Eur. Phys. J. C (2018) 78:353
https://doi.org/10.1140/epjc/s10052-018-5836-7

THE EUROPEAN

) CrossMark
PHYSICAL JOURNAL C

Regular Article - Theoretical Physics

Holographic insulator/superconductor transition with exponential
nonlinear electrodynamics probed by entanglement entropy

Weiping Yao', Chaohui Yang', Jiliang Jing?*

! Department of electrical engineering, Liupanshui Normal University, Liupanshui 553004, Guizhou, People’s Republic of China
2 Department of Physics Key Laboratory of Low Dimensional Quantum Structures, Quantum Control of Ministry of Education, Synergetic
Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha 410081, Hunan, People’s Republic of China

Received: 21 March 2018 / Accepted: 22 April 2018 / Published online: 2 May 2018

© The Author(s) 2018

Abstract From the viewpoint of holography, we study the
behaviors of the entanglement entropy in insulator/super-
conductor transition with exponential nonlinear electrody-
namics (ENE). We find that the entanglement entropy is a
good probe to the properties of the holographic phase tran-
sition. Both in the half space and the belt space, the non-
monotonic behavior of the entanglement entropy in super-
conducting phase versus the chemical potential is general
in this model. Furthermore, the behavior of the entangle-
ment entropy for the strip geometry shows that the confine-
ment/deconfinement phase transition appears in both insula-
tor and superconductor phases. And the critical width of the
confinement/deconfinement phase transition depends on the
chemical potential and the exponential coupling term. More
interestingly, the behaviors of the entanglement entropy in
their corresponding insulator phases are independent of the
exponential coupling factor but depends on the width of the
subsystem .A.

1 Introduction

As a strong-week duality, the anti-de Sitter/conformal field
theories (AdS/CFT) correspondence [ 1-3] establishes a dual
relationship between the (d — 1) dimensional strongly inter-
acting theories on the boundary and the d dimensional weekly
coupled gravity theories in the bulk. Based on this novel
idea, the AdS/CFT correspondence have received consider-
able interest in modeling strongly coupled physics, in par-
ticular the construction of the holographic superconductor,
might shed some light on the problem of understanding the
mechanism of the high temperature superconductors in con-
densed matter physics [4-9]. Such holographic supercon-
ductor models are interesting since they exhibit many char-
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acteristic properties shared by real superconductor. In recent
years, the studies on the holographic superconductors in AdS
spacetime have received a lot of attentions [10-24].

In addition, the entanglement entropy is expected to be a
useful tool to keep track of the degrees of freedom of strongly
coupled systems while other traditional methods might not be
available. In the spirit of AdS/CFT correspondence, a holo-
graphic method for calculating the entanglement entropy has
been proposed by Ryu and Takayanagi [25,26]. Presently,
consider a subsystem A of the total boundary system, the
entanglement entropy for a region A of the boundary system
is obtained from gravity side as the area of the minimal sur-
face y 4 in the bulk which ends at 3.A. Then the entanglement
entropy of A with its complement is given by

= Area(yA)’ )
4Gn

where Gy is the Newton’s constant in the bulk. With this
elegant and executable approach, the holographic entangle-
ment entropy has recently been applied to disclose properties
of phase transitions in various holographic superconductor
models [27-39]. It turns out that the entanglement entropy
is a good probe to the critical phase transition points and
the order of holographic phase transition [40—45]. However,
most studies on the holographic entanglement entropy are
focused on the cases where the gauge field is in the form of
the Maxwell field. When thinking about the higher deriva-
tive correction to the gauge field, the Refs. [46,47] studied the
holographic entanglement entropy in superconductor transi-
tion with Born-Infeld electrodynamics. Then, the behaviors
of holographic entanglement entropy in the time-dependent
background with nonlinear electrodynamics has been present
in [48].

In 1930’s Born and Infeld [49] introduced the theory of
nonlinear electrodynamics to avoid the infinite self ener-

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-018-5836-7&domain=pdf
mailto:jljing@hunnu.edu.cn

353 Page2of8

Eur. Phys. J. C (2018) 78:353

gies for charged point particles arising in Maxwell theory.
The ENE theory, as a extended Born-Infeld-like nonlin-
ear electrodynamics, was introduced by Hendi [50,51]. It’s
Lagrangian density is L = # [e‘b2F2 - 1] with F? =
F"F,,. When the ENE factor » — 0, the Lagrangian
will reduce to the Maxwell case. Compared to the Born—
Infeld nonlinear electrodynamics (BINE) [52-55], the ENE
displays different effect on the electric potential and tem-
perature for the same parameters and its singularity is much
weaker than the Einstein—Maxwell theory [56—58]. Recently,
this theory has applications in several branches of physics
being particularly interesting in systems where the ENE is
minimally coupled with gravitation as in the cases of charged
black holes [59-64] and cosmology [65-67].

Consequently, it is of great interest to investigate the holo-
graphic entanglement entropy in AdS spacetime by consid-
ering the exponential form of nonlinear electrodynamics. In
our previous work [68], we have investigated the effects of
the ENE sector on the holographic entanglement entropy
in metal/superconductor phase transition. As a further step
along this line, in this paper, we will further study the prop-
erties of phase transitions by calculating the behaviors of the
scalar operator and the entanglement entropy in holographic
insulator/superconductor model with ENE.

The paper is organized as follows. In the next section, we
will derive the equations of motions and give the boundary
conditions of the holographic model in AdS soliton space-
time. Then in Sect. 3, we will study the properties of holo-
graphic phase transition by examining the scalar operator.
In Sect. 4, we will calculate the holographic entanglement
entropy in insulator/superconductor transition with ENE.
Finally, Sect. 5 is devoted to conclusions.

2 Equations of motion and boundary conditions

The action for a ENE field coupling with a charged scalar field
with a negative cosmological constant in five-dimensional
spacetime reads

12
S = /d%/—g [R + oz oIV - igAV > — m?|v?

+ﬁ <e_b2F - 1)} )

where g is the determinant of the metric, L is the radius
of AdS spacetime, ¢ and m are respectively the charge and
the mass of the scalar field, F = Fy,, F*” here F,, is the
electromagnetic field tensor. The Einstein equation derived
from the above action becomes

6 1

1
R;,w - _g,uvR - ﬁguv = ETMIM 3)

2
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where the energy-momentum tensor 7}, is

Tuw = e VT FAFE + 2V, Vo + 207 Ay Ay y?
+gw|:i (7 =1) = vy vy
_quMAvl/fz_mzwz] ()

The equations of the motion of the matter fields can be
obtained in the form

1
JT_ga,L (V—gg" 8,¥) — g* A APy —mP*y =0, (5)
\/L__gau («/_—ge_szF’“’) 224 =0, (6)

For simplicity, our ansatz for the metric and matter fields are
given by

drz r r
§2 = 2B +r? (—eC( )di? + dx* + dy? + 4l )B(r)dxz> ,
@)
A =9¢@r), ¥ =vy). (3)

Without lose of generality, we set L = 1 in this paper. In order
to get a smooth geometry at the tip r¢ satisfying B(rg) = 0,
x should be made with an identification

Ao o—Alr0)/2
with = ————. ©)

=y +T,
re 73 B'(r0)

The independent equations of motion under the above ansatz
can be obtained as follows

5. A B C
" = — - - !/
v +(r+z+3+z>*’”

—C 242
+L(6 ¢ _m2>¢=o, (10)

2B r
3 A’ B’ c’
(14+4b°e B¢ " + (= + 5 +—— = )¢
r 2 B 2

2 —C B ’ 3
+2%e B = C' )¢

2672b2e*03¢’2q2¢2¢ B

- — 0. (11
4 2PC) HCR 4 ArC g Ar2y? 2o CH B g
r6+rC’) ’
12)
A’ B’
C// 7C/2 > - = C/
+ + p + 5 + B
e ¢ 2,—C g2 24222
_ rT (82b e " B¢ ¢/2 + =5 =0, (13)
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B %_g
r 2

1 e—C+2h2e’CB¢’2¢/2 12
722 !~
+B|:1/f _EAC +r—2+72
1 efcq2¢2¢,2 1— eZbZe’Cqu’z )
+}’2< 2 + 42 +m1// —12) =0,
(14)

where the prime denotes the derivative with respect to r. For
the sake of integrating the field equations from the tip of the
soliton out to the infinity for this system, we need to specify
the asymptotic behavior both at the tip and the infinity. At
the tip (r = rp), the above equations can be Taylor expand
in the form [12]

Y(r) =vo+yYi(r—ro)+---,

dr)=¢do+d1(r —ro)+---,
Ar)y=Ag+A1(r—ro)+---,

B(r) = Bo(r —ro) + Bi(r —ro)* + -+,
Cor)=Co+Ci(r—ro)+--. (15)

The boundary conditions near the AdS boundary where r —
00 are

V- Uy p
14 Aot oA é =g
Ay By Cy
A r—4+ s BNl+r—4+ s C’\’r—4+
(16)

Where the conformal dimensions of the operators are A1 =
2+ /4 +m?2, u and p can be interpreted as the correspond-
ing chemical potential and charge density in the dual field
theory respectively. According to the AdS/CFT correspon-
dence, both ¥_ and v can be normalizable and they cor-
respond to the vacuum expectation values ¥_ =< O_ >,
Y+ =< O4 > of an operator O dual to the scalar field [4,5].
Further, the above equations of motion have useful scaling
symmetries [9]

r—oar, (x,x,y,t)—=> (x,x,y,t)/a, ¢ —>ap, (17)

Using the scaling symmetries (17), we can take 7o = 1. And
the useful quantities can be scaled as

A

1 R
F— -, w—ap, p—d’p, (04) — a3 (0L). (18)
o

Therefore, we will use the following dimensionless quantities
in next section

il

ul, o3, (04)5T, (19)

3 Insulator/superconductor phase transition

In this section, we want to study of the phase transition in the
five-dimensional AdS soliton background with ENE field.
In order to obtain the solutions in the complicated model
and ensure the validity of the results, we here concentrate
on the case in the weak effects of ENE field and study its
influences on the properties of the holographic phase transi-
tion. From above discussion, for given m?2, g, ¥ (rp), we can
solve the equations of motion by choosing ¢ () as a shoot-
ing parameter. Considering the BF bound [69,70], we choose
m? = — %, g = 2 inthis paper. Then, ¥_ can either be iden-
tified as an expectation value or a source of the operator O of
the dual superconductor. In the following calculation, we will
consider ¥_ as the source of the operator and use the ¥, =<
O, > to describe the phase transition in the dual CFT.

Here, we plot pictures to display the explicit dependence
of the chemical potential for operator (0+) and charge den-
sity p on the ENE factor b. It can be seen from the Fig. 1 that
there is a phase transition at the critical chemical potential
1o and its value is independent of the ENE factor b which is
shown in the right-hand panel. That is to say, the ENE has
no effect on the critical potential of the holographic phase
transition for this physical model. When u < ., the system
is described by the AdS soliton solution itself which indi-
cates a insulator phase turns on. When the chemical potential
is bigger than the critical value i, the condensation of the
operator emerges, which means the AdS soliton reaches a
superconductor phase. It is interesting to find that the effect
of the ENE factor b on the operator in the condensate phase
is not trivial. With the increase of the strength of the ENE,
the value of the scalar operator becomes bigger. In Fig. 2, we
note that the charge density p in the superconductor phase
drops when the ENE parameter becomes lower and the insu-
lator/superconductor phase transition here is typically the
second order in this case.

4 Holographic entanglement entropy

In this section, we will study the behavior of holographic
entanglement entropy in this holographic model and discuss
the effect of the ENE factor b on the entanglement entropy.
Since the choice of the subsystem .4 is arbitrary, we can
define infinite entanglement entropy correspondingly. For
concreteness, we investigate the holographic entanglement
entropy of dual field with a half space and a belt geometry in
the AdS boundary, respectively.

4.1 Holographic entanglement entropy for half geometry

We first consider the subsystem .4 with a half space defined
by x > O,—§ <y< §(R — 00), 0 < x <T. Accord-
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Fig. 1 The condensate of operator (Oy) (left plot) as a function of chemical potential . for different parameter b and the critical chemical potential
e (right plot) versus the ENE factor b. The different color correspond to the different value of parameter b
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Fig. 2 The charge density p as a function of chemical potential p for
different parameter b, respectively. The enlarged view in the red elliptic
region is plotted in the right panel. The different color correspond to
the different value of parameter b

ing to the proposal (1), the entanglement entropy can be
expressed as

1
hatf R /? Ar) Rr (1
S = — 2dr=—\|—= , 20
A G re r 8Gy \ & +5 (20)

ro

where r = é is the UV cutoff. Note that the first term is
divergent as ¢ — 0 and will not change after the operator
condensation [34]. The second term s is independent of the
UV cutoff and s = —1 corresponds to the pure AdS soliton.
As the aim of requiring the lower bound of the integral is still
equal to unit, we define a useful dimensionless coordinate in
the form

7= —. 2n
r

Then, the entanglement entropy for a half space can be rewrit-
ten as

: erg -
half rge 2 _1 1
sl _—/1 “di= (5 +s), (22)

@ Springer

while the second term s is a finite term, so it is physically
important. According to the scaling symmetry (17), we here
choose the following scale invariants to explore physics in
the entanglement entropy s.

sT2, ur2. (23)

In Fig. 3, we plot the behavior of the entanglement entropy
s with respect of chemical potential ; and the ENE factor
b in the half geometry. It can be seen from the figure that
the entanglement entropy is continuous but its slop has a dis-
continuous change at the critical phase transition point /.
Which indicates some kind of new degree of freedom like the
Cooper pair would emerge after the condensation. Further-
more, the discontinuous change of the entanglement entropy
at 1. signals that the phase transition here is the second order
transition. With the increase of the ENE factor, the value of
e dose not change. Which means the ENE parameter has no
effect on the critical point of the phase transition. Before the
phase transition, the entanglement entropy is a constant as
we change the parameters b and  which can be interpreted
as the insulator phase. After the phase transition, for a given
b, the entanglement entropy in the superconductor phase first
increases and then decreases monotonously for larger ;. And
the value of the entanglement entropy becomes lager as we
choose a lager ENE parameter for a given . When the factor
b — 0, the ENE field will reduce to the Maxwell field and
our results are consistent with the one discussed in Ref. [34].

4.2 Holographic entanglement entropy for strip geometry

In the Following calculation, we are interested in a more
nontrivial geometry which is a strip shape for region 4. We
assume that the strip shape with a finite width ¢ along the x
direction, along the n direction with a period I', but infinitely
extending in y direction. The holographic dual surface y 4
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u

Fig. 3 The entanglement entropy s as a function of the chemical poten-
tial for different ENE factor b in the half geometry. The red horizon-
tal dashed line denotes the entropy in the insulator phase, the green
vertical dashed line denotes the critical phase transition point where
el = 2.9662 ,and the solid curves denote the entropy in the super-
conductor phase for various ENE factors: black curve for |b] = 0,
blue curve for |b| = 0.2. Red curve for |b| = 0.3 and green curve for
b =0.4

defined as a codimension three surface is t = 0,
x(r), —§<y<§(R—>oo), 0<yx<T.
Considering the surface is smooth, we suppose that the
holographic surface y 4 starts from x = % atr = é, extends
into the bulk until it reaches r = r,, then returns back to the
AdS boundary r = % atx = —%. The entanglement entropy
of the belt geometry with connected surface in z coordinate

is given by

X =

ro€ 5.2
RI” Ty

AQ)
—o- | e 1erdBe @ dzyz,
N Jzx

(24)

S:,;{)nnECt [x] —

where z,, = ro/r, is the turning point. As the physics model
is a static situation, the above Eq. (24) dose not depend on
the time slice. And we could consider Sf‘f"”“’ [x] as the inte-
gral of the Lagrangian with x direction thought of as time.
Because the translations of x direction is symmetry, the cor-
responding Hamiltonian is conserved. Therefore, the equa-
tion of motion for the minimal surface from Eq. (24) can be
deduced as following

Alzs)
. rg' B(zs)e 2

réB(z)(dx/dz)e#
&1+ 2 BG)(dx/dz)? i

; (25)

where z; is a constant. And the width £ and the entanglement
entropy S can be easily calculated in the form

£ ro€ 1
i dzs,  (26)

2 Tsx 6B( ))A(Z)
VO\/B(Z)(Z%(Z*ZW -1

connect __ o€ ’”g A) Z6B(Z*)€A(Z*)
54 - =e 2 1= —o—a-dz
e % 70B(z)eA®

_|_€ /iB(z)eA(Z))rS _1(L 4 27)
2V 26 072 \e2 '

In addition to the solution to the connected configuration,
the entanglement entropy for the disconnected geometry
described two separated surfaces that are located at x = :I:%
respectively and extending to the bulk and reaching at the tip
is given by

AQ)

. RT [70€ ple™ Rm (1
gdisconnect _ _ / 0 dz = — 45,
A 2Gy Ji Z3 4Gy \ €2

(28)

Here, we show in Fig. 4 the results for the entanglement
entropy s versus the width £ of the subsystem .4 and the ENE
factor b with the dimensionless quantities sT'2, I, £I"~! and
b. We find that the discontinuous solutions represented the
horizontal dotted lines in the figure is independent of the
width ¢ but its value of the entanglement entropy with a
smaller b is smaller. The connected configuration denoted
by the solid lines has two solutions. Specifically, the so-
called confinement/deconfinement phase transition [29-31]
emerges as we change the width £ and the critical value £,
indicated by the vertical dotted lines becomes bigger with the
increase of the parameter b. For a fixed b, in the deconfine-
ment phase where ¢ < €., considering the physical entropy
determined by the choice of the lowest one, the entanglement
entropy comes from the connected surface and the lowest
branch in the figure is finally favored. However, the physical
entanglement entropy in confinement phase where ¢ > ¢
is dominated by the discontinuous surface and has noth-
ing to do with the factor £. Thus, there exists four phases
in the dual boundary field theory, including the insulator
phase, superconductor phase and their corresponding con-
finement/deconfinement phases. When the parameter ¢ is
fixed, we observe that the entanglement entropy increases
as we choose a bigger ENE factor both in the confinement
and deconfinement superconducting phases.

Interestingly, the entanglement entropy with respect to the
chemical potential p as one fixes the ENE factor b or the
width £ is presented in Fig. 5. At the insulator/superconductor
phase transition point ;& = 1., we also find that the jump of
the slop of the entanglement entropy indicates that the sys-
tem undergoes the second order phase transition. Both in
the confinement and deconfinement superconducting phases
where i > ., we can see that the behavior of the entan-
glement entropy as a function of the chemical potential is
non-monotonic and similar to the case in the half geometry
which we have discussed above. As the chemical potential is
fixed, the value the entanglement entropy becomes smaller
when the factors b and ¢ become lower. More specifically,
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Fig. 4 The entanglement entropy as a function of the strip width £ with
different parameter b for uI" = 6.9165. The black curve is for |b| = 0
and the blue curve is for |»| = 0.2. The red curve is for |b| = 0.3
and the green curve is for |b| = 0.4. The corresponding critical widths
are £.IT~1 = 0.2109, ¢! = 0.2122, ¢, '~ = 0.2139, ¢, ! =
0.2164, respectively

the effect of the ENE factor on the entanglement entropy is
weaker than the width of the subsystem A. In their corre-
sponding insulator phases where . < ., we observe that
the value of the entanglement entropy does not change as we
alter the parameter b for a given w. On the other hand, with
the increase of the width the entanglement entropy increases.
That is to say, the behavior of the entanglement entropy in
the corresponding insulator phases is independent of the ENE
factor but depends on the width of the subsystem A.

4.3 Phase diagram

Finally, according to our calculation for entanglement entropy
in holographic insulator/superconductor transition with ENE
field, we use a picture to display the phase diagram of entan-
glement entropy with a straight geometry.

£ r T T T
r'=0.165 |
-8+ | Ibl=0.0.
r | Ibl=02
[ | 1bl=03 o
10k | b|=0.4 " -
[ [
|
= -12f [
L |
—141 |
[ |
L |
-16 |
i 1 ‘ 1 1 1
0 5 10 15

ul

Fig. 5 Theentanglement entropy s as a function of the chemical poten-
tial ¢ for the various factors,i.e., the ENE factor b and the belt width
£. The horizontal dotted lines denote the entropy in the insulator phase,
the green vertical dashed line denotes the critical phase transition point
where p.I' = 2.9662, and the solid curves denote the entropy in the

@ Springer
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Fig. 6 The phase diagram of the entanglement entropy for a strap
geometry in the holographic insulator/superconductor transition with
ENE field. The black curve is for || = 0 and the blue curve is for
|b] = 0.2. The red curve is for || = 0.3 and the green curve is for
|b| = 0.4

In Fig. 6, the insulator phase and the superconductor
phase are separated by the green vertical dashed line and
the phase boundary between the confinement phase and
the deconfinement phase is separated by the red horizon-
tal dashed line and the solid curve. Therefore, the phases
characterized by the parameters @ and ¢ contain the insu-
lator phase, superconductor phase and their corresponding
confinement/deconfinement phases. It can be clearly seen
from the figure that the critical width €. of the confine-
ment/deconfinement phase transition in the insulator phase
is independent of the ENE parameter. In the superconduc-
tor phase, however, the critical width £, increases with the
increase of the ENE factor. To further study, we observe that
the critical width £, has a non-monotonic change as the chem-
ical potential becomes bigger. Concretely, the entanglement
entropy first increases beyond the cusp at the certain chemi-

{1 =
(r'=0.181

(r'=0.165

ur

superconductor phase. The left-hand figure corresponds to £I' 1 = 1
and different b: black curve for |b| = 0, blue curve for |b| = 0.2, red
curve for |b| = 0.3 and green curve for |b| = 0.4. The right-hand figure
corresponds to || = 0.3 and different £: green curve for £I'"~! = oo,
red curve for ¢I'~! = 0.181 and blue one for ¢I'~! = 0.165
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cal potential, reaches to a maximum and decreases to a min-
imum, and then approaches a plateau at very large .

5 Summary

We have studied the properties of phase transitions by calcu-
lating the behaviors of the scalar operator and the entangle-
ment entropy in holographic insulator/superconductor model
with ENE. On the basis of the behaviors of the scalar
operator in this holographic model, we find that there is
a insulator/superconductor transition at the critical chemi-
cal potential point and the effect of the ENE factor on the
scalar condensation is quite different from those observed in
the holographic metal/superconductor transition with ENE
field model [68]. Specifically, in the holographic insula-
tor/superconductor system the ENE factor does not have
any effect on the critical chemical potential of the transition.
These conclusions can also be understood from the behavior
of the entanglement entropy. From the Fig. 3, the disconti-
nuity of the slop of the entanglement entropy in half space at
the critical chemical potential point signals some kind of new
degree of freedom like the Cooper pair would emerge after
the condensation and indicates the order of associated phase
transition in the system. In Fig. 5, we observed the behavior
of the entanglement entropy with respect chemical potential
in strip geometry at the insulator/superconductor transition
point is similar to the half case. That is to say, the entangle-
ment entropy is indeed a good tool to search for the phase
transition point.

In the superconducting phase, compared to the phe-
nomenon observed in the scalar operator, the entanglement
entropy versus the chemical potential displays more rich
behaviors. Both in the half space and the belt space, the non-
monotonic behavior of the entanglement entropy versus the
chemical potential is general in this model as the ENE param-
eter is fixed. For a given chemical potential, the value the
entanglement entropy becomes smaller when the ENE factor
or the with becomes lower. In the insulator phase, however,
the behavior of entanglement entropy is independent of the
ENE parameter.

Interestingly, considering the effect of the belt width on
the entanglement entropy, we obtained that the confine-
ment/deconfinement phase transition appears in both insu-
lator and superconductor phases and the complete phase dia-
gram of the entanglement entropy with a straight geometry
is presented in Fig. 6. It is shown that the critical width of
the confinement/deconfinement phase transition depends on
the chemical potential and the ENE term.
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