r5
h

4π(2 + r2
h )

[
D − 3

r4
h

+ D − 5

r6
h

+ qωq(D − 1)

r
(D−1)ωq+D+1
h

− 2a

(D − 2)r Dh

]
. (42)

Fig. 8 The Hawking temperature in D-dimensional TGR as function
of rh for different values of q

In the case of Gauss–Bonnet gravity, the heat capacity is
given by Eq. (35), where the parameters c1, c2 and c3 are

c1 = D − 3

r−D+4
h

+ D − 5

r−D+6
h

+ (D − 1)ωqq

r (D−1)ωq+1
− 2a

D − 2
(43a)

c2 = 1

r−D+3
h

+ 2

r−D+5
h

(43b)

c3 = 3 − D

r−2(D−4)
h

+ −6(D − 5) + D − 3

r−2(D−5)
h

+ 2(5 − D)

r−2(D−6)
h

−[(D − 1)ωq + 1 + (D − 3)] (D − 1)qωq

r
(D−1)ωq+1
h

1

r−(D−4)
h

−[(D − 1)ωq + 1 + (D − 5)] (D − 1)qωq

r
(D−1)ωq+1
h

1

r−(D−6)
h

+ 2a

D − 2

1

r−(D−4)
h

+ 2a

D − 2

1

r−(D−6)
h

. (43c)
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Fig. 9 The heat capacity in D-dimensional TGR as function of rh for
different values of q

Fig. 10 The heat capacity in D-dimensional TGR as function of rh for
different values of q

From Fig. 13, we conclude that there are regions which
are thermodynamically stables and unstables depending on
the dimension of the spacetime.

Fig. 11 Mass in Gauss–Bonnet gravity as function of rh , for a = 0.8
and q = 0.1

Fig. 12 Hawking temperature in Gauss–Bonnet gravity as function of
rh , for a = 0.8 and q = 0.1

5.3 Black hole in third order Lovelock gravity

In this section, we will analyze the behaviors of the mass
parameter and the Hawking temperature in the third order
Lovelock gravity, that is for α̃1 = α̃2 = α̃3 = 1 and α̃p =
0for p > 3. In this case, the mass parameter is given by Fig.
11.

M = (D − 2)ΣD−2

2

[
r D−3
h + r D−5

h + r D−7
h

− q

r
(D−1)ωq
h

− 2arh
D − 2

]
, (44)

whose behavior is represented in Fig. 11.
In this case, the Hawking temperature is given by

T = r7
h

4π(3 + 2r2
h + r4

h )

[
D − 3

r4
h

+ D − 5

r6
h

+ D − 7

r8
h

+ qωq(D − 1)

r
(D−1)ωq+D+1
h

− 2a

(D − 2)r Dh

]
. (45)
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Fig. 13 Heat capacity in Gauss–Bonnet gravity as function of rh , for
a = 0.8 and q = 0.1

Fig. 14 Mass in third order Lovelock gravity as function of rh , for
a = 0.8 and q = 0.1

Finally, the heat capacity in the third order Lovelock grav-
ity, which was obtained using Eq. (35), and coefficients c1,
c2 and c3 given by

c1 = D − 3

r−D+4
h

+ D − 5

r−D+6
h

+ D − 7

r−D+8
h

+ (D − 1)ωqq

r (D−1)ωq+1
− 2a

D − 2
(46a)

Fig. 15 Hawking temperature in third order Lovelock gravity as func-
tion of rh , for a = 0.8 and q = 0.1

Fig. 16 Heat capacity in third order Lovelock gravity as function of
rh , for a = 0.8 and q = 0.1

c2 = 1

r−D+3
h

+ 2

r−D+5
h

+ 3

r−D+7
h

(46b)

c3 = 3 − D

r−2(D−4)
h

+ −6(D − 5) + D − 3

r−2(D−5)
h

+−12(D − 7) − 2(D − 5) + 3(D − 3)

r−2(D−6)
h

+−9(D − 7) + 3(D − 5)

r−2(D−7)
h

+ −3(D − 7)

r−2(D−8)
h

−[(D − 1)ωq + 1 + (D − 3)] (D − 1)qωq

r
(D−1)ωq+1
h

1

r−(D−4)
h

−[(D − 1)ωq + 1 + (D − 5)] (D − 1)qωq

r
(D−1)ωq+1
h

1

r−(D−6)
h

−[(D − 1)ωq + 1 + (D − 7)] (D − 1)qωq

r
(D−1)ωq+1
h

1

r−(D−8)
h

+ 2a

D − 2

1

r−(D−4)
h

+ 2a

D − 2

1

r−(D−6)
h

+ 2a

D − 2

1

r−(D−8)
h

, (46c)

which shows us the existence of phase transitions for the
different dimensions of spacetime (Figs. 14, 15, 16).

6 Hawking radiation

Now, let us consider the phenomenon pointed by Hawking
[29] concerning the radiation of particles by a black hole.
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Taking r+, the coordinate r of the event horizon far away
from the black hole,we can write [35]:

dT = dt + 1

f (r)

√
r+
r
dr. (47)

Thus, the metric given by Eq. (10) turns into:

ds2 = − f (r)dT 2 + 2

√
r+
r
dT dr

+r − r+
r

1

f (r)
dr2 + r2dΩD−2. (48)

As we can verify, r = r+ is not a singularity of this space-
time [35]. The null radial geodesic is obtained from

dr

dT
= f (r)

(
1 +

√
r+
r

)−1

. (49)

Therefore, the imaginary part of the action corresponding
to the particle which crosses the horizon is given by:

ImZ = Im
∫ T f

Ti
LdT = Im

∫ r f

ri
pr dr

= Im
∫ r f

ri

∫ pr

0
dprdr, (50)

where pr is the canonical momentum associated with the
coordinate r . Thus, using the relation ṙ = dH

dpr

∣∣
r and the fact

that (dHr ) = dM , we find the following result:

ImZ = Im
∫ M f

Mi

∫ r f

ri

dr

ṙ
dM

= Im
∫ M f

Mi

∫ r f

ri

1 + √
r+/r

f (r)
drdM, (51)

where Mi = M is the original mass of the black hole and
M f = M − ω the mass after the emission of a particle with
energy ω. Note that the integrand has a pole at r = r+, and
thus we can calculate the contour integral around that pole as

ImZ = −2π

∫ M f

Mi

1

f ′(r+)
dM

= −2π

∫ r+ f

r+i

1

f ′(r+)

dM

dr+
dr+. (52)

From Eqs. (20) and (29), we find

ImZ = −π(D − 2)ΣD−2

m∑
p=1

α̃pκ
p−1 p

(D − 2)r−(D−2p)
+

∣∣∣∣
r+ f

r+i

= −ΔS

2
. (53)

Using a result from the WKB method, which tell us that
the probability that a particle emitted by the black hole expe-
rience a tunneling is given by

Γ ∼ exp(−2ImZ), (54)

we find that

logΓ ∼ −π(D − 2)ΣD−2

⎡
⎣ m∑

p=1

α̃pκ
p−1 p

(D − 2)r−(D−2p)
+ f

−
m∑
p=1

α̃pκ
p−1 p

(D − 2)r−(D−2p)
+i

⎤
⎦ (55)

or

Γ ∼ eΔS, (56)

which means that this probability is related to the change of
the entropy of the black hole. Thus it depends on the event
horizon which is influenced by the parameters associated
with the presence of the cloud of strings as well as of the
quintessence.

7 Concluding remarks

Lovelock theory consists in a natural generalization of the
Theory of General Relativity to higher dimensions satisfy-
ing the criteria of general covariance and containing field
equations with derivatives of the metric up to second order. In
addition to this mathematical motivation, we can mention one
of physical origin related to the fact that string theory, which
contains higher order curvature corrections to the Einstein–
Hilbert action, reduces to the Theory of General Relativity
in the low energy limit.

Thus, we expect to naturally extend the TGR to those
with higher powers of curvature in a D-dimensional space-
time, where D > 4, which can be mapped into the Lovelock
gravity.

In this framework, we obtained exact solutions corre-
sponding to a static, spherically symmetric black hole with a
cloud of strings and surrounded by quintessence in Lovelock
gravity in a D-dimensional spacetime. Those solutions gen-
eralizes the ones corresponding to a black hole with a cloud
of strings in the sense that quintessence was included and
the dimensions of spacetime were enlarged. These solutions
have a lot of rich properties and in appropriate limits reduces
to black holes in the Theory of General Relativity.

The presence of the string cloud as well as of the
quintessence affects the horizon in terms of which all ther-
modynamical quantities are given. Thus, the quantities are
influenced by the presence of the cloud of strings and of the
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quintessence, for different values of the spacetime dimen-
sions, namely D = 4, 5, 6 and 7. Those values of dimensions
were chosen in such a way to compare with the case D = 4,
which corresponds to the TGR.

Concerning the stability of the black holes, we obtained
the heat capacity in terms of the horizon radius and through
different figures we showed when this quantity is negative
and when it is positive, that implies that the black holes are
thermodynamically instable or stable, emphasizing the role
played by the presence of the cloud of strings as well as of
the quintessence in relation to the stabilization of the black
hole, with special emphasis to the important role played by
the dimension of the spacetime under consideration, for a
particular set of values.

As to Hawking radiation, we discussed that radiation rate
and showed that this quantity depends of the change of
entropy which is given in terms of the event horizon which is
strongly influenced by the presence of the cloud of strings as
well as of the quintessence. Therefore, the Hawking radia-
tion spectrum depends strongly on the presence of the cloud
of strings and on the quintessence.
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