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Abstract In this paper we present a stepwise construction
of the path integral over relativistic orbits in Euclidean space-
time. It is shown that the apparent problems of this path inte-
gral, like the breakdown of the naive Chapman–Kolmogorov
relation, can be solved by a careful analysis of the over-
counting associated with local and global symmetries. Based
on this, the direct calculation of the quantum propagator of
the relativistic point particle in the path integral formulation
results from a simple and purely geometric construction.
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1 Introduction

Local Lagrangian symmetries and relativity are essential in
modern quantum physics. However, the simplest unification
attempt fails dramatically: Lagrangian path integrals of rela-
tivistic point particles are considered intractable. The novelty
of this article is that by considering a previously unnoticed
symmetry, those problems are overcome and an exact calcu-
lation of the full propagator of the relativistic point particle
is achieved.

If one remembers that the relativistic point particle is the
simplest system with general covariance, it becomes clear
that its understanding will be crucial for the consistent for-
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mulation of more complex theories with the same (extended)
symmetry such as quantum gravity or string theory.

1.1 The problem

Since the first applications in non-relativistic quantum
mechanics [1], the path integral formulation of quantum
theories has developed in huge steps towards a quantum
field theory of fundamental interactions. A common conse-
quence of advancing in huge steps is that one leaves obstacles
and possible subtleties unexplored on the way. This hap-
pened with the Path Integral (PI) formulation of the rela-
tivistic point particle. It is the purpose of this paper to close
that gap and to resolve some misconceptions and problems
that persisted until today in the context of this fundamental
topic.

Even though the PI of the relativistic point particle is the
logical continuation of the non-relativistic PI it has been
largely omitted on the way to quantum field theory. One
reason is that attempts to realize the PI of the relativistic
point particle has presented large complications [2–4,7,9].
Among them, one can distinguish between those that seem
to be of technical nature and those that seem to be of con-
ceptual nature.

1 Technical complications: At the first sight a technical
issue arises from the appearance of non-Gaussian inte-
grals. This issue can be avoided by the use of auxiliary
field variables in the Hamiltonian action, which allow
one to relate (at least at the classical level) the original
action to a quadratic action [5–7], which is sometimes
called einbein formalism. Those methods allow one to
obtain the expected Klein–Gordon propagator from the
PI of the relativistic point particle in D dimensions

K ∼ 1

(k2 + M2)
. (1)
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As shown in Appendix A, a direct calculation of the PI
with the Lagrangian action in D dimensions and with-
out auxiliary fields is actually possible. The problem is,
however, that it leads to a propagator

K (n) ∼ 1

(k2 + M2)n(D+1)/2
. (2)

Here, n is the number of intermediate slices. Apparently
(2) does not have the expected form of (1). This difference
was the first motivation for this study on the direct PI of
the relativistic point particle.

2 Conceptual complications: Leaving the technical
issues aside, there is a much more disturbing fact that
complicates the understanding of the PI of the relativistic
point particle: The Chapman–Kolmogorov (CK) equa-
tion for Markovian processes is not satisfied. This means
that the standard notion of probability is not preserved in
the process of free relativistic propagation.
As an example, let us show this for the propagator (1) in
position space

K (0, x) = N
∫

dDk
exp(ik · x)

√
2M

k2 + M2 , (3)

where N is a normalization constant. The usual CK con-
dition sates that: “Propagating from 0 to x1 and then
from x1 to x2 and finally integrating over all x1, must be
equivalent to propagating from 0 to x2”. Applying this
definition to the propagator (3) gives

Kol(0, x2) =
∫

dDx1K (0, x1)K (x1, x2)

= N 2
∫

dDk
exp(ik · x2)2M2

(k2 + M2)2 . (4)

This is of course not the form of the original propagator
(3), which is the well known and un-understood problem
of the path integral of the relativistic point particle.
In the literature there exist different stances on this embar-
rassing problem. Mostly, it is just taken as hint that at
relativistic velocities the assumption of a single particle
theory breaks down. It is argued that the energy available
at such velocities would allow for interactions that again
allow for the production of multi particle state [8]. This
argument is, however, not very convincing since one was
dealing with a free theory without interactions at the first
place. Another stance is to try to fix this problem by the
redefinition of the probability measure [11,12].

In this paper we propose an elegant solution to those two
fundamental problems. In [13] it has been shown that for the
case of the relativistic point particle action it is important to

consider a particular local symmetry of the corresponding
action. The preceding paper [13] further shows how formal
symmetry considerations in Minkowski spacetime in com-
bination with the Fadeev–Popov procedure [14] allow one
to perform the full functional path integral of the relativis-
tic point particle. The idea of this paper is to abstain from
abstract technical formulations and to show instead that the
problem can be perfectly understood and solved by very basic
geometric considerations. Further, several additional explicit
calculations and complementary examples are shown below.

The paper is organized as follows: The introduction is
completed by making notion of the symmetries of the rel-
ativistic point particle and by a definition of the PI mea-
sure taking into account those symmetries. In Sect. 2 several
Euclidean PIs with one intermediate step are calculated in
arbitrary dimensions and in Sect. 3 it is proven that those
one-step propagators are already the full propagators for the
given theory. Section 4 contains a discussion on the CK rela-
tion and the conclusion. Throughout the paper all formulas
and discussions will be given in the imaginary time formal-
ism corresponding to the Euclidean metric.

1.2 The relativistic point particle

The action for a relativistic point particle in D dimensions is

S =
∫ λ f

λi

dλ · m
√(

dx
dλ

)2

, (5)

with x(λi ) = xi and x(λ f ) = x f . This is simply the mass
times the geometric length of a given path P . It is interesting
to note that this action in Minkowski spacetime cannot be
equivalent to the action in the einbein formalism [5–7], for
spacelike and timelike paths. This can be seen from the fact
that the integration over timelike and spacelike paths with (5)
would involve both complex and real values for the action.
Thus, the Euclidean path integral over (5) means probably
a restriction on the type of paths that is allowed in the non-
Euclidean version of the path integral. A detailed analysis of
the corresponding integral in Minkowski spacetime will be
given in [15].

This action and its corresponding Lagrangian are equipped
with several symmetries which will be important for the for-
mulation of a consistent path integral.

(a) Global Poincaré invariance: This can be seen from the
fact that the action is invariant under global rotations and
shifts of the coordinate system in D dimensions.

(b) Local Lorentz invariance: This means that the
Lagrangian is invariant under local rotations in D dimen-
sions of the vector (dx)/(dλ) at any point along the tra-
jectory. A formal argument on why this symmetry, which
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is not a classical gauge symmetry, is actually important
in this given context was given in [13].

(c) Weyl invariance: This means that the Lagrangian does
not depend on the way that λ parametrizes a path P .
The change to any other function λ̃(λ) would leave the
Lagrangian invariant.

In the following the symmetry (a) will be used to choose the
coordinate system such that xi = 0 and that x f is different
from zero in only one component. The symmetries (b) and
(c) are symmetries which have to be treated with care when
it comes to realizing an integral over different paths, since
two seemingly different paths could be actually physically
equivalent. The overcounting of physically equivalent paths
would result in a wrong weight of some paths with respect
to others.

1.3 General considerations on the explicit form of the PI
measure

When one formally writes the functional integral Dx(λ) one
has to give a clear definition of this measure. The common
definition of the PI measure is

K (xi , x f ) ≡
∫ x(t f )=x f

x(ti )=xi
Dx(λ) exp

[
−

∫
dtL

]

= lim
n→∞ND,n(t)

n∏
j=1

∫
dxDj exp

⎡
⎣−

∑
j

�tL j

⎤
⎦

= lim
n→∞ K (n)(xi , x f ), (6)

where the normalization ND,n(t) is a function of the external
time t , the number of time slicings n used, and of the dimen-
sions D. Usually this normalization is fixed from imposing
the Kolmogorov relations. However, there are several issues
that arise when one tries to apply this naive measure (6) to
the relativistic point particle which are all related to an over-
counting of certain paths:

It is easy to see that in the definition (6) one is not just
counting any possible path between xi and x f . One actually
counts paths which have straight sections multiple times. Let
us exemplify this for the case of two slicings n = 2. All
configurations where the position x1 is on the classical path
between xi → x2 correspond actually to the same path xi →
x2 → x f as it is shown in Fig. 1.

Strictly speaking they should only be counted once but
according to (6) this path would be counted multiple times.
Usually, this type of overcounting is completely irrelevant,
since the number of paths that are not overcounted grows
much faster with n and D than the number of paths where
this overcounting occurs. In simple words, it is very unlikely
that x1 happens to be on the classical path between xi → x2.
However, in problems with local symmetries this might not

Fig. 1 Exemplification of possible overcounting of one path with two
intermediate steps, which is already counted in the PI with one inter-
mediate step

necessarily be the case. In order to avoid overcounting of
identical paths right from the start, one can improve (6) by
stating for K = K (xi , x f )

K ≡ lim
n→∞

n∑
j=1

K ( j)(xi , x f ) (7)

≡ lim
n→∞

n∑
j=1

ND, j (t)
j∏

l=1

∫
dxDl

∣∣∣∣∣∣
NOC

exp

⎡
⎣−

∑
j

�tL j

⎤
⎦

= ND,1(t)
∫

dxD1

∣∣∣∣
NOC

exp
[−t/2(Li,1 + L1, f )

]

+ND,2(t)
∫

dxD1

∫
dxD2

∣∣∣∣
NOC

exp
[−t/3(Li,1 + . . . )

]

+ · · · , (8)

where |NOC stands “integrate but without overcountig” in the
sense described before. For example, when performing the
two slicing integral one has to avoid overcounting of config-
urations which are equivalent to one slicing paths and when
doing higher number of slicings ( j = n) one has to avoid
all the configurations which are actually already counted in
( j < n) paths. Even thought this definition is morally supe-
rior to (6), it is in most cases highly impractical since one
has to take into account numerous conditions when actually
performing the integrals. Fortunately, in most cases, the term
with the highest number of integrals j = n represents a D+n
dimensional volume which dominates the sub-leading con-
tribution which is a D + n − 1 dimensional volume and the
definition (7) is equivalent to (6).

Even though the overcounting issue seems to be settled
by the definition (7), one has to be careful, since imposing
a |NOC condition means in most practical cases a fixing of
the symmetry. Different fixings can correspond to different
restrictions of the measure, which would generate unphysical
anomalies [16]. However, we expect that the symmetries of
the action are also symmetries of the measure. This can be
solved by redefining the measure with a multiplicative fac-
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tor �i such that it is invariant under different configurations
within the symmetry

K ≡ lim
n→∞

n∑
j=1

ND, j (t)
j∏

l=1

∫
dxDl

∣∣∣∣∣∣
NOC

�l e[−∑
r tr+1,rLr+1,r ]

= ND,1(t)
∫

dxD1

∣∣∣∣
NOC

�1 exp
[−t1,iLi,1 − t1, f L1, f )

]

+ND,2(t)
∫

dxD1

∫
dxD2

∣∣∣∣
NOC

�2 exp [. . . ] + · · · .

(9)

The external normalization factors ND, j (t) are fixed by a
dimensional argument.

Equation (9) is the definition of the measure Dx , which
will now be used for the PI of the relativistic point particle.

2 Euclidean path integrals with one intermediate step

In this section we will discuss how the considerations on the
measure, overcounting, and symmetries, are applied to the
one slicing propagator K (1). This will be explicitly done in
one and two dimensions, before it is generalized to D dimen-
sions. Before actually turning to the relativistic point particle
it is instructive to discuss (9), in particular the meaning of
the restriction |NOC, for the case of non-relativistic quantum
mechanics.

2.1 The non-relativistic path integral in two dimensions

Some of the redundancies that will be important for the rel-
ativistic case are already present in the path integral of the
non-relativistic point particle. It is therefore instructive to dis-
cuss this case first and to show that in the non-relativistic case
the overcounting over equivalent paths does not do any harm
since it can be absorbed into a constant normalization fac-
tor. For the classical Lagrangian v2/(2M) one can construct
the propagator with one intermediate step by composing two
propagations with time lapse �t/2 each K (1)(xi , x f ) = K (1)

reads

K (1) =
∫
dDx1·N1 exp

[
−M

2

(
(x1 − xi )2

�t/2
+ (x f − x1)

2

�t/2

)]
.

(10)

There are two Lagrangians and one action in this problem
which are

Li1 = 2M

(
(x1 − xi )2

�t2

)
,

L1 f = 2M

(
(x f − x1)

2

�t2

)
, and

S = �t
(Li1 + L1 f

)
. (11)

Fig. 2 Non-relativistic PI in three dimensions with equivalent inter-
mediate points x1

Now one wants to see whether there are local transforma-
tions which allow one to apply a continuous change of x1

while leaving Li1 and L1 f invariant. For D = 2 one finds
that those two conditions completely fix the values of x1 as
long as xi �= x f . Thus, there is no overcounting in the prop-
agator in two dimensions as long as xi �= x f . At first sight it
seems that with identical initial and final positions, there is
an overcounting, even for D = 2. But this is actually not the
case, since seemingly equivalent paths become distinguish-
able, when seen from a different Galilelian reference system.
Thus, for non-relativistic paths with two spatial dimensions,
there is no overcounting. However, when D ≥ 3, there is an
additional freedom in the orientation of the vector xi + x1

with respect to xi . This situation is shown in Fig. 2.
This additional freedom corresponds to paths which are all

redundant since they do not change any of the terms in (11).
Thus, due to the |NOC condition in (9), those paths should
not be included when integrating. The question that arises
is: does this |NOC condition affect the usual propagator in
non-relativistic quantum mechanics?

In order to see this redundant part of the integral more
clearly one can perform a series of coordinate transforma-
tions. First one shifts the integration variables x′ = x−(x f −
xi )/2, then one goes to radial coordinates in three dimen-
sions {x ′, y′, z′} → {r, θ, α} with the Jacobian dx ′dy′dz′ →
dr sin(θ)dθdα, and finally one changes the radial integration
for an integration over the action dr → dS(dr/dS) according
to (11). Integrating over θ gives

K (1)(xi , x f ) =
(∫ 2π

0
dα

)
(�t)3/2

(2M)3/2

·
∫ ∞

Sc
dS exp[−S]√S − Sc · N1. (12)

Thus,

K (1)(xi , x f ) =
(∫ 2π

0
dα

)
(�t)3/2

(2M)3/2

√
π

2
exp[−Sc]N1,

(13)
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where N1 is assumed to be position independent and where

Sc = M
2

(x f −xi )2

�t . One observes from (13) that the volume
corresponding to the overcounting of local rotations dα fac-
tors out nicely. Note that this coordinate transformation cor-
responds to the one slicing version of the Fadeev–Popov
procedure. Finally, one sees from this relation that one can
choose a simple normalization

N1 = 2(2M)3/2(∫ 2π

0 dα
) √

π�t3/2
, (14)

such that the classical propagator K (0) ∼ exp(−Sc) fulfills
the Kolmogorov relation,

K (0)(xi , x f ) =
∫

dx1dy1dz1K
(0)(xi , x1)K

(0)(x1, x f ).

(15)

The important point of this discussion is that instead of inte-
grating over the equivalent configurations one could actually
fix the angle α to some value which corresponds to dividing
(13) by a factor of 2π . When one does this fixing, one also
has to exclude those redundant configurations in the non-
relativistic Kolmogorov relation (15).

However, since all this symmetry fixing at the end of the
day results in a simple rescaling of the normalization (14) by a
factor of 2π , one sees that considering the symmetry (b) actu-
ally leaves all results of non-relativistic quantum mechanics
unchanged. The situation is different for the relativistic path
integral, as shown in the following subsections.

2.2 The relativistic path integral in one dimension

Let us start the discussion of the relativistic PI with the most
simple case, paths in one dimension. Already this case shows
some non-trivial features since even though there is no global
or local Lorentz symmetry, the Weyl symmetry (c) is already
present in this case. As usual, one can fix this symmetry by
choosing a unit length evolution parameter such that for each
path

(
dx
dλ

)2

= 1, (16)

for which the Lagrangian reads

L = M. (17)

The fundamental building block of the path integral is the
exponential of the classical action times some normalization

constant which we will choose equal to M for the one dimen-
sional case

K (0)(xi , x f ) = M · exp(−M |x f − xi |). (18)

The next step towards constructing the relativistic path inte-
gral in one dimension consists in introducing one interme-
diate slice x1. According to (9), the one slicing propagator
K (1)(xi , x f ) = K (1) would then be

K (1) = N1,1(ti, f )
∫ +∞

−∞
dx1|NOC�1 ·

K (0)(xi , x1) · K (0)(x1, x f ). (19)

The normalization and the anomaly cancelation in one
dimension is trivial N1,1(t) = 1 = �1. Before integrating,
one has still to take into account the redundancy explained in
Fig. 1. Whenever x1 is between xi and x f , the two-step prop-
agation xi → x1 → x f is physically exactly the same path
as the direct connection xi → x f and should not be counted
over and over again. Thus, according to (9) the right one-step
propagator in one dimension K (1)(xi , x f )|NOC = K̃ (1) is

K̃ (1) =
∫ xi

−∞
dx1K

(0)(xi , x1) · K (0)(x1, x f )

+
∫ +∞

x f

dx1K
(0)(xi , x1) · K (0)(x1, x f ), (20)

where we assumed x f > xi . A trivial integration gives

K (1)(xi , x f )|NOC = M ·exp(−M |x f − xi |) = K (0)(xi , x f ),

(21)

which means that for one dimension the initial expression
(18) is equal to the one slicing propagator (21). This has
important consequences for the generalization to n interme-
diate steps, as will be discussed in a later section.

Remember that due to the fact that the one dimensional
case does not have the local symmetry b) it was possible to
waive all length dependent normalization factors defined in
(9) and choose N (t, 1, 1) = 1 = �1. For the two dimen-
sional case, the symmetry b) is present and thus one has to
consider those non-trivial contributions.

2.3 The relativistic path integral in two dimensions

It is instructive to continue the discussion of the problem in
two dimensions with one intermediate step. According to (9),
the right one slice propagator K (1)(xi , x f ) = K (1) is

K (1) = ND,1(ti, f )
∫

ddx1|NOC�1 ·
exp [−S0(xi , x1)] · exp [−S0(x1, x f ))]. (22)
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Fig. 3 Left: Relativistic PI in two dimensions for paths with the same
action S, where the red curve represents all equivalent points x1 for
a given action value S > Scl . Right: It is interesting to note that in
the classical limit, when S → Scl , the elliptic contour of equivalent
points x1 collapses to the classical path. This means that the two local
symmetries (b) and (c) are indistinguishable at the classical level

In two Euclidean dimensions (x = (x(λ), y(λ))), the rela-
tivistic path integral (22) reads

K (1) = N2,1(ti, f )
∫

d2x1|NOC�1

· exp
[−M |x1 − xi | − M |x f − x1|

]
. (23)

For simplicity let us choose the initial position as origin of the
Cartesian coordinate system xi = 0. As part of this integral
one can consider paths that all contribute with the same action
to this path integral. One finds that the surface of points with
equal action is shown by the ellipse in Fig. 3. This curve is
generated by all different paths (xi → x1 → x f ) with the
same total length.

However, the important feature of the relativistic case is
that the Lagrangian (17) is the same for every single point
along any of those paths with S = const. and xi , x f fixed.
This is a reflection of the fact that local Lorentz symmetry (b)
has not been fixed. Thus, if one naively counts all the points
on the relativistic elliptic contour in Fig. 3, one is actually
counting paths which are connected by a symmetry transfor-
mation. Instead, one should count only one point out of the
elliptic contour by properly fixing the freedom introduced by
the symmetry (b).

In order to cast the integral (23) in the equal-action form

K (1)(0, x f ) =
∫ ∞

S0

dS exp(−S) · �
(1)
R,2(S; 0, x f ), (24)

one can transform the Cartesian coordinates x1, y1 into
slightly modified elliptical coordinates χi = (S, α), with

x1 = S

2M
cos(α), (25)

y1 = x f

2

√(
S

x f M

)2

− 1 · sin(α). (26)

Here, we have chosen the middle of the classical path 0 → x f

as the origin of the elliptical coordinate system and α as the
angle between the x axes and the vector x1 − (x f − xi ), as
shown in Fig. 3. Further, for the Cartesian choice xi = 0,
x f = |x f − 0| stands for the length of the minimal classical

path, while S stands for the length of the quantum path 0 →
x1 → x f . The Jacobian of the coordinate transformation is

det

(
xi
χ j

)
= 2 (S/M)2 − x2

f (1 + cos(2α))

8
√

(S)2 − (x f M)2
. (27)

Thus the one-step propagator K (1)(0, x f ) = K (1) is

K (1) = N2,1(ti, f )
∫ ∞

x f M
dS

∫ 2π

0
dα

·�1
2 (S/M)2 − x2

f (1 + cos(2α))

8
√

(S)2 − (x f M)2
exp [−S]. (28)

One notes that the angular integral, which represents the
redundancy, does not simply factorize like in the non-
relativistic case. This anomalous angular dependence in the
numerator of (27) comes due to a naively defined measure
dx1dy1 and has to be canceled by a proper definition of the
multiplicative factor

�−1
1 ≡ |x1 −0| · |x f −x1| = 1

8

(
2 (S/M)2 − x2

f (1 + cos(2α))
)

(29)

which is the simplest non-fractional term containing α. A
dimensional analysis shows that the measure N2,1(ti, f ) =
N2,1 in two dimensions is actually independent of x f ≡
|x f − 0|. With this, one finds

K (1)(0, x f ) = N2,1

(∫ 2π

0
dα

)
(30)

·
∫ ∞

x f M
dS

1√
(S)2 − (x f M)2

exp [−S]

= N · (2π)K0(x f M). (31)

Please note that the redundant volume
(∫ 2π

0 dα
)

can now

either be eliminated by fixing the angle α or by integrating
over the angle and absorbing the factor in the normalization of
the propagator. A two dimensional Fourier transformation of
(31) returns again the expected propagator of the free scalar
field in Fourier space.

By comparing the one slicing propagator K (1)(x f ) =
(2π)K0(x f M) with the zero slicing propagator K (0)(x f ) ∼
exp(−M |x f |), one notes that in contrast to the one dimen-
sional case, the Kolmogorov relation is not fulfilled when
going from zero to one slicing. This makes it necessary to
study a higher number of intermediate steps, which will be
done after discussing the one-step case in D dimensions.
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2.4 The relativistic path integral in D dimensions

It is straightforward to repeat the discussion of the two
dimensional case for the path integral of the relativistic
point particle in higher dimensions. When changing to
the modified elliptical coordinates in D dimensions χi =
(S, α1, ..., αD−1) one notes that for one slicing the Jacobian
of the transformation takes the form

det

(
xi
χ j

)
=

[
2 (S/M)2 − x2

f (1 + cos(2α1))
]
g(α1)

·
(
S2 − (x f M)2

)(D−3)/2 · f (α2, . . . αD−1).

(32)

This determinant can be written as a product of three
functions, one with the angle α1, one with the angles
αi |i>1, and of one function without angles. Here, g(α1) and
f (α2, . . . αN−1) are the typical angular dependencies in D
dimensional spherical coordinates. Just like in the two dimen-
sional case, the anomalous non-factorization of the angle α1,
can be corrected by an appropriate choice of �1. An anomaly
free symmetry fixing choice is again ensured for the defini-
tion (29), independent of the dimension D. The remaining
angular functions g(α1) · f (α2, . . . αD−1) do not mix with S
and give simply a solid angle. Further, in order to compen-
sate the change in dimensionality induced by each additional
spatial integral one has to choose the normalization with an
inverse dimensional factor of (|x f − 0|)

ND,1(|x f − 0|) ≡ N · |x f − 0|2−D. (33)

Note that the x f dependence of the normalization (33) can
also be obtained from imposing a matching to the non-
relativistic limit of the resulting propagator. With this nor-
malization and after integrating the factorized solid angle,
the propagator reads

K (1) = N
|x f |D−2

∫ ∞

x f M
dS exp[−S]

(
S2−(x f M)2

)(D−3)/2
.

(34)

By integrating over S one gets the one slicing propagator in
D dimensions

K (1)(x f ) = N ′′
(

1

x f M

)D/2−1

KD/2−1(M |x f |), (35)

where KD/2−1 is the modified Bessel function.

3 Euclidean path integrals with n intermediate steps

Up to now we have calculated the relativistic propagator with
one intermediate step K (1)

D . However, according to (9) one

still has to calculate infinitely many propagators with n inter-
mediate steps K (n)

D and than one has to sum them all up, taking
again into account that no overcounting occurs. This sounds
like a lot of work, unless one has some convenient relation
(or theorem) that allows one to deduce all K (n)

D and their sum

just from the knowledge of K (1)
D . In non-relativistic quantum

mechanics, this powerful tool of simplification is given in
terms of the Kolmogorov relation (15). It will now be shown
that there exists a generalization of this relation for the rel-
ativistic PI in one dimension and that for the relativistic PI
in higher dimensions there exists a “nothing new theorem”
which also allows one to deduce K (n)

D from the knowledge

of K (1)
D .

3.1 One dimensional case

By taking into account the “no overcounting” condition it
was previously shown that the one slicing propagator (21)
has actually the same functional form as the fundamental
infinitesimal propagator (18). Thus, by iterating this process
one obtains that the n step propagator K (n)(xi , x f ) is also
equal to (18) and that this propagator does fulfill the CK
relation, as long as one avoids overcounting in the summation
over intermediate steps x1. Thus, summing all K (n) still gives

K1(x f − xi ) ∼ K (n)
1 (x f − xi ) = K (0)

1 (x f − xi ), (36)

up to a normalization constant.
It is instructive to study the one dimensional propaga-

tor in its Fourier representation. In order to get a relation
in Fourier space one can operate on both sides of (20) with∫ ∞
−∞ dx f exp(+ikx f ), which gives after a shift of integration

variables x̃ f = x f − x1 on the right hand side

2M

k2 + M2 = M
2M

k2 + M2 · 2M

k2 + M2 − 2M
M2 − k2

(k2 + M2)2 .

(37)

This is the relativistic CK relation in Fourier space in one
dimension. The unusual but essential piece is the subtraction
of the 2M M2−k2

(k2+M2)2 term which comes from the missing piece

(M
∫ x f

0 dx1 exp(−|x f |) = M |x f | exp(−|x f |)) on the right
hand side in (20). The physical meaning of this subtraction
is that in a naive

∫ ∞
−∞ dx1 integration, the part from 0 to x f

corresponds to overcounting of physically equivalent paths.
Thus, the right hand side of (37) means that one can indeed
combine two propagators ∼ 1/(k2 +M2) such that they give
again the same form of a propagator ∼ 1/(k2 + M2), if one
correctly subtracts the overcounting part ∼ (M2 −k2)/(k2 +
M2)2.
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Fig. 4 Relativistic PI with two intermediate steps

3.2 Two dimensional case

The anomaly free relativistic propagator in two dimensions
with two intermediate steps without overcounting is accord-
ing to the definition (9) given by

K (2)(xi , x f )|NOC = N
∫

d2x1d
2x2|NOC · �2

· exp
[−M(|x1 − xi | + |x2 − x1| + |x f − x2|)

]
. (38)

It is straightforward to see that the anomaly cancelation is
provided by

�−1
2 = |x1 − xi | · |x2 − x1| · |x f − x2| (39)

and that in general, for n intermediate steps

�−1
n =

n+1∏
j=1

|x j − x j−1|. (40)

The situation of two intermediate steps is shown in Fig. 4.
We now give a geometrical proof that the symmetry-fixed

two-step propagator (38) is given by the one-step propaga-
tor (31). This proof is to be understood within the “No-Over-
Counting” definition of the path integral measure (9).

For any two points x1 and x2 in (38) one can distinguish
three cases:

1. If x1 is on the direct connection between xi and x2, the
step x1 does not contribute a new path to (38) and those
paths do not contribute to

∫
dx2

1

∫
dx2

2 |NOC.
2. If x2 is on the direct connection between x1 and x f , the

step x2 does not contribute a new path to (38) and those
paths do not contribute to

∫
dx2

1

∫
dx2

2 |NOC.
3. If none of the above cases applies, one knows that the

path x1 → x2 → x f is equivalent (symmetry b) to the
path x1 → x′

2 → x f as indicated by the dashed lines in
Fig. 4, where x′

2 is chosen such that x1 lies on the direct

line between xi and x′
2. As already shown, this different

choice of α2 does not change the measure contributed by
this path. Thus, the total path xi → x1 → x2 → x f is
equivalent to the total path xi → x1 → x′

2 → x f . Since
x1 lies on the direct line between xi and x′

2, one falls back
to scenario 1).

Combining the outcome of those three possible scenarios
one sees that the integration

∫
dx2

1

∫
dx2

2 |NOC = ∅. It only
contains paths which are already present in the one-step inte-
gration

∫
dx1|NOC. Thus one has shown that

K (2)(xi , x f ) = K (1)(xi , x f )|NOC + K (2)(xi , x f )|NOC

= K (1)(xi , x f )|NOC + 0

= N · K0(x f ), (41)

where the factor of 2π was absorbed in the normalization.
Having shown that two intermediate steps are equivalent to
one intermediate step one can repeat this procedure with n
steps and will always find that the propagator is given by
(31). This also means that adding intermediate steps to the
calculation of a propagator does not alter (31) and thus, the
Kolmogorov relation holds trivially since there are no physi-
cally new intermediate points one can add. In ancient words:
“There is nothing new under the sun”.

3.3 D dimensional case

Generalizing (35) to n intermediate steps in D dimensions
is straightforward. Equation (41) holds also in this case,
because one can set the angles (αi,1, ..., αi,N−1) such that
new intermediate steps are on a straight line with the one
intermediate step case. Thus, the “nothing new theorem”
holds also in D ≥ 2 dimensions and the Kolmogorov relation
for the relativistic point particle in D dimensions becomes
trivial.

3.4 A check: Three dimensional non-relativistic PI with
two intermediate steps

Now, since it was shown that the entire relativistic path inte-
gral can be reduced to the one slicing case, one should revisit
whether something similar happens in the non-relativistic
case. Let us consider a non-relativistic PI in three dimen-
sions with two intermediate steps xi → x1 → x2 → x f as
shown in Fig. 5.

Let us further consider the plane defined by the three points
xi , x1, x f and discuss the different scenarios that arise, when
one chooses the second intermediate step x2.

1. If the point x2 lies in the plane defined by xi , x1, x f , in
some cases a direct overcounting can happen. This occurs
when x2 lies on the continuation of the line xi → x1
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Fig. 5 Non-Relativistic PI in three dimensions with two intermediate
steps

(indicated by the red dashed line in Fig. 5), this config-
uration is actually an overcounting, since it is already
considered by a one slicing path xi → x2 → x f . This
can happen, but it is actually numerically irrelevant since
it corresponds to a one dimensional subset of the three
dimensional volume d3x2.

2. The same argument holds if x1 lies on the continuation
of x f → x2.

3. If the point x2 lies outside of the plane defined by
xi , x1, x f it still can happen that it is connected to an
overcounting by a local rotation. Due to the rotational
invariance explained in Fig. 2 one can always choose the
arbitrary angle α2 such that the transformed point x′

2 lies
in the plane defined by xi , x1, x f . If this point x′

2 lies
on the continuation of xi → x1 one has an overcount-
ing, otherwise not. All points x2, which correspond to
an overcounting, lie on a cone who’s tip is the point x1,
who’s symmetry axis is defined by the line x1 → x f ,
and who’s opening is given by the continuation of the
line xi → x1. This configuration is shown by the green
surface in Fig. 5. Again the volume of this overcounting
is two dimensional which is negligible with respect to the
three dimensional volume of d3x2.

As a result of those three scenarios, one can conclude that
there is some overcounting in the higher dimensional non-
relativistic case with more than one slicing, but this over-
counting is irrelevant since it is of lower dimension than the
actual integral d3x2. Thus, in the non-relativistic case one has
to actually construct the complete PI by the use of the Kol-
mogorov relation. This is in contrast to the relativistic case,
where the entire volume dDx2 turned out to be an overcount-
ing. A generalization of this observation to higher number of
dimensions and higher number of slicings is straightforward.

4 Discussion and conclusion

4.1 The Kolmogorov relation

It is interesting to discuss the results (35) and the D dimen-
sional generalization of (41) in the context of the CK relation.

The usual way to state this relation in the non-relativistic
case is based on the fact that the one-step propagator
K (1)

N R(xi , x f ) takes the same form as the infinitesimal prop-

agator K (0)
N R(xi , x f )

K (1)
N R(xi , x f ) = K (0)

N R(xi , x f ), (42)

where

K (1)
N R(xi , x f ) =

∫
dDxK (0)

N R(xi , x)K
(0)
N R(x, x f ). (43)

This allows one to construct the complete propagator
K (xi , x f ) by iteration. Thus, (42) is also fulfilled by the com-
plete propagator

KNR(xi , x f ) =
∫

dDxKN R(xi , x)KNR(x, x f ). (44)

In the relativistic case the infinitesimal propagator K (0)

(xi , x f ) differs from the one-step propagator K (1)(xi , x f )

K (1)(xi , x f ) �= K (0)(xi , x f ), (45)

where

K (1)(xi , x f ) =
∫

dDx�x · K (0)(xi , x)K
(0)(x, x f ) (46)

and it seems hopeless to construct a PI from an iterative rela-
tion. As already seen, the rescue comes when one takes into
account the issue of overcounting over symmetry-equivalent
intermediate steps when gluing together additional infinites-
imal propagators. By virtue of (41) one finds that the iter-
ation actually converges at one intermediate step, since all
additional intermediate steps can be identified as symmetry-
equivalent to one intermediate step

K (xi , x f )≡K (n)(xi , x f )=K (n−1)(xi , x f ) for all n ≥ 2.

(47)

This is the building brick of the relativistic Kolmogorov rela-
tion (47) in analogy to the non-relativistic relation (42). The
naive KG relation fails for the relativistic case since it ignores
this issue of overcounting, and thus it is dominated by a sum-
mation over equivalent paths, which generates the “Tur Tur
effect” [17] of increasingly deformed propagators as one con-
tinues to introduce intermediate steps.

4.2 Conclusion

The usual path integral formulation of relativistic quantum
mechanics suffers from deep technical and conceptual prob-
lems. A first problem appears when one uses the Lagrangian
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action and calculates the propagator in a straightforward way.
It turns out that such a calculation of the propagator gives
a wrong result (see Appendix A). Even though one can to
some degree circumvent this particular problem by apply-
ing techniques such as renormalization procedures combined
with semi-classical approximations [9], or the introduction
of auxiliary fields for the Hamiltonian action [5–7], there
remains a much deeper conceptual problem. This second
problem is that it is not understood how the combination of
short time propagators K (0) gives long time propagators K (n)

of the same functional form, in the spirit of the Chapman–
Kolmogorov relation. This failure is typically taken as hint
that it is impossible to consistently formulate the PI of the rel-
ativistic point particle and that one has to turn to QFT instead
(at least if one does not want to redefine the usual notion of
probability [11,12]).

Those two long standing issues are resolved in this paper.
For this purpose, we make notice of the symmetries (a), (b),
and (c) which are present in this problem. Then the usual PI
measure is defined in a precise and explicit way (9), taking
into account the issue of overcounting of equivalent and iden-
tical paths. Based on this, the relativistic one slicing propa-
gator is calculated in a very simple and geometric way (35).
The crucial step of the paper was then to show that it is indeed
possible to consistently relate the n slicing propagator to the
one slicing propagator by proving the relation (41). Thus,
the one-step propagator (35) already gives the right result for
the full propagator. This proof makes again heavy use of the
symmetries and overcounting conditions discussed before.
The main part of this paper concludes with a discussion on
the Chapman–Kolmogorov relation and a conjecture on other
quantum theories with general covariance.

It is hoped and believed that the presented work allows one
to finally reconcile the quantum mechanical PI formulation
with the straight forward notion of a relativistic action (5).
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Appendix: Propagator, direct calculation ignoring issue
of overcounting

In this appendix, we present the derivation of Eq. (1). Let us
consider the D dimensional relativistic propagator between
xi ≡ x0 = 0 and x f ≡ xn+1 fixed, for n-time slices, and
for notational simplicity we adopt the Euclidean metric:

K (0, x f ) =
⎡
⎣ n∏

j=1

∫
dDx j

⎤
⎦ K (0, x1) . . . K (xn, x f )

=
⎡
⎣ n∏

j=1

∫
dDx j

⎤
⎦ e−M

∑n
l=0 |xl+1−xl |. (48)

Now, let us detach the last point xn+1, by introducing a con-
straint via the identity 1 = ∫

dDxn+1δ(xn+1 − x f ), as fol-
lows:

K (0, x f ) =
⎡
⎣n+1∏

j=1

∫
dDx j

⎤
⎦ e−M

∑n
l=0 |xl+1−xl | × δ(xn+1 − x f )

=
∫

dDk

(2π)D
e−ik·x f Kn+1(k, M). (49)

Thus, the integrand in the above expression is nothing else
but the Fourier transform of the propagator after n time slices,
thus corresponding to the multi-dimensional integral

KN+1(k, M) =
⎡
⎣n+1∏

j=1

∫
dDxn

⎤
⎦

×e−M
∑n

l=0 |xl+1−xl |+ik·xn+1 . (50)

We begin by defining the new set of variables y0 = x1,
y1 = x2 − x1, . . ., yn = xn+1 − xn . This set of equations
can be inverted to yield

x1 = y0

x2 = y0 + y1

...

xn+1 = y0 + y1 + y2 + . . . yn . (51)

The Jacobian of this transformation is 1. Therefore, Eq. (50)
can be expressed as

Kn+1(k, M) =
⎡
⎣ n∏

j=0

∫
dD y j

⎤
⎦ e−∑n

l=0(M|yl |+ik·yl )

= [K (k, M)]n+1 . (52)

Here K (k, M) represents the Fourier transform of the zero-
time-slice propagator, and thus can be expressed in D
dimensional spherical coordinates: ρ = |yn|, dD yn =
dωDρD−1dρ,

K (k, M) =
∫

dωD

∫ ∞

0
dρ ρD−1 e−Mρ−i kρ cos θ . (53)

Here we use the recurrence property for the differential solid
angle dωD = (sin θ)D−2dθdωD−1. Considering the integral
representation of the Bessel function of the first kind,

Jν(z) = (z/2)ν


(ν + 1/2)
(1/2)

∫ π

0
e±i z cos θ (sin θ)2νdθ, (54)
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the integral in Eq. (53) can be expressed as

K (k, M) = (2π)D/2

(k)D/2−1

∫ ∞

0
dρ ρD/2 e−Mρ JD/2−1(kρ).

(55)

Substituting the expression for the solid angle in D − 1-
dimensions, ωD−1 = 2πD/2−1/2/
(D/2−1/2), and chang-
ing the variable of integration to x = Mρ, we have

K (k, M) = (2π)D/2M−(D/2+1)(k)1−D/2

×
∫ ∞

0
e−x x D/2 JD/2−1(k x/M). (56)

The last integral is obtained analytically, thus giving
∫ ∞

0
dx e−x x D/2 JD/2−1(k x/M) = 2D/2

√
π


(D/2 + 1/2)

×(k/M)D/2−1
(

1 + (k/M)2
)−D/2−1/2

. (57)

Substituting into Eq. (56), we finally have

K (k, M) = (4π)D/2

√
π

M 
(D/2 + 1/2)(
k2 + M2

)(D+1)/2
. (58)

Inserting this result into (52) one obtains the result stated in
(2).
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