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Abstract Recently a new type of quadratic gauge was intro-
duced in QCD in which the degrees of freedom are sugges-
tive of a phase of abelian dominance. In its simplest form it is
also free of Gribov ambiguity. However this gauge is not suit-
able for usual perturbation theory. The finite field dependent
BRST (FFBRST) transformation is a method established to
interrelate generating functionals for different effective ver-
sions of gauge fixed field theories. In this paper we propose a
FFBRST transformation suitable for transforming the theory
in the new quadratic gauge into the standard Lorenz gauge
Faddeev–Popov version of the effective lagrangian. The task
is made interesting by the fact that the effective lagrangian is
invariant under two different BRST transformations which
leads to suitable extension of the previous procedures to
accomplish the required result. We are thus able to identify
a field redefinition to go from a non-perturbative phase of
QCD to perturbative QCD.

1 Introduction

Extensions of the usual Lorenz gauge by including the next
order terms quadratic in gauge fields have been studied in
several contexts [1–6]. In [7,8] it was shown that a purely
quadratic gauge condition without the linear terms leads to a
suggestive effective lagrangian giving masses to off-diagonal
gluons. The consequences of such a condition to lifting the
Gribov ambiguity were further studied in [7–9]. The new type
of quadratic gauge condition is at first introduced as follows,

Ha[Aμ(x)] = Aa
μ(x)Aμa(x) = f a(x); for each a (1)

where f a(x) is an arbitrary function of x . Several proposals
to establish abelian dominance in the infrared (IR) use what
is called Abelian Projection [10]. Such and other algebraic
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gauges are usually non-covariant. But as introduced in [7,8]
the above gauge is in fact covariant . The gauge prima facie
is an ambiguity free gauge as it is algebraic in nature. Thus,
the quadratic gauge shares the same property of being free of
Gribov copies as the axial gauges nμAμa = f a(x) and the
flow gauge αAa

0 = ∇ · �Aa [11] despite being non linear. The
Faddeev–Popov determinant in this gauge is given by

det

(
δ(Aaε

μ Aμaε)

δεb

)
= det

(
2Aa

μ(∂μδab − g f acb Aμc)
)

,

(2)

Therefore, the resulting effective Lagrangian density con-
tains gauge fixing and ghost terms as follows,

LGF + Lghost =− 1

2ζ

∑
a

(
Aa

μA
μa)2−2

∑
a

ca Aμa(Dμc)
a,

(3)

where ζ is an arbitrary gauge fixing parameter and (Dμc)a =
∂μca −g f abc Ab

μc
c. Now onwards, we shall drop the summa-

tion symbol, but the summation over an index a will be under-
stood when it appears repeatedly, including when repeated
thrice as in the ghost terms above. In particular,

−ca Aμa(Dμc)
a = −ca Aμa∂μc

a + g f abccacc Aμa Ab
μ (4)

where the summation over indices a, b and c each runs
independently over 1 to N 2 − 1. We should note that ghost
Lagrangian does not have kinetic terms and hence the ghosts
do not propagate in this theory and make no loop contribu-
tions. They act like auxiliary fields, but playing an important
role in the IR. With this understanding, we write the full
effective Lagrangian density in this quadratic gauge as

LQ = −1

4
Fa

μνF
μνa − 1

2ζ

(
Aa

μA
μa)2 − 2ca Aμa(Dμc)

a

= −1

4
Fa

μνF
μνa + ζ

2
Fa2 + Fa Aa

μA
μa

−2ca Aμa(Dμc)
a, (5)
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where the field strength Fa
μν = ∂μAa

ν(x) − ∂ν Aa
μ(x) −

g f abc Ab
μ(x)Ac

ν(x) and in the second version the Fa are a
set of auxiliary fields called Nakanishi–Lautrup fields [12].
As shown in [9], the Lagrangian is BRST invariant [13,14]
which is essential for the ghost independence of the green
functions and unitarity of the S-matrix. These issues were
studied in Refs. [7,8].

The form of the second term of the expression (4) appear-
ing in the ghost lagrangian contains ghost bilinears multi-
plying terms quadratic in gauge fields. Hence if the non-
propagating ghosts are assumed to be frozen they amount
to a non-zero mass matrix for the gluons. To strengthen this
connection it is necessary to assume that the vacuum cor-
responds to ghost condensation. This was achieved through
introducing a Lorenz gauge fixing term for one of the diag-
onal gluons, in addition to the purely quadratic terms of Eq.
(1). This gauge fixing gives the propagator to the correspond-
ing ghost field. Using this ghost propagator, one can give
nontrivial vacuum values to bilinears cacc within the frame-
work Coleman-Weinberg mechanism as described in [7,8].
We shall revisit the point in the next section also.

The resulting mass matrix for the gluons has N (N − 1)

non-zero eigenvalues only and thus has nullity N − 1. Thus,
the N (N − 1) off-diagonal gluons acquire masses and the
rest N − 1 diagonal gluons remain massless. The massive
off-diagonal gluons are presumed to provide evidence of
Abelian dominance, which is a signature of quark confine-
ment. This and other phenomena that emerge in this gauge,
such as the avoidance of Gribov ambiguity were studied
explicitly in [7–9]. Quark confinement and Gribov ambi-
guity are important non-perturbative issues. And this gauge
therefore proves to be important in studying non-perturbative
regime of QCD.

The finite field dependent BRST (FFBRST) transforma-
tion was introduced for first time in Ref. [6] by integrat-
ing infinitesimal usual BRST transformations. Such FFBRST
transformations have exactly the same form as the infinites-
imal ones, with the difference that the infinitesimal global
anti-commuting parameter is replaced by an anti-commuting
but finite parameter dependent on space time fields, but with
no explicit dependence on space time coordinates. The mean-
ing of “finite anti-commuting parameter” is that if we calcu-
late the Green’s functions for such parameters between vac-
uum and a state with gauge and ghost fields we get finite

values as opposed to infinitesimal values. Being finite in
nature FFBRST transformation does not leave the path inte-
gral measure invariant even though other properties of usual
infinitesimal BRST transformation are intact. Thus the gen-
erating functional to a BRST invariant theory is not invariant
under FFBRST. Jacobian of such finite transformation pro-
vides a non-trivial factor which depends on FFBRST param-
eter.

Due to this non-trivial Jacobian FFBRST transformations
are simultaneously field redefinitions as well as BRST trans-
formations on the fields being redefined. They are thus capa-
ble of connecting generating functionals of two different
BRST invariant theories and have been used to study differ-
ent gauge field theoretic models with various effective actions
[15–28]. In this paper we construct an appropriate FFBRST
transformation to establish the connection at the level of gen-
erating functionals between the recently introduced quadratic
gauge with substantial implications in the non-perturbative
QCD [7–9] and the familiar Lorenz gauge which is suit-
able to describe the perturbative QCD. This is novel con-
nection since previous connections were either between two
gauges suitable for only perturbative sector e.g., connection
between Lorenz and axial gauges or they had no such unique
field theoretic meaning attached to them. We should here
mention that the same FFBRST however does not explic-
itly connect the vacuum in the quadratic gauge with which
non-Perturbative phase of QCD is associated to the vacuum
in Lorenz gauge to which perturbative phase of QCD corre-
sponds. To understand this, we first discuss the vacua of both
the theories.

As discussed above, the vacuum in the quadratic gauge
is provided by the SU (N ) symmetric ghost condensation
of bilinears [7,8] which is non perturbative in nature since
the non perturbative confining phase corresponds to this
vacuum [7,8] and it arises at Lagrangian level only as is
clear from Eq. (4). Such a vacuum does not exist in the
theory of Lorenz gauge. The vacuum in the Lorenz gauge
is provided by the mix condensate of gluon and ghost,
〈FμνFμν + cc〉 arising from the following sorts of loops
(Fig. 1) [29].

Nature of this vacuum is perturbative as it arises out of
loops and, over and above it formal perturbation theory of
QCD is built. Contribution of these loops is however trivial
at the tree level O(g0) since it vanishes in the dimensional

Fig. 1 Loops which can
contribute to the vacuum in the
Lorenz gauge at lower orders

g0 g2 g2
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regularization scheme as the gluon propagator is 1
p2 . There-

fore, the vacuum in the Lorenz gauge, 〈FμνFμν + cc〉 is
trivial i.e., 〈FμνFμν + cc〉 = 0 at tree level. Such vacuum
composed of mix condensate does not exist in the theory of
the quadratic gauge as the two point gluon and ghost func-
tions are formally absent in the theory. Thus, we can see that
confining phase of theory in the quadratic gauge and free
gluon phase in the Lorenz gauge belong to vacua of entirely
different nature. It is clear that the FFBRST technique based
on the �′ parameter constructed in Eq. (18) explicitly does
not connect two vacua discussed above,

SU (N ) symmetric 〈cc〉 (in the quadratic gauge)
FFBRST

� 〈FμνFμν + cc〉 (in the Lorenz gauge).

This conclusion is not at all surprising as the FFBRST is
designed to connect two theories and not the quantities deriv-
able from the theory regardless of the fact that theories belong
to the same or two different vacua.

2 Connecting two different regimes

As discussed in the introduction, the main non perturbative
result of the quadratic gauge was established with the help
of additional gauge fixing for one of the gluons. The pres-
ence of this additional gauge fixing does reintroduce the Gri-
bov ambiguity for this component but this is the price to be
paid for an explicit demonstration of effective masses for the
off diagonal gluons. Hence, our aim here is to connect the
generating functional corresponding to the effective actions
in quadratic gauge with additional Lorenz gauge fixing for
one of the gluons to that in the usual Lorenz gauge through
the technique of the FFBRST transformation. To do so, we
write the effective action of the quadratic gauge with addi-
tional gauge fixing for one of the gluons which is as fol-
lows

Se f f = SQ+
∫

d4x

[
ξ

2
(G3)2 + G3∂μA3

μ − d3∂μ(Dμd)3
]

= SQ+
∫

d4x

[
ξ

2
(G3)2 + G3∂μA3

μ − d3�d3
]

(6)

where � stands for ∂μ∂μ and a set of additional fields

G3, d3, d3 correspond to the additional Lorenz gauge of the
diagonal gluon A3 and the ghosts d3, d3 are treated as SU (3)

singlets.
As a first approach it is easy to see that the action in Eq. (6)

is invariant under the following nilpotent BRST transforma-
tion

δcd = δω

2
f dbccbcc

δcd =δω

g
Fd

δAd
μ = δω

g
(Dμc)

d

δFd = 0

δG3 = 0

δ�d3 = 0

(δd3)�d3 = δω

g
G3∂μDμc

3

(7)

where δω infinitesimal, anticommuting and global parame-
ter. We note that the second last transformation the Eq. (7)
can in general be solved for δd3 explicitly. This set of trans-
formations differs from the usual BRST transformation in the
composite form of the last of the Eq. (7), which can always
be defined with certainty locally in the same spirit of first
five transformations since all fields and their derivatives by
construction are well defined at every spacetime point x , it
is not the differential equation in the δd3 and the � is an
invertible operator (similar concept has appeared in the case
of Lagrangian in the literature, see for example Ref. [30]).
However, these transformations are not useful for FFBRST
technique since the transformations ofG3 and �d3 are trivial.
Therefore, we need to introduce a new set of BRST trans-
formations under which the action (6) is also invariant. This
clearly shows that the passage from BRST to FFBRST trans-
formations is non trivial. This conclusion has never been
obvious from earlier works. The transformations are as fol-
lows

δcd = δω

2
f dbccbcc

δcd =δω

g
Fd

δAd
μ = δω

g
(Dμc)

d

δFd = 0

δG3 = − δω

g
d3

δ�d3 = δω

g

(
∂μA

μ3 + ξG3
)

(δd3)�d3 = δω

g
G3∂μDμc

3

(8)

As for the previous transformations, We observe that the sec-
ond last of Eq. (8) is inhomogeneous wave equation for BRST
differential δd3 with a simple form of the right hand side act-
ing as the source, which surely admits a local solution for
δd3(x) for given fields. We see that now this set of trans-
formations has become applicable for FFBRST technique as
δG3, δ�d3 are non zero. Further, the last three transforma-
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tions in Eq. (8) are not nilpotent, but they satisfy in their
compact form the following higher degree closed algebra

δ2
(
(δd3)�d3

)
�d3 = 0

δ2
(
(δ3�d3)�d3

)
�d3 = 0. (9)

The remaining one can be easily derived from one of these
algebras. Thus, we are prompted to restore the nilpotency
and simplify the algebra, to the extent possible. To do so, we
express the effective action (6) in terms of a new auxiliary
field B3,

Se f f = SQ +
∫

d4x

[
ξ

2
(G3)2 + G3∂μA3

μ − d3�d3
]

= SQ +
∫

d4x

[−1

2ξ
(B3)2 + B3G3

+G3∂μA3
μ − d3�d3

]
(10)

The action (10) is invariant under following transformations

δcd = δω

2
f dbccbcc

δcd =δω

g
Fd

δAd
μ = δω

g
(Dμc)

d

δFd = 0

δG3 = − δω

g
d3

δB3 = − δω

g
∂μDμc

3

δ�d3 = δω

g

(
∂μA

μ3 + B3
)

(δd3)�d3 = δω

gξ
B3∂μDμc

3

(11)

The last three transformation rules satisfy the following alge-
bra

δ2B3 = 0

δ2�d3 = 0 (12)

δ((δd3)�d3) = 0

We see that first two rules of Eq. (12) are nilpotent and the
last one is ‘almost’ nilpotent now. It is interesting to compare
Eqs. (9) and (12). The second of the Eq. (12) implies the
following

δ2d3 = δnd3 for all n ≥ 2.

This is the unusual example of the BRST transformation with
idempotent algebra. Thus, we see that the introduction of
B3 has made a substantial difference in the algebra of the
transformations, with the novel feature of the algebra of the

transformation having been made nilpotent through the intro-
duction of an auxiliary field. We shall next achieve the stated
connection using these unusual transformations (11) in the
FFBRST technique.

Now we briefly outline the procedure for the passage
from the BRST transformations to the FFBRST transforma-
tions. We start with making the infinitesimal global parame-
ter δω field dependent by introducing a numerical parameter
κ (0 ≤ κ ≤ 1) and making all the fields κ dependent such
that φ(x, κ = 0) = φ(x) and φ(x, κ = 1) = φ′(x), the
transformed field. The symbol φ generically describes all the

fields A, c, c, F, d3, d
3
, B3,G3. The BRST transformation

in Eq. (11) is then written as

dφ = δb[φ(x, κ)]�′(φ(x, κ)) dκ (13)

where �′ is a finite field dependent anti-commuting param-
eter and δb[φ(x, κ)] is the form of the transformation for
the corresponding field as in Eq. (11). The FFBRST is then
constructed by integrating Eq. (13) from κ = 0 to κ = 1 as
[6]

φ′ ≡ φ(x, κ = 1) = φ(x, κ = 0) + δb[φ(0)]�[φ(x)] (14)

where �[φ(x)] = ∫ 1
0 dκ ′�′[φ(x, κ)]. Like usual BRST

transformation, FFBRST transformation leaves the effective
action in Eq. (10) invariant. However, since the transforma-
tion parameter is field dependent in nature, FFBRST transfor-
mation does not leave the path integral measure,Dφ invariant
and produces a non-trivial Jacobian factor J . This J can fur-
ther be cast as a local functional of fields, ei SJ (where the
SJ is the action representing the Jacobian factor J ) if the
following condition is met [6]
∫

Dφ(x, κ)

[
1

J

d J

dκ
− i

dSJ
dκ

]
ei(SJ+Se f f ) = 0. (15)

Thus the procedure for FFBRST may be summarised as (i)
calculate the infinitesimal change in Jacobian, 1

J
d J
dκ

dκ using

J (κ)

J (κ + dκ)
= 1 − 1

J (κ)

d J (κ)

dκ
dκ =

∑
φ

±δφ(x, κ + dκ)

δφ(x, κ)

(16)

for infinitesimal BRST transformation, + or − sign is for
Bosonic or Fermion nature of the field φ respectively (ii)
make an ansatz for SJ , (iii) then prove the Eq. (15) for this
ansatz and finally (iv) replace J (κ) by ei SJ in the generating
functional

W =
∫

Dφ(x)ei Sef f (φ) =
∫

Dφ(x, κ)J (κ)ei Sef f (φ(x,κ)).

(17)
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Setting κ = 1, this would then provide the new effective
action S′

e f f = SJ + Sef f .
Now we proceed to construct a FFBRST transformation

with an appropriate parameter to connect the generating func-
tionals in the quadratic gauge with additional Lorenz gauge
for the diagonal gluon A3 and the Lorenz gauge. We construct
the finite field dependent parameter as

�′[φ(k)]
= −i

∫
d4x

[
ca

(
γ2A

a
μA

μa + γ3∂μA
μa

)
+ γ1G

3�d3
]

(18)

The γ1, γ2 and γ3 are constant parameters and �′2 = 0.
Group index a is summed over. This FFBRST transforma-
tion is particularly different among others [15–28] due to the
unique form of transformations (11) and by the fact that the
field dependent parameter in Eq. (18) contains two ghosts
c, d with two different transformation properties unlike oth-
ers where there is only one ghost. We now calculate the
change in the Jacobian 1

J
d J
dκ

due to the FFBRST with the
parameter in Eq. (18), under which the measure changes
Dφ(κ) → J (κ)Dφ(κ) as

1

J

d J

dk
= − 1

g

∫
d4x

(
δ�′

δAa
μ

(
Dμc

)a + δ�′

δ∂μAa
μ

∂μ
(
Dμc

)a

−δ
(
�′ f abccbcc

)
2 δca

− δ�′

δca
Fa

− δ�′

δ�d3

(
∂Aμ3 + B3

)
− δ�′

δG3 d
3

)

= i

g

∫
d4x

(
2γ2ca

(
Dμc

)a
Aμa + γ3ca∂

μ
(
Dμc

)a
− Fa (

γ2A
a
μA

μa + γ3∂μA
μa)

− γ1G
3
(
∂μA

μ3 + B3
)

+ γ1d3�d3
)

(19)

Since 1
J
d J
dk does not contain terms with �′ as multiplica-

tive factor, the κ dependence in SJ (κ) is multiplicative [6].
This implies that the fields in the ansatz for the SJ can be
taken to be κ independent. With this fact in mind, we make
the following ansatz for the SJ to compensate the Jacobian
contribution of FFBRST transformation

SJ [φ, κ] = 1

g

∫
d4x

(
α1(κ)Fa Aa

μA
μa + 2α2(κ)ca Aμa (

Dμc
)a

+ α3(κ)Fa∂μA
μa + α4(κ)ca∂μ

(
Dμc

)a
+ α5(κ)G3 (

∂μA3
μ + B3) + α6(κ)d3�d3

)
(20)

where α j (κ), j = 1, . . . , 6, are arbitrary functions with ini-
tial condition αi (κ = 0) = 0 while the fields themselves are
κ independent. We calculate,

i
dSJ
dk

= i

g

∫
d4x

[
α̇1F

a Aa
μA

μa + 2α̇2ca A
μa (

Dμc
)a

+ α̇3F
a∂μA

μa + α̇4ca∂
μ

(
Dμc

)a
+ α̇5G

3
(
∂μA3

μ + B3
)

+ α̇6d3�d3
]

(21)

In order to satisfy the condition in Eq. (15), the following
equation must be obeyed

∫
Dφ[x, κ]

[
Fa Aa

μA
μa(−γ2 − α̇1) + 2ca Aμa(Dμc)

a(γ2 − α̇2)

+Fa∂μA
μa(−γ3 − α̇3) + ca∂μ(Dμc)

a(γ3 − α̇4)

+(−γ1 − α̇5)G
3(∂μA3

μ + B3)

+(γ1 − α̇6)d3�d3
]
ei(Sef f +SJ ) = 0, (22)

which gives the following relation among parameters

α̇1 = −α̇2 = −γ2

α̇3 = −α̇4 = −γ3

α̇5 = −α̇6 = −γ1. (23)

The Eqs. (23) have the obvious solutions

α1 = −α2 = −γ2κ; α3 = −α4 = −γ3κ,

α5 = −α6 = −γ1κ (24)

We choose the arbitrary parameters γ1 = 1, γ2 = 1, γ3 = −1
in Eq. (24). Thus, the additional Jacobian contribution at
κ = 1 is

SJ =
∫

d4x
(

− Fa Aa
μA

μa + 2ca Aμa (
Dμc

)a
+Fa∂μA

μa − ca∂μ
(
Dμc

)a
−G3

(
∂μA3

μ + B3
)

+ d3�d3
)

. (25)

Adding this Jacobian contribution, SJ to the Se f f in Eq. (10)
we obtain at κ = 1 the Lorenz gauge as follows

Se f f + SJ =
∫

d4x

[
− 1

2ξ
(B3)2 + ζ

2
Fa2 + Fa∂μA

μa

−ca∂μ(Dμc)
a
]

= SL (26)

Here the term 1
ξ
(B3)2 is redundant which can be put to zero

by using EOM for B3. Now, we may further apply second
FFBRST such that ζ → ζ ′ in the same Lorenz gauge by well
known methods [6]. We may summarize this symbolically as
the conversion from one theory to another,

Zef f =
∫

DφeiSe f f FFBRST−→
∫

Dφ′(κ)ei(Se f f +SJ )

=
∫

Dφ′ei SL = ZL , (27)

Thus, we have connected two theories with two different
regimes of applicability. This is a connection also between
theories with and without propagating ghosts.
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3 Conclusion

The spirit of BRST invariance was to establish the unitarity
of the S-matrix in gauge theories whose gauge fixed versions
contain ghost degrees of freedom. This technique was sub-
stantially extended in the FFBRST approach to permit field
redefinitions transforming the effective action with one pos-
sible gauge fixing to that of another. In some of the recent ear-
lier work the interesting features of a purely quadratic gauge
condition without the usual Lorenz condition have been stud-
ied and shown to lead to several interesting properties of the
non-perturbative QCD vacuum in the IR limit. At first site
the effective degrees of freedom entering here, the off diag-
onal gluons with masses, appear unrelated to those entering
the perturbation theory calculations and which are compat-
ible with the elegant UV properties of Yang–Mills theories.
In this paper we have resorted to the FFBRST technique to
establish a direct formal connection between the two varieties
of the QCD effective lagrangians. Several technical difficul-
ties are encountered in this process and it has required us to
make suitable extensions to the FFBRST method. In particu-
lar a new auxiliary field is required to ensure nilpotency of the
modified BRST transformations. The resulting field redefi-
nitions which connect the degrees of freedom capturing the
IR behaviour of QCD vacuum with those of the UV version
suitable to perturbative computations need to be studied fur-
ther. Also, the extensions of the FFBRST technique proposed
here can be put to use for other similar problems.
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