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Abstract In this work we re-investigate pros and cons of
mutated hilltop inflation. Applying Hamilton–Jacobi formal-
ism we solve inflationary dynamics and find that inflation
goes on along the W−1 branch of the Lambert function.
Depending on the model parameter mutated hilltop model
renders two types of inflationary solutions: one corresponds
to small inflaton excursion during observable inflation and
the other describes large field inflation. The inflationary
observables from curvature perturbation are in tune with
the current data for a wide range of the model parameter.
The small field branch predicts negligible amount of tensor
to scalar ratio r ∼ O(10−4), while the large field sector
is capable of generating high amplitude for tensor pertur-
bations, r ∼ O(10−1). Also, the spectral index is almost
independent of the model parameter along with a very small
negative amount of scalar running. Finally we find that the
mutated hilltop inflation closely resembles the α-attractor
class of inflationary models in the limit of αφ � 1.

1 Introduction

The standard model of hot Big-Bang scenario is instrumental
in explaining the nucleosynthesis, expanding universe along
with the formation of cosmic microwave background (CMB
henceforth). But there are few limitations in the likes of flat-
ness problem, homogeneity problem etc., which can not be
answered within the limit of Big-Bang cosmology. In order to
overcome these shortcomings an early phase of accelerated
expansion – cosmic inflation was proposed [1–5]. Big-Bang
theory is incomplete without inflation and turns into brawny
when combined with the paradigm of inflation. Though infla-
tion was initiated to solve the cosmological puzzles, but the
most impressive impact of inflation happens to be its ability
to provide persuasive mechanism for the origin of cosmo-
logical fluctuations observed in the large scale structure and
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CMB. Nowadays inflation is the best bet for the origin of
primordial perturbations.

Since its inception, almost four decades ago, inflation has
remained the most powerful tool to explain the early uni-
verse when combined with big-bang scenario. It is still a
paradigm due to the elusive nature of the scalar field(s), infla-
ton, responsible for inflation and the unknown shape of the
potential involved. That the potential should be sufficiently
flat to render almost scale invariant curvature perturbation
along with tensor perturbation [6–12] has been only under-
stood so far. As a result there are many inflationary models
in the literature. With the advent of highly precise obser-
vational data from various probes [13–16], the window has
become thinner, but still allowing numerous models to pass
through [17,18]. The recent detection of astronomical grav-
ity waves by LIGO [19,20] has made the grudging cosmolo-
gists waiting for primordial gravity waves which are believed
to be produced during inflation through tensor perturbation.
The upcoming stage-IV CMB experiments are expected to
constrain the inflationary models further [21] by detecting
primordial gravity waves.

The most efficient method for studying inflation is the
slow-roll approximation [22,23], where the kinetic energy is
assumed to be very small compared to the potential energy.
But this is not the only way for successful implementation
of inflation and solutions outside slow-roll approximation
have been found [24]. In order to study inflationary paradigm
irrespective of slow-roll approximation Hamilton–Jacobi for-
malism [25,26] has turned out to be very handy. Here the
inflaton itself is treated as the evolution parameter instead of
time, and the Friedmann equation becomes first order which
is easy to extract underlying physics from. Another inter-
esting class of inflationary models has been introduced very
recently, constant-roll inflation [27–29], where the inflaton
rolls at a constant rate.

Here we would like to study single field mutated hill-
top model (MHI henceforth) of inflation [30,31] using
Hamilton–Jacobi formalism. In MHI observable inflation
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occurs as the scalar field rolls down towards the potential
minimum. So MHI does not correspond to usual hilltop infla-
tion [32,33] directly, but the shape of the inflaton potential
is somewhat similar to the mutated hilltop in hybrid infla-
tion and hence the name. We shall see that for a wide range
of values of the model parameter MHI provides inflationary
solution consistent with recent observations. Our analysis
also reveals that MHI has two different branches of infla-
tionary solutions: one corresponds to small field inflation
and the other represents large field inflation. In earlier stud-
ies [30,31] we have reported that MHI can only produce
a negligible amount of tensor to scalar ratio, r ∼ 10−4.
But, we shall see here that it is capable of generating r
as large as O(10−1) depending on the model parameter.
Consequently a wide range of r , 10−4 � r � 10−1, can
be addressed by MHI. Recent data from Planck [15,16,34]
has reported an upper bound r0.002 < 0.07 and upcom-
ing CMB-S4 experiments are expected to survey tensor to
scalar ratio up to r ∼ 2 × 10−3 [21]. So sooner or later
the model can be tested with the observations. The predic-
tion for inflationary observables from MHI are in tune with
recent observations. Further, MHI predicts spectral index
which is almost independent of model parameter along with
small negative scalar running consistent with current data.
It has been also found that MHI closely resembles the α-
attractor class of inflationary models [35,36] in the limit
of αφ � 1.

In Sect. 2 we have briefly reviewed Hamilton–Jacobi for-
malism. In the next Sect. 3 we have discussed about the MHI
in Hamilton–Jacobi formalism and have shown resemblance
with α−Attractor class of inflationary models in Sect. 4.
Finally we conclude in Sect. 5.

2 Quick look at Hamilton Jacobi formalism

The Hamilton–Jacobi formalism allows us to recast the Fried-
mann equation into the following form [24–26,37]

[H ′
(φ)]2 − 3

2M2
P

H(φ)2 = − 1

2M4
P

V (φ) (1)

φ̇ = −2M2
PH

′(φ) (2)

where prime and dot denote derivatives with respect to the
scalar field φ and time respectively, and MP ≡ 1√

8πG
is the

reduced Planck mass. The associated inflationary potential
can then be found by rearranging the terms of Eq. (1)

V (φ) = 3M2
PH2(φ)

[
1 − 1

3
εH

]
(3)

where εH has been defined as

εH = 2M2
P

(
H

′
(φ)

H(φ)

)2

. (4)

We further have

ä

a
= H2(φ)[1 − εH ]. (5)

Therefore accelerated expansion takes place when εH < 1
and ends exactly at εH = 1. The evolution of the scale factor
turns out to be

a ∝ exp

[∫
H

φ̇
dφ

]
. (6)

The amount of inflation is expressed in terms of number of
e-foldings and defined as

N ≡ ln
aend

a
= 1

MP

∫ φ

φend

1√
2εH

dφ. (7)

We have defined N in such a way that at the end of inflation
N = 0 and N increases as we go back in time. The observable
parameters are generally evaluated when there are 55–65 e-
foldings still left before the end of inflation. It is customary
to define another parameter by

ηH = 2M2
P

H
′′
(φ)

H(φ)
. (8)

It is worthwhile to mention here that the parameters εH and
ηH are not the usual slow-roll parameters. But in the slow-
roll limit εH → ε and ηH → η − ε [23], ε and η being usual
potential slow-roll parameters.

Though we have not included higher order slow-roll
parameters in the present analysis, another widely used
higher order slow-roll parameter is defined as follows,

ζ 2
H
(φ) ≡ 4M4

P
H ′(φ)H ′′′(φ)

H2(φ)
(9)

In Sect. 3, we shall present variation of the solution of the
equation ζH (φ) = 1 with the model parameter.

3 Mutated Hilltop inflation: the model

The potential we would like to study has the following form
[30,31]

V (φ) = V0[1 − sech(αφ)] (10)

where V0 is the typical energy scale of inflation and α is
a parameter having dimension of inverse Planck mass. The
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potential under consideration does not actually represent typ-
ical hilltop inflation [32,33], but the form of the potential is
somewhat similar to mutated hilltop inflation in hybrid sce-
nario and hence the name. Accelerated expansion takes place
as the inflaton rolls towards the potential minimum. Not only
that, from Eq. (10) it is obvious thatV (φmin) = V ′(φmin) = 0
which is significantly different from the usual hilltop poten-
tial.

The associated Hubble parameter may be written as

H(φ) 	
√

V0

3M2
P

[1 − sech(αφ)] 1
2 (11)

The value of the constants can be fixed from the conditions
for successful inflation and the observational bounds.

The parameters εH , ηH , ζH in the Hamilton–Jacobi for-
malism now take the form

εH 	 M2
Pα2

2

sech2(αφ) tanh2(αφ)

(1 − sech(αφ))2

ηH 	 −M2
Pα2

2
sech(αφ)[2 + 3 sech(αφ)]

ζH 	 M2
P

2

×
√

α4(6 cosh(αφ) + 2 cosh(2αφ) − 13) coth2(αφ/2)sech4(αφ)

(12)

In Fig. 1 we have plotted the solutions of εH = 1 and
|ηH (φ)| = 1 obtained by solving the background evolution
numerically along with those found using the approximate
form Eq. (11) for the Hubble parameter. The background
evolution was found numerically by solving Eq. (1) with the
potential given by Eq. (10). From the figure it is clear that
|ηH | = 1 occurs well before εH = 1 for α ≥ αeq in both the
cases, where αeq represents the value of α for the simultane-
ous occurrence of |ηH | = 1 and εH = 1 (values of αeq are
different in exact and approximate solutions).

In the Hamilton–Jacobi formalism with Hubble slow-roll
parameters the end of inflation is explicitly given by εH = 1 at
φend [23,24], which is also clear from Eq. (5). From the Fig. 1
it may be seen that the exact numerical solution of εH = 1 (the
solid red line) is close to that obtained by using the approxi-
mated form of the Hubble parameter (dashed magenta line),
and differs slightly for |ηH | = 1. But as we are using an
approximated form of the Hubble parameter, we shall con-
sider the end of inflation to be where slow-roll approximation
breaks, i.e. maxφ{εH = 1, |ηH | = 1}. Now the solution of
εH = 1 is the root of the following equation

M2
P α2 sech2(αφε)(1 − sech2(αφε)) 	 2(1 − sech(αφε))

2.

(13)

Fig. 1 The solid red line is the solution of εH = 1 obtained numeri-
cally from the background evolution and the dashed magenta line is the
solution of εH = 1 using slow-roll approximation. The black dotted line
is the solution of |ηH | = 1 obtained numerically from the background
evolution and the dot-dashed blue line is the solution of |ηH | = 1 in the
slow-roll approximation

Equation (13) can be solved analytically and the relevant
solution turns out to be

φε 	 MPb
−1 sech−1 1

3

×
⎡
⎢⎣−1 + b2 − 6

b
(

36b − b3 + 3
√

6
√

4 + 22b2 − b4
)1/3

+
(

36b − b3 + 3
√

6
√

4 + 22b2 − b4
)1/3

b

⎤
⎥⎦

(14)

where b ≡ αMP. On the other hand the solution of |ηH | = 1
is given by

φη 	 α−1 sech−1 1

3

[
−1 +

√
1 + 6

b2

]
. (15)

So the end of inflation may be written asφend 	 max{φε, φη},
i.e. φend 	 φε and φend 	 φη for α ≤ αeq and α > αeq

respectively.
In Fig.2 we have plotted the solutions of εH = 1, |ηH | = 1

and |ζH | = 1 using the Hubble parameter as given by Eq.
(11). From the figure we see that |ηH | becomes order of unity
before εH, but |ζH | remains small.

From now on all the results that we shall present in this
article are based on the approximated form of the Hubble
parameter and without considering the effect of higher order
slow-roll parameters.
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Fig. 2 The solutions of εH = 1 (solid red line), |ηH | = 1 (dotted
black line) and |ζH | = 1 (dashed blue line) have been plotted. The
approximated form of the Hubble parameter has been used to find these
solutions

3.1 Number of e-foldings

The number of e-foldings in MHI is found to have the fol-
lowing form

N (φ) 	 1

α2M2
P

×
[

cosh(αφ) − cosh(αφend) − 2 ln
cosh(αφ/2)

cosh(αφend/2)

]
.

(16)

The above Eq. (16) can be analytically inverted to get the
scalar field as a function of e-foldings as follows

φ 	 α−1 cosh−1
[

− 1 − W−1

× (−[cosh(αφend) + 1]e−M2
Pα2N−1−cosh(αφend))

]

= α−1 cosh−1 (LW [α, N ]) (17)

where we have defined LW [α, N ] ≡ −1 − W−1(
− [cosh(αφend) + 1] e−M2

Pα2N−1−cosh(αφend)
)

and W−1 is

the Lambert function. From the above Eq. (17), one can see
that mutated hilltop inflation occurs along the W−1 branch of
the Lambert function, first pointed out in Ref. [17]. The value
of the inflaton when cosmological scale leaves the horizon,
φCMB, is then given by

φCMB 	 α−1 cosh−1(LW [α, NCMB]) (18)

The slow-roll parameters now can be expressed as a function
of the e-foldings

εH = 1

2M2
P

(
dφ

dN

)2

Fig. 3 Excursion of the scalar field (in the unit of mp) with the model
parameterα for three different values of e-foldings, N = 55, 60, 65. The
dotted vertical line corresponds to the value of α at which �φ = mP
which has been estimated by considering NCMB = 55

	 M2
Pα2

2

LW [α, N ] + 1

(LW [α, N ] − 1)LW [α, N ]2 (19)

ηH =
(
d2φ

dN 2

)(
dφ

dN

)−1

+ εH

	 −M2
Pα2

2

2LW [α, N ] + 3

LW [α, N ]2 (20)

This makes life simpler as now all the inflationary observ-
able parameters when derived in the slow-roll limit can be
expressed as a function of N .

3.2 The Lyth bound for MHI

The fluctuations in the tensor modes solely depends on the
Hubble parameter whereas curvature perturbation is a func-
tion of the Hubble parameter and inflaton. Consequently, ten-
sor to scalar ratio determines excursion of the inflaton during
observable inflation, first shown in Ref. [38] and known as
Lyth bound

�φ = mP

8
√

π

∫ NCMB

0

√
r dN (21)

where mP = 2
√

2πMP is the actual Planck mass. �φ ≥ mP

corresponds to large field model and �φ < mP small field
models. One expects to get larger tensor to scalar ratio, r ,
where �φ ≥ mP due to the higher energy scale required for
successfully explaining the observable parameters. For the
model under consideration we have found

�φ 	 α−1 cosh−1(LW [α, NCMB]) − α−1 cosh−1(LW [α, 0])
(22)

In Fig. 3 we have shown the variation of the scalar field
excursion in the unit of mP, with the model parameter α.
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Fig. 4 The logarithmic variation of the tensor to scalar ratio with �φ

for three values of NCMB has been plotted. Red solid line for NCMB =
55, black dotted curve represents NCMB = 60 and the blue dashed line
for NCMB = 65

From the figure it is obvious that the mutated hilltop model
of inflation has small excursion of the inflaton for α ≥ α�φ=1

and large field excursion for α < α�φ=1, where α�φ=1 is the
solution of Eq. (22) for α with �φ = mP. So this model
is capable of addressing both the large and small field infla-
tionary scenarios for suitable values of the model parameter.

In Fig. 4 we have shown the variation of Log10r with �φ.
From the figure we see that small field MHI may give rise to
negligible amount of tensor to scalar ratio, r ∼ O(10−4), on
the other hand for large �φ, r can be as large as O(10−1).

3.3 Inflationary observables in the slow-roll limit

The inflationary observable parameters can be expressed in
terms of the slow-roll parameters. The power spectrum of the
curvature perturbation turns out to be

PR 	 1

16π2M4
P

[
H(φ)2

H ′(φ)

]2

φ=φCMB

	 V0

12π2α2M6
P

LW [α, NCMB](LW [α, NCMB] − 1)2

LW [α, NCMB] + 1

(23)

In Fig. 5 we have shown the variation of the typical energy
scale associated with MHI for different values of the model
parameter. From the figure it is clear that maximum energy
scale that can be achieved is O(1016) GeV. To determine this
energy scale we have used PR = 2.142 × 10−9 from Planck
2015 result [16]. The scale dependence of the spectrum of
curvature perturbation is described by spectral index. In MHI
we have found

nS 	 1 − 4εH |φ=φCMB + 2ηH |φ=φCMB

	 1 − M2
Pα2 2L W[α, NCMB]2 + 3L W[α, NCMB] − 1

L W[α, NCMB]2(L W[α, NCMB] − 1)

(24)

Fig. 5 The energy scale in the unit of GeV for MHI has been plotted
with the model parameter α for NCMB = 55, 60, 65. The shaded region
corresponds to the large field sector for MHI

Fig. 6 The variation of the scalar spectral index with α for three differ-
ent values of NCMB has been plotted. The shaded vertical region is the
result for large field sector of MHI. The two horizontal lines (magenta)
are for Planck 2015 upper and lower bounds on nS

In Fig.6 we have shown how the scalar spectral index
changes with the model parameter. We also see that spectral
index is almost constant in both the large and small field
sector of MHI. The current bound on nS from Planck 2015
has also been plotted.

The scale dependence of the spectral index itself is esti-
mated from the scalar running and we have

n′
S

	 −2M4
P H ′(φ)H ′′′(φ)/H2(φ)|φ=φCMB

+ 16εH ηH |φ=φCMB − 8ε2
H
|φ=φCMB

	 −M4
Pα4

2
[−32 + 30LW [α, NCMB]

+33 cosh(2 cosh−1 LW [α, NCMB])
+ cosh(3 cosh−1 LW [α, NCMB])]
×LW [α, NCMB]−4(LW [α, NCMB] + 1)−1

×(LW [α, NCMB] − 1)−2 (25)

Here in Fig. 7 logarithmic variation of the absolute value
of scalar running with α has been plotted. From the figure
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Fig. 7 The logarithmic variation of the absolute value of the scalar
running with α for three different values of NCMB has been plotted. The
shaded vertical region is the result for large field sector of the model
under consideration

Fig. 8 Logarithmic variation of the tensor to scalar ratio with α for
three different values of NCMB has been plotted. The shaded vertical
region corresponds to the large field sector of the MHI

it is clear that MHI predicts very small running of the spec-
tral index. The maximum amount of scalar running that can
achieved in MHI is |n′

S| ∼ 10−3.
Finally, the tensor to scalar ratio is found to have the fol-

lowing form

r 	 16εH |φ=φCMB

	 8M2
Pα2 L W[α, NCMB] + 1

L W[α, NCMB]2(L W[α, NCMB] − 1)
(26)

In Fig. 8 we have plotted the tensor to scalar ratio (in Log10

scale) with α for three different values of NCMB. We see that
MHI can address wide range of values of tensor to scalar
ratio, 10−4 � r < 10−1 depending on the model parameter
α. But r � 0.07 has to be discarded which is observationally
forbidden [34], which effectively determines a rough lower
bound on the model parameters, α > 0.094561.

In Fig. 9 we have shown variation of the MHI energy scale
with the tensor to scalar ratio. So in order to achieve r ∼ 0.07

we need an energy scale V
1
4

0 ∼ 1.5 × 1016 GeV.

Fig. 9 Variation of the MHI energy scale with r has been shown for
three different values of NCMB. Red solid line is for NCMB = 55,
black dotted curve represents NCMB = 60 and the blue dashed line for
NCMB = 65. The shaded vertical region represents small field sector of
MHI

Fig. 10 The variation of N (1−nS )/2 in MHI with the model parameter
α and the number of e-foldings, N, has been shown

Fig. 11 Variation of NCMB(1 − nS )/2 in MHI with α has been shown
for two different values of NCMB. Blue solid line is for NCMB = 55,
red dotted curve represents NCMB = 65
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Fig. 12 Variation of
α2M2

P r N 2/8 in MHI with the
model parameter α and the
number of e-foldings, N, has
been shown

Fig. 13 Variation of α2M2
P r N 2

CMB/8 in MHI with α has been shown
for three different values of NCMB. Blue solid line is for NCMB = 55,
red dotted curve represents NCMB = 65

4 Similarity with α-attractor class of inflationary
models

Now we shall show the resemblance of MHI with the α-
attractor class of models [35,36] in the limit of αφ � 1.
During inflation, within the slow-roll limit, the spectral index
is given by

nS − 1 	 −4εH + 2ηH

	 −M2
Pα2 3 sech2(αφ) − sech3(αφ) + 2 sech(αφ)

1 − sech(αφ)

≈ −2M2
Pα2 sech(αφ) (27)

where in the last step we have retained only the leading order
term, keeping in mind that we are considering the limit αφ �
1. Also, the scalar to tensor ratio, r , may be expressed as

r 	 16εH

	 8M2
Pα2 sech2(αφ)[1 − sech2(αφ)]

(1 − sech(αφ))2

≈ 8M2
Pα2 sech2(αφ) (28)

where again in the last line we have kept leading order term
in sech(αφ). Now the number of e-foldings, N , is approxi-
mately given by Eq. (16), which in the limit αφ � 1 may be
written as

N ≈ M−2
P α−2 cosh(αφ) (29)

In order to derive the above Eq. (29) we have made use of the
fact that logarithmic function varies slowly and neglected the
constant terms cosh(αφend) and ln[cosh(αφend/2)] during
inflation. Combining Eqs. (27)–(29), we see that in the limit
of αφ � 1

nS − 1 ≈ − 2

N
and r ≈ 1

M2
Pα2

8

N 2 (30)

So from Eq. (30) we see that during inflation when αφ � 1,
MHI indeed belongs to the class of α−attractor models.

In Fig. 10 we have shown the variation of N (1 − nS )/2
with the model parameter α and the number of e-foldings, N.
From the figure it is clear that for large values of the model
parameter MHI belongs to the α-attractor class of models and
deviation occurs for the small values of the model parameter.
In Fig. 11 we have shown the variation of NCMB(1 − nS )/2
with the model parameter α for two different values of NCMB.

In Fig. 12 we have shown the variation of α2M2
P r N 2/8

with the model parameter α and the number of e-foldings, N.
From the figure it is clear that for large values of the model
parameter MHI indeed belongs to the α-attractor class of
models and small deviation occurs for the small values of the
model parameter. In Fig. 13 we have plotted α2M2

P r N
2
CMB/8

for two different values of NCMB.
So, from the above results it is quite transparent that MHI

indeed falls into the category of α-attractor class of inflation-
ary models in the limit of αφ � 1.
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5 Conclusion

In this article we have revisited mutated hilltop inflation
driven by a hyperbolic potential. Employing Hamilton–
Jacobi formulation we found that inflation ends naturally
through the violation slow-roll approximation. More inter-
estingly, MHI has two different branches of inflationary solu-
tion. One corresponds to large field variation and the other
represents small change in inflaton during the observable
inflation depending on the model parameter.

Observable parameters as derived from this model are in
tune with the latest observations for a wide range of the model
parameter, αMP � 0.094561. The scalar spectral index is
found to be independent of the model parameter with a small
negative running. We have also found that MHI can address
a broad range of the tensor to scalar ratio, 0.0001 � r <

0.07. In a nutshell, MHI though does not belong to the usual
hilltop inflation is extremely attractive with only one model
parameter consistent with recent observations. Not only that,
in the limit of αφ � 1, MHI closely resembles the α-attractor
class of inflationary models.
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