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Abstract In this work, we obtain the loop quantum cos-
mology dynamical equations, plus a positive cosmological
constant, from the Bekenstein–Hawking entropy-area rela-
tion given by Loop Quantum Black Holes, by the use of
the Jacobson formalism (Phys Rev Lett 75:1260, 1995). The
results found out may set a still absent connection between
holography and the description of the cosmos given by loop
quantum cosmology.

1 Introduction

Loop quantum gravity (LQG) proposes a way to model the
behavior of spacetime in situations where its atomic charac-
teristic arises [2–6]. Among these situations, the nature of
our universe near the Big Bang singularity is described by
loop quantum cosmology (LQC) [7]. This description of cos-
mology which takes into account effects of quantum gravity
has become very popular during the last decade, because it
allows making contact with the observational activity [8,9].

The main result in LQC is the resolution of the Big Bang
singularity, since there are long standing prospects that the
General Relativity initial singularity must be solved in the
context of a quantum gravity theory. In the case of LQC, the
Big Bang singularity is naturally replaced by a bounce when
the curvature becomes stronger at the Planckian regime. At
this point, the universe density does not become infinite any-
more, but assumes a maximum finite critical value. A quan-
tum bridge forms in the place of the initial singularity and
the universe can tunnel through it. In this sense, the quantum
evolution of the universe extends through the Big Bang. Such
results open the possibility that our universe could have its
origin in a prior contraction phase [10]. The possibility of a
phase(s) for the universe before the hot Big Bang, on the other
hand, raises important questions related with the thermody-
namics of our universe. Among these questions, we have the
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problem about the origin of the cosmological entropy and
the arrow of time [11]. In order to address these issues, its
is necessary to answer a question that remains open until
now: what is the correct way to count the spacetime states in
agreement with the LQC description of the universe?

On the other hand, among the results coming from black
hole thermodynamics, we have the Bekenstein–Hawking for-
mula, where the entropy of a black hole is given as propor-
tional to its horizon area: S = A/4�G [12]. Behind the sim-
plicity of this expression, lies a deep intersection between
two theories that remain at odds until now, gravity and quan-
tum mechanics. Interestingly, Bekenstein–Hawking formula
is one of the few places in physics where the Newton’s grav-
itational constant G meets the Planck constant �. Moreover,
the Bekenstein–Hawking formula consists in the basis of the
holographic principle which sets how many degrees of free-
dom there are in nature at the most fundamental level [13–16].

Consequently, one may wonder that, the way to discuss
the universe thermodynamical evolution in the context of
LQC could lie in the holographic principle. Such possibility
is reinforced by the strong evidences that a quantum theory
of spacetime must be holographic. Among such evidences,
we have the recent results by Afshordi et al. which have
shown that the universe has passed by a holographic phase
at its early times [17]. Since it is also the realm where LQC
contributions become necessary, it is required to find out a
way to conciliate LQC with holography.

The applicability of the holographic principle to cosmol-
ogy has been a subject of many discussions in the litera-
ture. In this way, following the pioneer work by Fischller and
Suskind [18], a sort of scenarios has been proposed in order
to establish the validity of the holographic principle in cos-
mological contexts, consisting in the so called Holographic
Cosmology [18–25]. Moreover, the holographic hypothesis
has a main role in braneworld cosmology via the application
of the AdS/CFT formulation of the holographic principle to
Randall-Sundrum braneworld scenario [26–32].
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Among the versions of the holographic cosmology, Bak
and Rey have argued that the holographic principle must be
satisfied by the universe if one considers that its entropy must
be associated with its apparent horizon [21]. (The definition
of the apparent horizon of a Friedmann-Lemaitre-Robertson-
Walker (FLRW) universe can be find, for example, in [33]).
In this context, the validity of the first law of thermodynamics
can be proved, which has made possible to derive the Fried-
mann equations of a FLRW universe [34] by the use of the
Jacobson formalism [1].

By the way, the Jacobson formalism consists in one of the
most important results in favor of the holographic hypothe-
sis. In fact, the results by Jacobson have demonstrated that
the Einstein’s field equations can be derived from the propor-
tionality between entropy and the horizon area, if the funda-
mental Clausius relation, δQ = TdS, connecting heat, tem-
perature and entropy is valid for all the local Rindler causal
horizon through each spacetime point, in a way that δQ and
T will be interpreted, respectively, as the energy flux and
Unruh temperature as seen by an accelerated observer just
inside the horizon [1]. The results by Jacobson bring up an
interesting consequence of the holographic principle: that the
spacetime must have an atomic structure. In fact, the most
important lesson which brings from such results is that the
spacetime can be viewed as a gas of atoms with a related
entropy given by the Bekenstein–Hawking formula, and the
gravitational field equations are nothing, but equations of
state describing this gas. Such an interpretation of spacetime
was later reinforced by Padmanabhan, who linked the macro-
scopic description of spacetime, by Einstein equations, to
microscopic degrees of freedom when assuming the princi-
ple of equipartition of energy [35]. A further extension of the
Jacobson results to non-equilibrium situations has also been
done [36]. The Jacobson’s results have given rise to several
works which have strengthened the thermodynamic interpre-
tation of Einstein’s equations. Actually, it has been shown that
the susceptibility of gravitational fields to a thermodynami-
cal behavior occurs not only in Einstein’s gravity, but also in
a wide assortment of theories. (For a review and a broad list
of references see [37]).

One may think about to use the Jacobson’s formalism in
order to investigate the relationship between LQC and holog-
raphy. In fact, such investigation has been done by Cai et al.
[38]. In such work, the Jacobson’s formalism has been used,
where it has been taken into account a logarithmic quantum
corrected Bekenstein–Hawking formula which arises in the
context of LQG [39]. However, this attempt to obtain the
LQC equations from Bekenstein–Hawking entropy, has led
to quantum corrected Friedmann equations which give us a
different scenario from LQC ones. Actually, the worse con-
clusion from such analysis is that a bounce does not occur
anymore and the Big-Bang singularity is not resolved. It
establishes a breakup between the description of the space-

time behavior near the Big Bang and the way how its degrees
of freedom are counted in the context of LQG. In this way, the
important problem in reconciling the description of the uni-
verse provided by LQC with the thermodynamic evolution
of the cosmos has been shown to be non trivial.

In the present work, we shall demonstrate that one can rec-
oncile LQC and holography when it is considered that the uni-
verse entropy is given by the quantum corrected Bekenstein–
Hawking formula that arises in the context of Loop Quantum
Black Holes (LQBHs). In order to do this, we shall show
that LQC dynamical equations can be derived from LQBH’s
entropy-area relation, by the use of the Jacobson formalism.
The present article is organized as follows: in Sect. 2, we
shall review the basic aspects of LQBHs, in order to intro-
duce the modified Bekenstein–Hawking formula that will be
used throughout this paper; in Sect. 3 we shall review the
formalism introduced by Cai et al. to derive the Friedmann
equations from the Bekenstein–Hawking formula; in Sect. 4,
we shall derive quantum corrected Friedmann equations from
LQBHs’ entropy-area relation; in Sect. 5, from the results of
Sect. 4, we shall derive the LQC Friedmann equations; Sect. 6
is devoted to conclusions and perspectives. In this paper,
unless otherwise stated, we shall use � = c = kB = G = 1.

2 Loop quantum black holes

In this section we shall review the basic concepts of Loop
Quantum Black Holes in order to introduce the quantum cor-
rected Bekenstein–Hawking formula which will be used in
order to derive the LQC dynamical equations.

In this way, a Loop Quantum Black Hole (LQBH), also
called self-dual black hole, consists in a quantum corrected
Schwarzschild black hole that appears from a simplified
model of LQG by the use of semiclassical tools in the min-
isuperspace quantization approach [40–43].

The metric that describes the LQBH scenario is given by

ds2 = −G(r)dt2 + F−1(r)dr2 + H(r)(dθ2 + sin2 θdφ2),

(1)

where the functions above are defined as

G(r) = (r − r+)(r − r−)(r + r∗)2

r4 + a2
0

,

F(r) = (r − r+)(r − r−)r4

(r + r∗)2(r4 + a2
0)

; H(r) = r2 + a2
0

r2 . (2)

In this scenario, we have the presence of two horizons. The
first one, localized at r+ = 2m, corresponds to an event hori-
zon. The second one, localized at r− = 2mP2, corresponds to
a Cauchy horizon. In addition, we have r∗ = √

r+r− = 2mP ,
where P is the polymeric function defined by
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P =
√

1 + ε2 − 1√
1 + ε2 + 1

. (3)

In the definition above, ε = γ δb, being γ the Barbero-
Immirzi parameter and δb the polymeric parameter which
appear in the LQG quantization techniques. In particular, the
polymeric parameter is used in order to define the length
of the path along with the connection, used to define the
holonomies in LQG, is integrated [40]. Moreover, a0 =
Amin/8π , with Amin conceived as the minimal area value
in LQG.

In the metric 2, r is only asymptotically the usual radial
coordinate. It is because gθθ is not just r2. In this way, a more
physical radial coordinate can be defined from the form of
the function H(r) in the metric:

R =
√
r2 + a2

0

r2 , (4)

in the sense that the radial coordinate R measures the proper
circumferential distance. In addition, the relation of the
parameter m in the solution 1 with the ADM mass M is
given by M = m(1 + P)2.

An interesting feature of LQBHs is the property of self-
duality. This property says that if one introduces the new
coordinates r̃ = a0/r and t̃ = tr2∗/a0, with r̃± = a0/r∓
the metric preserves its form. The dual radius is given by
rdual = r̃ = √

a0 and corresponds to the minimal possible
surface element. Moreover, since the Eq. 4 can be written as
R = √

r2 + r̃2, it is clear that the solution contains another
asymptotically flat Schwazschild region rather than a singu-
larity in the limit r → 0. This new region corresponds to a
Planck-sized wormhole.

In addition, the Kretschmann invariant for this LQBH
solution is given, for r ≈ 0, by

K = Rμναβ R
μναβ = 3145728π4r6

a4
0γ 8δ8m2

. (5)

In a different way from the classical Schwarzschild sce-
nario, the LQBH’s Kretschmann invariant does not diverge
when r → 0. Such result points to the resolution of the
singularity at r = 0. As a matter of fact, in the quantum cor-
rected LQBH scenario, an asymptotic flat region appears in
the place of the black hole singularity, as has been shown in
the LQBH Carter–Penrose diagram in Fig. 1.

The thermodynamic properties of LQBH’s solution can
be derived in the usual manner. In this way, the black hole
temperature TBH is obtained by the calculation of the surface
gravity κ , by TBH = κ/2π , where

κ2 = −gμνgρσ ∇μχρ∇νχ
σ = −1

2
gμνgρσ Γ

ρ
μ0Γ

σ
ν0. (6)

Fig. 1 Carter–Penrose diagram for the self-dual black hole solution.
The LQBH scenario is endowed with two asymptotic flat regions, one
placed at the infinity and the other one near the origin. The second
region can not be reached by any observer in a finite time

In the equation above, χμ = (1, 0, 0, 0) consists in a timelike
Killing vector. On the other hand, Γ μ

σρ give us the connections
coefficients.

By connecting with the metric, one obtains the LQBH’s
temperature

TH = (2m)3(1 − P2)

4π [(2m)4 + a2
0] . (7)

It is easy to see that one can recover the usual Hawking
temperature in the limit of large masses. However, differently
from the Hawking case, the temperature 7 goes to zero for
m → 0.

The black hole’s entropy can be found out by making use
of the thermodynamical relation SBH = ∫

dm/T (m),

S = 4π

(1 − P2)

[
16m4 − a2

0

16m2

]
. (8)

From the expression 8 , one can obtain an expression for
the black hole entropy in terms of its area [43]

S = ±
√
A2 − A2

min

4σ
, (9)
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where σ = 1 − P2, and we have chosen the possible addi-
tional constant to be zero. In addition, A = 4πR2, with R
defined by the Eq. 4. We have that, S has a positive value for
m >

√
a0/2 and becomes negative otherwise. The two pos-

sible situations for the signal of the loop black hole entropy
are related to the double physical possibility that arises from
LQBH’s structure, depending on the localization of the event
horizon ( outside or inside of the wormhole throat) [42].

Another way to obtain the thermodynamic properties of
LQBH has been pointed in [44], where the Hamilton–Jacobi
version of the tunneling formalism has been used. In this con-
text, back-reaction effects have been included. Moreover, the
LQBH solution can be extended to scenarios of black holes
with charge and angular momentum [45]. The information
loss problem has also been discussed in the LQBH’s frame-
work. As an important result, the problem of information loss
by black holes can be relieved in this scenario [44,46].

3 Friedmann equations from thermodynamics

In this section, we shall review the method introduced by Cai
and Kim [34] and Cai et al. [38] in order to derive the Fried-
mann equations from the Bekenstein–Hawking formula, by
considering that the holographic bound is satisfied by the uni-
verse in some regime. Such method is based on the results
by Jacobson that demonstrated the equivalence between the
Einstein’s gravitational equations and thermodynamics [1].

In this sense, in order to have the holographic bound ful-
filled by the universe, we shall consider the evolution of a
universe region whose holographic boundary corresponds to
the cosmological apparent horizon. The issue of the correct
choice of the cosmological holographic boundary has been
a point of some discussion in the literature. In this way, such
a boundary has been considered as having the size of the
Hubble horizon in [19,25], the size of the apparent hori-
zon in [21], and the size of the particle horizon in [24].
However, in order to get a thermodynamic description of
the universe evolution based on the Jacobson formalism, it
has been shown that the choice of the cosmological apparent
horizon as the holographic boundary [21,34] is more con-
venient. Such conclusion comes from that fact that, at the
apparent horizon, the Friedmann equations have been shown
to be equivalent to the first law of thermodynamics [47–49].
It occurs not only in Einstein’s gravity, but in other scenarios
such as braneworld models [50–53], Horava–Lifshitz gravity
[54], Lovelock gravity [47,55] and f (R) gravity [56]. More-
over, it has been shown that the obedience to the generalized
second law of thermodynamics is fulfilled in the scenario of
an accelerating expanding universe when one identifies the
cosmological holographic boundary as the universe apparent
horizon [57–59]. On the base of such facts, it can be argued
that the apparent horizon must be considered as the phys-

ical horizon in dealing with thermodynamics issues, in the
context of a universe with any curvature.

Following the procedure developed in [34,38], in order
to obtain the LQC Friedmann equations, we have that the
FLRW universe is described by the following metric

ds2 = −dt2 + a(t)2
( dr2

1 − kr2 + r2dΩ2
2

)
= habdx

adxb + r̃2dΩ2
2 , (10)

where hab = diag(−1, a2/(1 − kr2)) and r̃ = a(t)r . More-
over, the radius of the apparent horizon is given by

r̃A = 1√
H2 + k/a2

, (11)

Now, let us consider that the energy-momentum tensor
Tμν related with the matter in universe possess the form of
the one for a perfect fluid:

Tμν = (ρ + p)UμUν + pgμν. (12)

From the energy conservation law, comes the continuity
equation

ρ̇ + 3H(ρ + p) = 0. (13)

In this point, let us introduce the work density W and the
energy-supply vector ψa

W = −1

2
T abhab ; (14)

and

ψa = T b
a ∂br̃ + W∂ar̃ . (15)

We shall have, in our case

W = 1

2
(ρ − p) ; (16)

and

ψa = −1

2
(ρ + p)Hr̃dt + 1

2
(ρ + p)adr. (17)

From the expressions above, we can compute the amount
of energy going through the apparent horizon during the time
interval dt as [34]

δQ = −Aψ = A(ρ + p)Hr̃Adt, (18)

where A = 4π r̃2
A.
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The gravitational equations are obtained by the use the
Clausius relation δQ = TdS, where the universe entropy is
conjectured to be given by the Bekenstein-Hawking formula

S = A

4
. (19)

On the other hand, the temperature associated with the uni-
verse apparent horizon is given by

T = 1

2π r̃A
, (20)

which was obtained in the reference [48,49] through tunnel-
ing methods.

From the equations above, we obtain

Ḣ − k

a2 = 4π(ρ + p). (21)

In order to obtain the Friedmann equation above we have
used the relation

˙̃rA = −Hr̃3
A

(
Ḣ − k

a2

)
. (22)

Now, using the continuity Eq. 13, we can find

8π

3
dρ = d(H2 + k/a2)

= 4π

A2 d A, (23)

where we have used the fact that H2 + k
a2 = 4π

A .
The integration of the Eq. 23 give us

H2 + k

a2 = 8π

3
ρ, (24)

which consists in the first Friedmann equation.
Now, by the time differentiation of the equation above,

and the use of the continuity Eq. 13 we find

Ḣ − k

a2 = 4π(ρ + p), (25)

which constitutes in the second Friedmann equation, i.e., the
Raychaudhuri equation.

In this way, the complete dynamics of a FLRW universe
can be find out from thermodynamics. Such results have been
applied in order to study a sort of problems in cosmology,
in particular, such related with the thermodynamic evolution
of the universe. In this way, the validity of the Generalized
Second law of thermodynamics has been investigated in this
context [60,61]. Moreover, such formalism has been used
to study the relation between gravity and thermodynamics

in the context of extended theories of gravity such scalar-
tensor gravity and f(R) gravity [62], braneworld scenarios
[50,51,53,63], viscous cosmology [64], and Horava–Lifshitz
gravity [65].

4 Quantum corrected Friedmann equations from
LQBHs

In this section, we shall obtain quantum corrected Friedmann
equations for the evolution of the universe, by considering
that the holographic bound is satisfied near the Big Bang/Big
Crunch singularity, where we shall assume that the entropy
associated with the universe apparent horizon is related with
its area by the modified entropy-area relation 9.

In this way, upon the same considerations of the last sec-
tion, following the procedure developed in [34,38], in order
to obtain the gravitational equations, we have that by the use
of the Clausius relation δQ = TdS, and the LQBH entropy-
area relation 9 we can reach

Ḣ − k

a2 = ∓4πσ

√
A2 − A2

min

A
(ρ + p). (26)

Now, using the continuity Eq. 13, we can find

8π

3
dρ = ± 1

σ

A√
A2 − A2

min

d(H2 + k/a2)

= ∓ 1

σ

4π

A
√
A2 − A2

min

d A, (27)

where, again we have used the fact that H2 + k
a2 = 4π

A .
The integration of the Eq. 27 give us

Θ = ±
[

2Amin

3
σρ − α

]
= arccos(Amin/A), (28)

where we must have −π/2 ≤ Θ ≤ π/2, since Amin/A ≥ 0.
The Eq. 28 give us the following Friedmann equation:

H2 + k

a2 = 1

γ
√

3
cos(Θ), (29)

where we have used Amin = 4πγ
√

3 [66].
The Raychaudhuri equation reads

Ḣ − k

a2 = 1

γ
√

3
σ(ρ + p) sin(Θ). (30)

The Eqs. 29 and 30 consist in the quantum versions of the
Friedmann equations. As we can see, the quantum correc-
tions present in these equations, inherited from the LQBH’s
entropy-area relation, imply in a quantum effective density
term which is a harmonic function of the classical density. A
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very important consequence of this result is that the quantum
corrected Friedmann equations bring us a scenario where the
Big Bang initial singularity does not exist anymore, but is
replaced by a bounce at a point where the universe density
gets a critical value, as occurs in LQC. In the Eq. 29, the
phase constant α will be given by the initial conditions of
the universe and must be appropriately chosen in order to
ensure that the effective density term is definite positive, in
concordance with the Eq. 28 and the comment below it.

5 Relation with usual semiclassical LQC

In this point, we shall address how the quantum corrected
Friedmann equations found out in the last section can be
related to the usual semiclassical LQC equations. In order to
do this, let us expand the Eq. 29 as

H2 + k

a2 = 1

γ
√

3
cos (α) + 8π

3
σ sin (α)ρ

−32π2

9
γ σ 2

√
3ρ2 cos (α), (31)

where we have disconsidered the terms that depend on quan-
tum corrections of order O(≥ A2

min), as have been done in
the usual semiclassical LQC [67].

The equation above can be written in the form

H2 + k

a2 = 8π

3
ρtot

(
1 − ρtot

ρc

)
, (32)

where ρtot = ρ + Λ
8π

, with Λ as a cosmological constant.
The Raychaudhuri equation can also be obtained from

the time derivative of the Eq. 32 which, by the use of the
continuity Eq. 13, give us

Ḣ − k

a2 = −4π(ρtot + ptot )

(
1 − 2ρtot

ρc

)
, (33)

where ptot = p − Λ
8π

. In this way, one could obtain the
complete LQC semiclassical dynamics from an holographic
prescription by the use of the LQBH entropy-area relation.

However, there are still some points to address. The first
point is the role of the cosmological constant which appears,
in our approach, from the quantum gravity corrections to the
Bekenstein-Hawking formula. The second point consists in
how to conciliate the universe critical density found out in
our treatment to that given by usual LQC.

In order to discuss such points, we have that from the Eqs.
31 and 32, we must have

ρc =
√

3

4πγσ 2 cos (α)
, (34)

1 − 2Λ̃

ρc
= σ sin (α), (35)

Λ̃

(
1 − Λ̃

ρc

)
= 3 cos (α)

8πγ
√

3
, (36)

where Λ̃ = Λ
8π

.
Moreover, from the Eqs. 34, 35 and 36, we shall find

Λ̃± = ρc

2

(
1 ±

√
1 − 4

ξ±
ρc

)
, (37)

where

ξ± = ρc

4

(
1 ±

√
1 − 3

4π2γ 2ρ2
c

)
. (38)

We also obtain

σ 2 = 3

32π2γ 2ρc

[
Λ̃

(
1 − Λ̃

ρc

)]−1

, (39)

and

cos (α)2 = 64π2γ 2

3

[
Λ̃

(
1 − Λ̃

ρc

)]2

. (40)

In the Eq. 38, ξ− is the only consistent choice in order to
have a real valued solution to 37. On the other hand, in the
Eq. 37, Λ̃− is the only choice consistent with the agreement
between the Eq. 40 and the condition that −1 ≤ cos (α) ≤ 1.
In this way, we obtain:

Λ = 8πΛ̃ = 4πρc

[
1 −

(
1 − 3

4π2γ 2ρ2
c

) 1
4
]

. (41)

Consequently, the value of the cosmological constant
depends on the initial conditions of the universe, particularly
on the value of the universe critical density at the bounce. In
the limit where ρc 
 1, Λ ∼ 3

4πγ 2ρc
, in a way that, in the

infrared limit (ρc → ∞), Λ → 0.
By comparing the appearance of a cosmological constant

in our treatment with usual LQC, it has been demonstrated
that LQC fits the situation where a cosmological constant Λ

is present, for both the cases where Λ is positive [68,69] or
negative [70]. However, LQC does not offer any theoretical
result for the value of the cosmological constant, within the
sense that it does not arise as the result of a more fundamen-
tal calculation [71–73]. Instead, the point of view in LQC
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(and, more generally, in LQG) has been that the cosmologi-
cal constant consists in a constant of nature, in the same sense
of Newton’s gravitational constant or Planck’s constant, or
the electron charge. From this standpoint, Λ should be mea-
sured through some experiments and/or observations. As a
consequence, LQC does not address what is often called the
“‘cosmological constant problem” which asks for an expla-
nation from fundamental physics of why the observed value
of Λ is so small compared to that provided by the Standard
Model, which predicts Λ would be Planckian. Such persis-
tent problem is considered as one of the most puzzling in
physics. (For a recent review about the cosmological con-
stant problem, see [74]).

The results found out in the present article, on the other
hand, tie the cosmological constant to the universe density
at the bounce. In this way, concerning to the value of the
universe critical density, we have that, in the context of LQC,
it is given by [67,75–80]

ρc = 3

8πγ 2Δ
, (42)

where Δ is an area gap.
Usually one assumes that the area gap above is given by

the LQG one, ΔLQG = 4πγ
√

3, and calculates the value of
the universe critical density to be, in Planck units, ρc ≈ 0.41
[79,80]. The same numerical result for ρc is obtained when
we have the presence of a cosmological constant [68–70].
However, such assumption can not be taken into account in
the present formalism since, in such a case, the cosmological
constant given by the Eq. 41 would be not real valued. In
fact in order to have a real valued cosmological constant in
the Eq. 41, one must have

ρc ≥
√

3

2πγ
≈ 1.16. (43)

It could be a bone of contention between our treatment and
the usual LQC.

However, it has been pointed that the choice of the full
LQG area gap in order to calculate ρc is naive and lacks
further physical justification. Consequently, other values for
the universe critical density could be conceived. In fact, from
the arguments presented in [81–83], the value of ρc would
be fixed by observations. For a more general expression for
ρc, see [84].

If it is this case, the results of the present work could give
us a way to fix the value of ρc by the use of the observa-
tional results about Λ. In this way, one must have that the
energy scale of the bounce would be super Planckian, since
in order to have a concordance with the observed value of
the cosmological constant one must have ρc ∼ 10120.

6 Summary and conclusions

Loop quantum gravity is a propose to the description of
spacetime behavior in situations where its atomic charac-
teristic arises. Among these situations, the nature of our uni-
verse near the Big Bang singularity is described by LQC.
Near the Big Bang, LQC faces some important questions
about the thermodynamical evolution of the universe for what
the holographic principle must be fundamental. Among such
questions, the origin of the universe entropy, and the arrow
of time [11].

However, an investigation of LQC under the holographic
point of view was still lacking. In this way, in the present
work, we have shown a manner to obtain the LQC semiclas-
sical equations from the holographic principle. In order to
do this, we have considered that the entropy of the universe
is given by the LQBH’s entropy-area relation, and the holo-
graphic boundary is chosen as the universe apparent horizon
in order to have the validity of the first law of thermodynam-
ics. Based on such assumptions, by the use of the Jacobson
formalism [1], adapted to cosmological scenarios by Cai et
al. [34], the dynamical LQC equations can be obtained.

The compatibility with the results of standard LQC, might
suggest that the black hole’s entropy counting performed in
loop black hole’s scenario may be on a more solid footing,
in cosmological contexts, than other counting procedures
such as those given in other approaches like [39]. Since the
Eq. 29 is an equation of state for the cosmological evolution
of spacetime, semiclassical LQC would appear as a thermo-
dynamic effect whose origin would lies in the atomic struc-
ture of spacetime described by LQG.

Among our results, a positive cosmological constant
has been obtained. The value of the cosmological con-
stant depends on the universe initial conditions, specially
it depends on the choice of the universe critical density at
the bounce. In order to have a real valued cosmological con-
stant, the naive assumption that the universe critical density
is determined by the LQG area gap can not be considered
in the present formalism. On the other hand, there are some
suggestions that ρc should be fixed by observations. In this
case, our results gives a way to fix the value of ρc by con-
necting it with the cosmological constant observed value. In
this way ρc ∼ 10120. The problem of why the cosmological
constant has a very small value in our universe remains open.

The results found out in this paper can pave the way for a
large sort of investigation of important issues about the ther-
modynamical behavior of our universe as described by LQC.
Besides the aforementioned problems of the origin of uni-
verse entropy and the arrow of time, non-equilibrium regimes
can be also investigated in this context.

Acknowledgements The author would like to thank the anonymous
referee by the useful discussions and comments about the paper.

123



409 Page 8 of 9 Eur. Phys. J. C (2018) 78 :409

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.
Funded by SCOAP3.

References

1. T. Jacobson, Phys. Rev. Lett. 75, 1260 (1995)
2. C. Rovelli, Quantum Gravity (Cambridge University Press, Cam-

bridge, 2004)
3. A. Ashtekar, J. Lewandowski, Class. Quant. Grav. 21, R53 (2004).

arXiv:gr-qc/0404018
4. T. Thiemann, Lect. Notes Phys. 721, 185 (2007).

arXiv:hep-th/0608210
5. T. Thiemann. arXiv:gr-qc/0110034
6. T. Thiemann, Lect. Notes Phys. 631, 41 (2003).

arXiv:gr-qc/0210094
7. M. Bojowald, Phys. Rev. Lett. 86, 5227 (2001)
8. A. Barrau, T. Cailleteau, J. Grain, J. Mielczarek, Class. Quant.

Grav. 31, 053001 (2014)
9. A. Ashtekar, A. Barrau. arXiv:1504.07559 [gr-qc]

10. M. Bojowald, Nat. Phys. 3(8), 523 (2007)
11. M. Bojowald, R. Tavakol, Phys. Rev. D 78, 023515 (2008)
12. J.D. Bekenstein, Phys. Rev. D 7, 2333 (1973)
13. G. ’t Hooft, Salamfest, 0284–296 (1993). arXiv:gr-qc/9310026
14. L. Susskind, J. Math. Phys. 36, 6377 (1995)
15. R. Bousso, Rev. Mod. Phys. 74, 825 (2002)
16. L. Susskind, Nat. Phys. 2(10), 665 (2006)
17. N. Afshordi, C. Coriano, L. Delle Rose, E. Gould, K. Skenderis,

Phys. Rev. Lett. 118(4), 041301 (2017). https://doi.org/10.1103/
PhysRevLett.118.041301. arXiv:1607.04878 [astro-ph.CO]

18. W. Fischler, L. Susskind. arXiv:hep-th/9806039
19. G. Veneziano, Phys. Lett. B 454, 22 (1999). https://doi.org/10.

1016/S0370-2693(99)00267-1. arXiv:hep-th/9902126
20. R. Easther, D.A. Lowe, Phys. Rev. Lett. 82, 4967 (1999). https://

doi.org/10.1103/PhysRevLett.82.4967. arXiv:hep-th/9902088
21. D. Bak, S.J. Rey, Class. Quant. Grav. 17, L83 (2000). https://doi.

org/10.1088/0264-9381/17/15/101. arXiv:hep-th/9902173
22. R. Bousso, JHEP 9907, 004 (1999). https://doi.org/10.1088/

1126-6708/1999/07/004. arXiv:hep-th/9905177
23. R. Bousso, JHEP 9906, 028 (1999). https://doi.org/10.1088/

1126-6708/1999/06/028. arXiv:hep-th/9906022
24. T. Banks, W. Fischler. arXiv:hep-th/0111142
25. N. Kaloper, A.D. Linde, Phys. Rev. D 60, 103509 (1999). https://

doi.org/10.1103/PhysRevD.60.103509. arXiv:hep-th/9904120
26. L. Randall, R. Sundrum, Phys. Rev. Lett. 83, 4690 (1999). https://

doi.org/10.1103/PhysRevLett.83.4690. arXiv:hep-th/9906064
27. S.S. Gubser, Phys. Rev. D 63, 084017 (2001). https://doi.org/10.

1103/PhysRevD.63.084017. arXiv:hep-th/9912001
28. I. Savonije, E.P. Verlinde, Phys. Lett. B 507, 305 (2001). https://

doi.org/10.1016/S0370-2693(01)00467-1. arXiv:hep-th/0102042
29. S. Mukohyama, Phys. Lett. B 473, 241 (2000). https://doi.org/10.

1016/S0370-2693(99)01505-1. arXiv:hep-th/9911165
30. E.E. Flanagan, S.H.H. Tye, I. Wasserman, Phys. Rev. D

62, 044039 (2000). https://doi.org/10.1103/PhysRevD.62.044039.
arXiv:hep-ph/9910498

31. P. Binetruy, C. Deffayet, U. Ellwanger, D. Langlois,
Phys. Lett. B 477, 285 (2000). https://doi.org/10.1016/
S0370-2693(00)00204-5. arXiv:hep-th/9910219

32. D. Ida, JHEP 0009, 014 (2000). https://doi.org/10.1088/
1126-6708/2000/09/014. arXiv:gr-qc/9912002

33. V. Faraoni, Lect. Notes Phys. 907, 1 (2015). https://doi.org/10.
1007/978-3-319-19240-6

34. R.G. Cai, S.P. Kim, JHEP 0502, 050 (2005)
35. T. Padmanabhan, Phys. Rev. D 81, 124040 (2010)
36. C. Eling, R. Guedens, T. Jacobson, Phys. Rev. Lett. 96, 121301

(2006). arXiv:gr-qc/0602001
37. T. Padmanabhan, Rept. Prog. Phys. 73, 046901 (2010)
38. R.G. Cai, L.M. Cao, Y.P. Hu, JHEP 0808, 090 (2008)
39. K.A. Meissner, Class. Quant. Grav. 21, 5245 (2004)
40. L. Modesto, Int. J. Theor. Phys. 49, 1649 (2010). https://doi.org/

10.1007/s10773-010-0346-x. arXiv:0811.2196 [gr-qc]
41. L. Modesto, I. Premont-Schwarz, Phys. Rev. D 80, 064041 (2009)
42. B. Carr, L. Modesto, I. Premont-Schwarz. arXiv:1107.0708 [gr-qc]
43. S. Hossenfelder, L. Modesto, I. Premont-Schwarz.

arXiv:1202.0412 [gr-qc]
44. C.A.S. Silva, F.A. Brito, Phys. Lett. B 725(45), 456 (2013)
45. F. Caravelli, L. Modesto, Class. Quant. Grav. 27, 245022 (2010)
46. E. Alesci, L. Modesto, Gen. Rel. Grav. 46, 1656 (2014)
47. Y. Gong, A. Wang, Phys. Rev. Lett. 99, 211301 (2007). https://doi.

org/10.1103/PhysRevLett.99.211301. arXiv:0704.0793 [hep-th]
48. R.G. Cai, L.M. Cao, Phys. Rev. D 75, 064008 (2007). https://doi.

org/10.1103/PhysRevD.75.064008. arXiv:gr-qc/0611071
49. R.G. Cai, L.M. Cao, Y.P. Hu, Class. Quant. Grav. 26, 155018 (2009)
50. R.G. Cai, L.M. Cao, Nucl. Phys. B 785, 135 (2007). https://doi.

org/10.1016/j.nuclphysb.2007.06.016. arXiv:hep-th/0612144
51. R.G. Cai, Prog. Theor. Phys. Suppl. 172, 100 (2008). https://doi.

org/10.1143/PTPS.172.100. arXiv:0712.2142 [hep-th]
52. A. Sheykhi, B. Wang, R.G. Cai, Nucl. Phys. B779, 1 (2007). https://

doi.org/10.1016/j.nuclphysb.2007.04.028. arXiv:hep-th/0701198
53. A. Sheykhi, B. Wang, R.G. Cai, Phys. Rev. D 76, 023515

(2007). https://doi.org/10.1103/PhysRevD.76.023515.
arXiv:hep-th/0701261

54. R.G. Cai, L.M. Cao, N. Ohta, Phys. Lett. B 679, 504 (2009).
https://doi.org/10.1016/j.physletb.2009.07.075. arXiv:0905.0751
[hep-th]

55. R.G. Cai, L.M. Cao, Y.P. Hu, S.P. Kim, Phys. Rev. D
78, 124012 (2008). https://doi.org/10.1103/PhysRevD.78.124012.
arXiv:0810.2610 [hep-th]

56. Y. Zhang, Y. Gong, Z.H. Zhu, Int. J. Mod. Phys. D 21, 1250034
(2012). https://doi.org/10.1142/S0218271812500344

57. B. Wang, Y. Gong, E. Abdalla, Phys. Rev. D 74, 083520
(2006). https://doi.org/10.1103/PhysRevD.74.083520.
arXiv:gr-qc/0511051

58. J. Zhou, B. Wang, Y. Gong, E. Abdalla, Phys. Lett. B652, 86 (2007).
https://doi.org/10.1016/j.physletb.2007.06.067. arXiv:0705.1264
[gr-qc]

59. A. Sheykhi, Class. Quant. Grav. 27, 025007 (2010). https://doi.org/
10.1088/0264-9381/27/2/025007. arXiv:0910.0510 [hep-th]

60. S.F. Wu, B. Wang, G.H. Yang, P.M. Zhang, Class. Quant.
Grav. 25, 235018 (2008). https://doi.org/10.1088/0264-9381/25/
23/235018. arXiv:0801.2688 [hep-th]

61. N. Radicella, D. Pavon, Phys. Lett. B 691, 121 (2010). https://doi.
org/10.1016/j.physletb.2010.06.019. arXiv:1006.3745 [gr-qc]

62. M. Akbar, R.G. Cai, Phys. Lett. B 635, 7 (2006). https://doi.org/
10.1016/j.physletb.2006.02.035. arXiv:hep-th/0602156

63. X.H. Ge, Phys. Lett. B 651, 49 (2007). https://doi.org/10.1016/j.
physletb.2007.05.055. arXiv:hep-th/0703253

64. M. Akbar, Chin. Phys. Lett. 25, 4199 (2008). https://doi.org/10.
1088/0256-307X/25/12/004. arXiv:0808.0169 [gr-qc]

65. A. Sheykhi, Phys. Rev. D 87(2), 024022 (2013). https://doi.org/10.
1103/PhysRevD.87.024022. arXiv:1301.3776 [hep-th]

66. A. Perez. arXiv:gr-qc/0409061
67. V. Taveras, Phys. Rev. D 78, 064072 (2008). https://doi.org/10.

1103/PhysRevD.78.064072. arXiv:0807.3325 [gr-qc]

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/gr-qc/0404018
http://arxiv.org/abs/hep-th/0608210
http://arxiv.org/abs/gr-qc/0110034
http://arxiv.org/abs/gr-qc/0210094
http://arxiv.org/abs/1504.07559
http://arxiv.org/abs/gr-qc/9310026
https://doi.org/10.1103/PhysRevLett.118.041301
https://doi.org/10.1103/PhysRevLett.118.041301
http://arxiv.org/abs/1607.04878
http://arxiv.org/abs/hep-th/9806039
https://doi.org/10.1016/S0370-2693(99)00267-1
https://doi.org/10.1016/S0370-2693(99)00267-1
http://arxiv.org/abs/hep-th/9902126
https://doi.org/10.1103/PhysRevLett.82.4967
https://doi.org/10.1103/PhysRevLett.82.4967
http://arxiv.org/abs/hep-th/9902088
https://doi.org/10.1088/0264-9381/17/15/101
https://doi.org/10.1088/0264-9381/17/15/101
http://arxiv.org/abs/hep-th/9902173
https://doi.org/10.1088/1126-6708/1999/07/004
https://doi.org/10.1088/1126-6708/1999/07/004
http://arxiv.org/abs/hep-th/9905177
https://doi.org/10.1088/1126-6708/1999/06/028
https://doi.org/10.1088/1126-6708/1999/06/028
http://arxiv.org/abs/hep-th/9906022
http://arxiv.org/abs/hep-th/0111142
https://doi.org/10.1103/PhysRevD.60.103509
https://doi.org/10.1103/PhysRevD.60.103509
http://arxiv.org/abs/hep-th/9904120
https://doi.org/10.1103/PhysRevLett.83.4690
https://doi.org/10.1103/PhysRevLett.83.4690
http://arxiv.org/abs/hep-th/9906064
https://doi.org/10.1103/PhysRevD.63.084017
https://doi.org/10.1103/PhysRevD.63.084017
http://arxiv.org/abs/hep-th/9912001
https://doi.org/10.1016/S0370-2693(01)00467-1
https://doi.org/10.1016/S0370-2693(01)00467-1
http://arxiv.org/abs/hep-th/0102042
https://doi.org/10.1016/S0370-2693(99)01505-1
https://doi.org/10.1016/S0370-2693(99)01505-1
http://arxiv.org/abs/hep-th/9911165
https://doi.org/10.1103/PhysRevD.62.044039
http://arxiv.org/abs/hep-ph/9910498
https://doi.org/10.1016/S0370-2693(00)00204-5
https://doi.org/10.1016/S0370-2693(00)00204-5
http://arxiv.org/abs/hep-th/9910219
https://doi.org/10.1088/1126-6708/2000/09/014
https://doi.org/10.1088/1126-6708/2000/09/014
http://arxiv.org/abs/gr-qc/9912002
https://doi.org/10.1007/978-3-319-19240-6
https://doi.org/10.1007/978-3-319-19240-6
http://arxiv.org/abs/gr-qc/0602001
https://doi.org/10.1007/s10773-010-0346-x
https://doi.org/10.1007/s10773-010-0346-x
http://arxiv.org/abs/0811.2196
http://arxiv.org/abs/1107.0708
http://arxiv.org/abs/1202.0412
https://doi.org/10.1103/PhysRevLett.99.211301
https://doi.org/10.1103/PhysRevLett.99.211301
http://arxiv.org/abs/0704.0793
https://doi.org/10.1103/PhysRevD.75.064008
https://doi.org/10.1103/PhysRevD.75.064008
http://arxiv.org/abs/gr-qc/0611071
https://doi.org/10.1016/j.nuclphysb.2007.06.016
https://doi.org/10.1016/j.nuclphysb.2007.06.016
http://arxiv.org/abs/hep-th/0612144
https://doi.org/10.1143/PTPS.172.100
https://doi.org/10.1143/PTPS.172.100
http://arxiv.org/abs/0712.2142
https://doi.org/10.1016/j.nuclphysb.2007.04.028
https://doi.org/10.1016/j.nuclphysb.2007.04.028
http://arxiv.org/abs/hep-th/0701198
https://doi.org/10.1103/PhysRevD.76.023515
http://arxiv.org/abs/hep-th/0701261
https://doi.org/10.1016/j.physletb.2009.07.075
http://arxiv.org/abs/0905.0751
https://doi.org/10.1103/PhysRevD.78.124012
http://arxiv.org/abs/0810.2610
https://doi.org/10.1142/S0218271812500344
https://doi.org/10.1103/PhysRevD.74.083520
http://arxiv.org/abs/gr-qc/0511051
https://doi.org/10.1016/j.physletb.2007.06.067
http://arxiv.org/abs/0705.1264
https://doi.org/10.1088/0264-9381/27/2/025007
https://doi.org/10.1088/0264-9381/27/2/025007
http://arxiv.org/abs/0910.0510
https://doi.org/10.1088/0264-9381/25/23/235018
https://doi.org/10.1088/0264-9381/25/23/235018
http://arxiv.org/abs/0801.2688
https://doi.org/10.1016/j.physletb.2010.06.019
https://doi.org/10.1016/j.physletb.2010.06.019
http://arxiv.org/abs/1006.3745
https://doi.org/10.1016/j.physletb.2006.02.035
https://doi.org/10.1016/j.physletb.2006.02.035
http://arxiv.org/abs/hep-th/0602156
https://doi.org/10.1016/j.physletb.2007.05.055
https://doi.org/10.1016/j.physletb.2007.05.055
http://arxiv.org/abs/hep-th/0703253
https://doi.org/10.1088/0256-307X/25/12/004
https://doi.org/10.1088/0256-307X/25/12/004
http://arxiv.org/abs/0808.0169
https://doi.org/10.1103/PhysRevD.87.024022
https://doi.org/10.1103/PhysRevD.87.024022
http://arxiv.org/abs/1301.3776
http://arxiv.org/abs/gr-qc/0409061
https://doi.org/10.1103/PhysRevD.78.064072
https://doi.org/10.1103/PhysRevD.78.064072
http://arxiv.org/abs/0807.3325


Eur. Phys. J. C (2018) 78 :409 Page 9 of 9 409

68. W. Kaminski, T. Pawlowski, Phys. Rev. D 81, 024014 (2010).
https://doi.org/10.1103/PhysRevD.81.024014. arXiv:0912.0162
[gr-qc]

69. T. Pawlowski, A. Ashtekar, Phys. Rev. D85, 064001 (2012). https://
doi.org/10.1103/PhysRevD.85.064001. arXiv:1112.0360 [gr-qc]

70. E. Bentivegna, T. Pawlowski, Phys. Rev. D 77, 124025 (2008).
https://doi.org/10.1103/PhysRevD.77.124025. arXiv:0803.4446
[gr-qc]

71. E. Bianchi, C. Rovelli. arXiv:1002.3966 [astro-ph.CO]
72. E. Bianchi, C. Rovelli, R. Kolb, Nature, 466, 321 (2010)
73. E. Wilson-Ewing, Comptes Rendus Phys. 18, 207 (2017). https://

doi.org/10.1016/j.crhy.2017.02.004. arXiv:1612.04551 [gr-qc]
74. A. Padilla. arXiv:1502.05296 [hep-th]
75. A. Ashtekar, T. Pawlowski, P. Singh, Phys. Rev. D 73,

124038 (2006). https://doi.org/10.1103/PhysRevD.73.124038.
arXiv:gr-qc/0604013

76. A. Ashtekar, T. Pawlowski, P. Singh, Phys. Rev. D 74,
084003 (2006). https://doi.org/10.1103/PhysRevD.74.084003.
arXiv:gr-qc/0607039

77. A. Ashtekar, T. Pawlowski, P. Singh, Phys. Rev. Lett. 96,
141301 (2006). https://doi.org/10.1103/PhysRevLett.96.141301.
arXiv:gr-qc/0602086

78. A. Ashtekar, A. Corichi, P. Singh, Phys. Rev. D 77,
024046 (2008). https://doi.org/10.1103/PhysRevD.77.024046.
arXiv:0710.3565 [gr-qc]

79. D.W. Chiou, K. Vandersloot, Phys. Rev. D 76, 084015 (2007).
https://doi.org/10.1103/PhysRevD.76.084015. arXiv:0707.2548
[gr-qc]

80. A. Ashtekar, Gen. Rel. Grav. 41, 707 (2009). https://doi.org/10.
1007/s10714-009-0763-4. arXiv:0812.0177 [gr-qc]

81. P. Malkiewicz, W. Piechocki, Phys. Rev. D 80, 063506 (2009).
https://doi.org/10.1103/PhysRevD.80.063506. arXiv:0903.4352
[gr-qc]

82. M. Bojowald, Class. Quant. Grav. 26, 075020 (2009). https://doi.
org/10.1088/0264-9381/26/7/075020. arXiv:0811.4129 [gr-qc]

83. P. Dzierzak, J. Jezierski, P. Malkiewicz, W. Piechocki, Acta Phys.
Polon. B 41, 717 (2010). arXiv:0810.3172 [gr-qc]

84. M. Bojowald, Gen. Rel. Grav. 40, 2659 (2008). https://doi.org/10.
1007/s10714-008-0645-1. arXiv:0801.4001 [gr-qc]

123

https://doi.org/10.1103/PhysRevD.81.024014
http://arxiv.org/abs/0912.0162
https://doi.org/10.1103/PhysRevD.85.064001
https://doi.org/10.1103/PhysRevD.85.064001
http://arxiv.org/abs/1112.0360
https://doi.org/10.1103/PhysRevD.77.124025
http://arxiv.org/abs/0803.4446
http://arxiv.org/abs/1002.3966
https://doi.org/10.1016/j.crhy.2017.02.004
https://doi.org/10.1016/j.crhy.2017.02.004
http://arxiv.org/abs/1612.04551
http://arxiv.org/abs/1502.05296
https://doi.org/10.1103/PhysRevD.73.124038
http://arxiv.org/abs/gr-qc/0604013
https://doi.org/10.1103/PhysRevD.74.084003
http://arxiv.org/abs/gr-qc/0607039
https://doi.org/10.1103/PhysRevLett.96.141301
http://arxiv.org/abs/gr-qc/0602086
https://doi.org/10.1103/PhysRevD.77.024046
http://arxiv.org/abs/0710.3565
https://doi.org/10.1103/PhysRevD.76.084015
http://arxiv.org/abs/0707.2548
https://doi.org/10.1007/s10714-009-0763-4
https://doi.org/10.1007/s10714-009-0763-4
http://arxiv.org/abs/0812.0177
https://doi.org/10.1103/PhysRevD.80.063506
http://arxiv.org/abs/0903.4352
https://doi.org/10.1088/0264-9381/26/7/075020
https://doi.org/10.1088/0264-9381/26/7/075020
http://arxiv.org/abs/0811.4129
http://arxiv.org/abs/0810.3172
https://doi.org/10.1007/s10714-008-0645-1
https://doi.org/10.1007/s10714-008-0645-1
http://arxiv.org/abs/0801.4001

	On the holographic basis of loop quantum cosmology
	Abstract 
	1 Introduction
	2 Loop quantum black holes
	3 Friedmann equations from thermodynamics
	4 Quantum corrected Friedmann equations from LQBHs
	5 Relation with usual semiclassical LQC
	6 Summary and conclusions
	Acknowledgements
	References




