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Abstract We study the motion of current carrying charged
string loops in the Reissner–Nordström black hole back-
ground combining the gravitational and electromagnetic
field. Introducing new electromagnetic interaction between
central charge and charged string loop makes the string loop
equations of motion to be non-integrable even in the flat
spacetime limit, but it can be governed by an effective poten-
tial even in the black hole background. We classify different
types of the string loop trajectories using effective potential
approach, and we compare the innermost stable string loop
positions with loci of the charged particle innermost stable
orbits. We examine string loop small oscillations around min-
ima of the string loop effective potential, and we plot radial
profiles of the string loop oscillation frequencies for both the
radial and vertical modes. We construct charged string loop
quasi-periodic oscillations model and we compare it with
observed data from microquasars GRO 1655-40, XTE 1550-
564, and GRS 1915+105. We also study the acceleration of
current carrying string loops along the vertical axis and the
string loop ejection from RN black hole neighbourhood, tak-
ing also into account the electromagnetic interaction.

1 Introduction

Detailed studies of relativistic current-carrying string loops
moving axisymmetrically along the symmetry axis of Kerr or
Schwarzschild–de Sitter black holes appeared currently [8–
10]. Tension of such string loops prevents their expansion
beyond some radius, while their world-sheet current intro-
duces an angular momentum barrier preventing collapse
into the black hole. Such a configuration was also studied
in [7,13,21]. There is an important possible astrophysical rel-
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evance of the current-carrying string loops [8] as they could
in a simplified way represent plasma that exhibits associated
string-like behavior via dynamics of the field lines in the
plasma [4,19] or due to thin isolated flux tubes of plasma that
could be described by an one-dimensional string [5,19,20].

In the previously mentioned articles the string loop was
electromagnetically neutral and there was no external electro-
magnetic field. Motion of electromagnetically charged string
loops in combined external gravitational and electromag-
netic fields has been recently studied [30,31]. Now we would
like to extend such research and we examine dynamic prop-
erties of electromagnetically charged and current carrying
string loop also in combined electromagnetic and gravita-
tional fields of Reissner–Nordström background represent-
ing a point-like electric charge Q source. Our work demon-
strates the effect of the black hole charge Q on the string loop
dynamic in general; the discussion of the black hole charge
relevance is given in Appendix A. We discuss two astrophys-
ically crucial limiting cases of the dynamics of the charged
string loops related to phenomena observed in microquasars:
small oscillations around equilibrium radii that can be rele-
vant for the observed quasiperiodic high-frequency oscilla-
tions, and strong acceleration of the string loops along the
symmetry axis of the black hole–string loop system that can
be relevant for creation of jets.

The general dynamics of motion for relativistic current
and charge carrying string loop with tension μ and scalar
field ϕ was introduced by [13] for the spherically symmet-
ric Schwarzschild BH spacetimes, for the Kerr spacetimes
it is discussed in [8,10,11,14]. General Hamiltonian form
for all axially symmetric spacetimes also with electromag-
netic field is introduced by [13]. To show properly how
the string loops interact electromagnetically, we will com-
pare charged particle motion with the charged string loop in
the same Reissner–Nordström black hole background, using
results already obtained in [1,2,17,18]. We show that there
are similarities in the dynamics of the charged string loops
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and charged test particles, as the dynamics can be described
in both cases by the Hamiltonian formalism with a relatively
simple effective potential. There is a fundamental difference
in the RN backgrounds: while the test particle motion is reg-
ular, the string loop motion has in general chaotic character
[10,13], where “islands” of regularity occur only for small
oscillations near the string loop stable equilibrium points.

Throughout the present paper we use the spacelike signa-
ture (−,+,+,+), and the system of geometric units in which
G = 1 = c. However, for expressions having an astrophys-
ical relevance we use the constants explicitly. Greek indices
are taken to run from 0 to 3.

2 Dynamics in spherically symmetric spacetimes

Gravitational interaction of the string loop with the central
electrically charged black hole occurs through the spherically
symmetric Reissner–Nordström (RN) metric given by the
line element expressed in geometric units

ds2 = − f (r)dt2 + f −1(r)dr2 + r2(dθ2 + sin2 θdφ2), (1)

where the metric function reads

f (r) = 1 − 2M

r
+ Q2

r2 . (2)

In the metric function f (r), the parameter M stands for the
black hole mass, while Q stands for the black hole charge.
For 0 ≤ Q < M the metric (1) describes black hole with
two event horizons, located at

rh± = M ±
√
M2 − Q2, (3)

for Q = M there is just one degenerate event horizon solu-
tion, for Q > M we have naked singularity without horizons.
Hereafter in this paper we will use for simplicity the system
of units in which the mass of the black hole M = 1, i.e., we
express the related quantities in units of the black hole mass.

In order to clearly show the trajectory of string loops, it is
useful to use the Cartesian coordinates x, y, z related to the
Schwarzschild coordinates

x = r sin(θ) cos(φ), y = r sin(θ) sin(φ), z = r cos(θ).

(4)

The electromagnetic field related to the Reissner–Nordström
(RN) metric is given by the covariant electromagnetic four-
vector potential Aα [15] that takes the simple form

Aα = Q

r
(−1, 0, 0, 0). (5)

Recall that electromagnetic interaction is much more stronger
than the gravitational interaction – between electron and pro-

ton for example the gravitational interaction is physically
irrelevant. Therefore the central charge Q will significantly
electrically interact with the charged string loop even when
the black hole charge Q is too small to make relevant contri-
bution to the metric (1).

We thus examine different physically relevant situations
according to the gravitational/electric field strength ratio:

Flat There is no black hole and hence no gravitational interac-
tion. The electric field of the charge Q is so weak, that it
will not contribute to the metric. We will use the flat met-
ric (1), with M = 0, Q = 0, while the electromagnetic
interaction will be given by (5). Discussed in Sect. 3.1.

RN There will be black hole, with the gravitational field influ-
enced by the strong electromagnetic field. We will use full
RN metric (1) with electromagnetic interaction given by
(5). Discussed in Sect. 3.2.

The relevance of the individual three cases for realistic values
of RN black hole metric/string loop, all string loop quantities
and their dimensions in physical units, will be discussed in
detail in Appendix A.

2.1 Hamiltonian formalism for charged particle motion

The dynamics of axially symmetric charged current carrying
string loops can be enlightened by comparison with charged
test particle motion, as both these dynamics can be formu-
lated in the framework of Hamiltonian formalism. Recall that
evolution of axisymmetric string loops adjusted to axisym-
metric backgrounds can be represented by evolution of a sin-
gle point of the string [10,21].

We can also compare electromagnetic forces acting on
charge test particles or string loops. Since the motion of a
charged test particle in the RN black hole background has
been intensively studied in literature [1,2,17,18], we will
give just short summary.

Motion of a charged particle with mass m and charge q is
given by the Hamiltonian [15]

Hp = 1

2
gαβ(�α − q Aα)(�β − q Aβ) + 1

2
m2, (6)

where mechanical, Pμ, and canonical, �μ, momenta are
related as

Pμ = mUμ = m
dxμ

dτ
= �μ − q Aμ. (7)

Due to the spherical symmetry of the RN background (1), the
charged particles move in central planes only. For a single
particle the central plane can be chosen as the equatorial
plane. Since the Hamiltonian (6) does not contain coordinate
φ (axial symmetry) and coordinate t explicitly, two constants
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of motion exist – particle energy E = −�t , and particle
axial angular momentum L = �φ . Now one can write the
Hamiltonian of the charged particle equatorial motion in the
form

H = 1

2
f (r)P2

r − 1

2

1

f (r)

(
E − qQ

r

)2

+ 1

2

L2

r2 + 1

2
m2, (8)

Using the H = 0 condition, we obtain immediately equation
of the radial motion in the form

m2
(

dr

dτ

)2

=
(
E − qQ

r

)2

− f (r)

(
m2 + L2

r2

)
, (9)

corresponding to the motion in 1D effective potential deter-
mining the turning points of the radial motion where dr/dτ =
0.

2.2 Hamiltonian formalism for relativistic string loop

Dynamics of relativistic, charged, current carrying string is
described by the action S with Lagrangian L [12,13]

S =
∫

L dσdτ,

L = −μ
√−h − 1

2

√−hhab(ϕ|a + Aa)(ϕ|b + Ab), (10)

where Aa = Aγ X
γ
|a . The string worldsheet is described by

the spacetime coordinates Xα(σ a) with α = 0, 1, 2, 3 given
as functions of two worldsheet coordinates σ a with a = 0, 1.
This implies induced metric on the worldsheet in the form

hab = gαβX
α|a X

β
|b, (11)

where �|a = ∂�/∂a. The string current localized on the
2D worldsheet is described by a scalar field ϕ(σ a). The 2D
worldsheet with coordinates τ, σ is immersed into 4D metrics
with coordinates t, r, θ, φ using

Xα(τ, σ ) = (t (τ ), r(τ ), θ(τ ), σ ). (12)

The action (10) is inspired by an effective description
of superconducting strings representing topological defects
occurring in the theory with multiple scalar fields undergoing
spontaneous symmetry breaking [32,33] and can be used as
effective description of current created by bosons or fermions
on superconducting string. Contrary to the formalism used in
[8,10], we rescale scalar field ϕ → ϕ/2. First part of (10) is
classical Nambu–Goto string action for string with tension μ

only, second part describes interaction of scalar field ϕ with
four-potential Aα of electromagnetic field.

In the conformal gauge, the equation of motion of the
scalar field, given by the variation of the action (10) against
field ϕ, reads

[√−hhab(ϕ|a + Aa)
]

|b = 0. (13)

The assumption of axisymmetry implies ϕ|σσ = 0 and Aφ =
Aσ �= Aσ (φ), from (13) we have conserved quantities � and
n, given by

� = ϕ|τ + Aτ , n = ϕ|σ , (14)

Varying the action (10) with respect to the induced metrichab,
we obtain the worldsheet stress–energy tensor density (being
of density weight one with respect to worldsheet coordinate
transformations)


ττ = �2 + (n + Aφ)2

gφφ

+ μ,


σσ = �2 + (n + Aφ)2

gφφ

− μ,


στ = −�(n + Aφ)

gφφ

. (15)

The contribution from the string tension μ > 0 gives a pos-
itive energy density and a negative pressure (tension). The
current contribution is traceless, due to the conformal invari-
ance of the action – it can be considered as a 1 + 1 dimen-
sional massless radiation fluid with positive energy density
and equal pressure [8].

Electromagnetic properties of the charged circular string
loop are obtained by varying the action (10) with respect to
the four-potential Aα:

Jμ = δL

δAμ

= −ρXμ
|τ + j Xμ

|σ ,
∂ρ

∂τ
= ∂ j

∂σ
, (16)

where the string loop electric current is j = n + Aφ and
string loop electric charge density is ρ = � [12].

Varying the action (10) with respect to Xμ implies equa-
tions of motion in the form

D

dτ
�(τ)

μ + D

dσ
�(σ)

μ = 0, (17)

where the string loop momenta are defined by the relations

�(τ)
μ ≡ ∂L

∂ Ẋμ
= 
τagμλX

λ|a + �Aμ,

�(σ)
μ ≡ ∂L

∂X ′μ = 
σagμλX
λ|a − (n + Aφ)Aμ. (18)

Defining affine parameter ζ , related to the worldsheet coor-
dinate τ by the transformation

dτ = 
ττ dζ, (19)

we can define for the string loop dynamics define the Hamil-
tonian
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H = 1

2
gαβ(�α − �Aα)(�β − �Aβ)

+ 1

2
gφφ

[
(
ττ )2 − (
τσ )2

]
(20)

and the related Hamilton equations

Pμ ≡ dXμ

dζ
= ∂H

∂�μ

,
d�μ

dζ
= − ∂H

∂Xμ
. (21)

From the first equation in (21) we obtain relation between
the canonical �μ and mechanical momenta Pμ in the form

Pμ = �μ − �Aμ. (22)

2.3 Conserved quantities and effective potential for string
loop dynamics

Now we restrict our study to the string loop dynamics in the
RN black hole background using metric (1) and electromag-
netic four-potential (5). The metric (1) does not depend on
coordinates t (static) and φ (axial symmetry) and only one
nonzero covariant component of the electromagnetic four-
vector potential is At (5). Such symmetries imply existence
of conserved quantities during string motion–string energy
E and string axial angular momentum L , determined by the
relations

− E = �t = Pt + �At ,

L = �φ = gφφ
τσ + �Aφ

= −�n = −2J 2ω
√

1 − ω2. (23)

The string loop does not rotate in Schwarzschild coordinates,
dXφ/dζ = 0 – see Eq. (12), but the string loop has a non-
zero angular momentum generated completely by the scalar
field living on the string loop. Instead of string loop elec-
tric charge � and current n (16), we can introduced new
conserved quantities – “angular parameter” J and “charge
parameter” ω, given by

J 2 ≡ �2 + n2

2
, ω ≡ 1√

2

�

J
. (24)

The parameter J ≥ 0 has simple interpretation as combined
magnitude of charge and current on the string loop, and as we
will see later, J is a generator of the centrifugal force, acting
against contraction caused by the string loop tension μ. Note
that even though string loop is not rotating mechanically, J
parameter is acting as an angular momentum due to internal
properties of the string. For this reason we call it angular
momentum J parameter. Further, the new parameter ω is
string loop charge � rescaled by parameter J , such that −1 ≤
ω ≤ 1. We can distinguish three limiting cases of parameter
ω:

ω = −1 There is no electric current on the string loop, n =
0, only negative electric charge � < 0 uniformly
distributed along the loop. Since we consider the
central object charge Q > 0 to be positive, there
acts an electromagnetic attractive force between the
central object and the string loop.

ω = 0 There is no charge on the string loop, � = 0, only
current n, and there is no electromagnetic interac-
tion between the string loop and the central object
electric charge Q. The black hole charge Q can
affect the string loop dynamic only through changes
in (1) metric. This case was already studied in [22]
for the so called “tidal charge” black hole scenario.

ω = 1 There is no electric current on the string loop,
n = 0, only positive electric charge � > 0 uni-
formly distributed along the loop. there will be
electromagnetic repulsive force between the cen-
tral object and the string loop.

The electric force between the central object with charge
Q is attractive for −1 ≤ ω < 0, while it is repulsive for
0 < ω ≤ 1. We will focus on string loop dynamics for
ω ∈ {−1, 0, 1} limiting values, and we will assume the string
loop behaviour for another value of ω, will be combination of
the limiting values. It is interesting that for all three limiting
cases ω ∈ {−1, 0, 1}, the string loop angular momentum L
is zero (23).

The string dynamics depends on the J parameter (14)
through the worldsheet stress–energy tensor. Using the two
constants of motion (23), we can rewrite the Hamiltonian (20)
into the form related to the r and θ momentum components

H = 1

2
grr P2

r + 1

2
gθθ P2

θ + 1

2
gtt (E + �At )

2

+1

2
gφφ

(
J 2

gφφ

+ μ

)2

. (25)

Assuming μ > 0, one can also express all quantities in the
terms of string loop tension μ, divide the whole Hamiltonian
(25) with μ, and hence get rid of extra parameter μ with
transformations like E → E/

√
μ and J → J/

√
μ. Hence,

in all following equations, we will take μ = 1 and we will
discuss the string loop quantities and their dimensions in
physical units in the Appendix A.

The equations of motion (21) following from the Hamil-
tonian (25) are very complicated and can be solved only
numerically in general case, although there exist analytical
solutions for simple cases of the motion in the flat or de Sitter
spacetimes [9]. However, we can tell a lot about the string
loop dynamics even without solving the equation of motion
(21) by studying properties of the effective potential govern-
ing the turning points of the string loop motion that is implied
by the Hamiltonian. It is useful to express the Hamiltonian
(25) in the form
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H = HD + HP, (26)

where we split H into “dynamical” HD and “potential” HP

parts. The “dynamical” part HD contains all terms with
momenta �α or Pα , while the “potential” part HP depends
on the coordinates and conserved quantities only.

The positions where a string loop has zero velocity (HD =
0 and ṙ = 0, θ̇ = 0) forms a boundary for the string motion.
Since the total Hamiltonian is zero, H = 0, the potential part
of the Hamiltonian is also zero HD = 0 at the boundary points
with zero velocity. This will allow us to to express string loop
energy E at the turning (boundary) points in the form

E = Veff(r, θ) ≡ √−gtt gφφ

(
J 2

gφφ

+ 1

)
− �At , (27)

where we define the effective potential function Veff(r, θ).
The condition (27), for energy E , creates an unbreakable
boundary (curve) in the x–z plane, restricting the string
loop motion. In the previous works [8,10], the term “energy
boundary function” was used for the effective potential,
Eb(r, θ) = Veff(r, θ).

Stationary points of the effective potential function Veff

(x, z) are determined by two conditions

(Veff)
′
x = 0 (Veff)

′
z = 0, (28)

where the prime ()′m denotes derivation with respect to the
coordinate m. In order to determine character of the station-
ary points at (xe, ze) given by the stationarity conditions (28),
i.e., whether we have a maximum (“hill”) or minimum (“val-
ley”) of the effective potential function Veff(x, z), we have
to examine additional conditions

[(Veff)
′′
zz(Veff)

′′
xx − (Veff)

′′
zx (Veff)

′′
xz](xe, ze) > 0, (29)

[(Veff)
′′
zz](xe, ze) < 0 (max) > 0 (min). (30)

The curve E = Veff(x, z), forming unbreakable energetic
boundary for the string loop motion, can be open in the x-
direction in the equatorial plane (z = 0), allowing the string
loop to move towards horizon and be captured by the black
hole. The energetic boundary can be open in z-direction,
allowing the string loop to escape to infinity from the black
hole neighbourhood.

3 String loop in combined electric and gravitational
field

3.1 Charged string loop in flat spacetime

We discuss the flat spacetime case separately, as establishing
the flat space limit requires M = 0 and Q = 0 simultane-
ously, but this means vanishing of the electromagnetic field.

We can use cylindrical coordinates (t, x, z, φ) in flat
spacetime, and compare string loop Hamiltonian with Hamil-
tonian for particle on circular geodesic – this will be very
helpful for exploring the situation and for identification of
acting forces. In the electrostatic field of point charge Q
(5) we have for the “potential”, HP, parts of the Hamilto-
nian determining the charged particle and charged string loop
motion, the simple expressions

Hparticle = −1

2

(
E − qQ

r

)2

+ 1

2
m2 + L2

x2 ,

Hstring = −1

2

(
E − �Q

r

)2

+ 1

2

(
μx + J 2

x

)2

. (31)

While particle can move only in the central plane, taken to be
equatorial plane for simplicity, and particle motion remain
regular, the string loop can move also outside the equato-
rial plane, and string loop dynamics is generally chaotic.
In Hamiltonian (31) we clearly see radial Coulombic force
∼ �Q/r2, acting on the element of string loop with elec-
tric charge �; Coulombic force is attractive for �Q < 0,
and repulsive for �Q > 0. The radial force field breaks the
symmetry of the string loop translation along the z axis, and
the string loop dynamics can not be regular even in the flat
spacetime.

Using the condition Hstring = 0, we find the effective
potential (boundary function)Veff (x, z) for a string loop elec-
trically interacting with the point charge Q in flat spacetime
in the form (y coordinate can be suppressed by fixing at y = 0
then r = √

x2 + z2)

Veff(x, z) = μx + J 2

x
+

√
2ωJ Q

r
. (32)

The case ω = −1 corresponds to the configuration of oppo-
site charges Q and �, the ω = 0 case to uncharged string
loop, and the case ω = 1 corresponds to configurations with
the same sign of the electric charges. We give examples of
the effective potential function Veff(x, z) in Figs. 1 and 2.

In Fig. 1 the left graph represents the string loop effective
potential function Veff(x, z = 0) as section at the equato-
rial plane. In the x-direction, we have one minimum of the
effective potential, depending on values of J an ω. In middle
graph is plotted the string loop effective potential function
Veff(x = xmin, z) as section at its equatorial minimum. The
stationary points of the Veff(x, z) function are located in the
equatorial plane, z = 0, only; in the z-direction, for ω = −1
we have minima, for ω = 0 we have constant behaviour
in z direction, and for ω = 1 we have saddle point. The
behaviour of the effective potential along the vertical z axis
Veff(x = x0, z), as section at x0 = 2 (right Fig.), is also
plotted for all three limiting values of ω parameter.

For visualizing the regions where the string loop motion
is possible, we demonstrate in Fig. 2. the E = const. sec-
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Fig. 1 The x and z sections of the effective potential Veff (x, z) for the
flat spacetime. We use parameter J = 2 and we set Q = 0.9. Dashed
curves correspond to the ω = 1 case, solid to the ω = 0, thick to the

ω = −1. The x section of Veff is taken at z = 0, while z section is taken
at corresponding minima x = xmin (middle fig.) or at x = 2 (right fig.)

Fig. 2 Energy boundary function Eb(x, z) for the flat spacetime. We use parameters J = 2, Q = 0.9. For Fig. ω1 = −1 we have string energy
E = 3.5 (left), for ω1 = 0 E = 4.5 (middle) and for ω1 = 1 E = 5 (right)

Fig. 3 Energy boundaries and the trajectories of the string loop with parameters J = 2, Q = 0.9. For Fig. ω1 = −1 we have string energy E = 3.5
(left), for ω1 = 0 E = 4.5 (middle) and for ω1 = 1 E = 5 (right)
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tions of the effective potential full 2D function Veff(x, z) for
both x and z coordinates. In the left, picture we give the
Veff profile for ω = −1, E = 3.5 case. The electrostatic
interaction between the black hole and string loop charges is
attractive and the string loop is trapped in closed area (light
grey) – string loop is located in effective potential “lake”. In
the middle figure, the case ω = 0, E = 4.5 is presented. In
this case, trapped motion in x axis is observed, and there is no
motion in vertical z axis, if we consider zero initial velocity
in z direction, the effective potential (32) does not depend
on z in absence of the electric interaction between the black
hole and string loop. In the right picture, we shown the case
ω = 1, E = 5. The string loop is allowed to oscillate in a
limited x interval, while, due to the electrostatic repulsion
between the black hole and string loop charges, the string
loop is escaping along the vertical z axis. Depending on the
initial position, the string loop can move in the upper or lower
half spaces and it can never cross the equatorial plane.

Coming from Fig. 2, we draw in Fig. 3 the trajectories of
the string loop within their energy boundaries for the same
values of the parameters J , Q and ω. We can conclude that in
the case of opposite (attractive) charges (ω = −1), electric
attraction resists the string loop to escape to infinity. In the
absence of electric interaction (ω = 0), there is no force
in vertical direction and the trajectory of the string loop is
always on the plane parallel to the z plane. In the repulsively
charged case (ω = 1), the electric repulsive potential barrier
pushes the string loop away from the center.

3.2 Charged string loops in Reissner–Nordström
background

For string loop motion in the Reissner–Nordström back-
ground, the general form of the Hamiltonian (25) reduces
to

H = 1

2
f (r)P2

r + 1

2r2 P
2
θ + 1

2

(
J 2

r sin θ
+ r sin θ

)2

− 1

2 f (r)

(
E − �Q

r

)2

. (33)

As the whole axisymmetric string loop can be represented
by a single point that can be characterized by a coordinate
y = 0 (see e.g. [22]), we can introduce the effective potential
for charged string loop in the form

Veff (x, z; Q, J, ω) =
√

1 − 2

r
+ Q2

r2

(
μx + J 2

x

)
+

√
2ωJ Q

r
,

(34)

where r is radial distance r2 = x2 + z2 and parameters
J, ω were already introduced and explained in Eq. (24). We
put for simplicity M = 1 (expressing r in units of mass

parameter). The effective potential Veff(x, z) is not defined
in the dynamical region, between the inner and outer RN
black hole horizons, where f (r) < 0 [22]. For the black
hole spacetimes, Q ≤ 1, we will consider string loop motion
in the region above the outer horizon, r > r+, see Eq. (3). For
the RN naked singularity spacetimes, Q > 1, the dynamical
region ceases to exist, and Veff(x, z) is defined for any r > 0.

First we need to explore asymptotic behaviour of the effec-
tive potential (34). Reissner–Nordström spacetime is asymp-
totically flat, hence in the x-direction there is

Veff(x → ∞, Q, J, ω) → +∞, (35)

and in the z-direction we obtain

Veff(z → ∞, Q, J, ω) → x + J 2

x
= Veff(flat), (36)

for details see [9].
Here we consider all possible types of the charged string

loop motion around the RN black holes as well as the RN
naked singularities. The case of the charged string loop
motion in the field of RN black holes and naked singularities
is included in the related study of behavior of string loops in
the braneworld spherically symmetric black holes studied in
[22], that where it was demonstrated that the string loop can
oscillate in the closed area, fall down into the black hole, or
escape to infinity in the vertical direction, while oscillating
in the x-direction. Exploring the effective potential the type
of string loop motion can be estimated.

Stationary points of the 2D effective potential function
Veff(x, z) are given by Eq. (28). The stationary points can be
found in the equatorial plane, z = 0, and their x coordinate
is given by the relation

H2

x

(
μ − J 2

x2

)
+ (x − Q2)

(
J 2

x2 + μ

)
−

√
2J Qω

x
H = 0.

(37)

From Eq. (37) one can easily find the corresponding condition
for string loop angular momentum parameter J

J = Jext, (38)

where

Jext ≡ −QHωx ± x
√

2P(x − 1)x + Q2H2ω2
√

2P
. (39)

Here we have used the following notations:

P(x, Q) = 2Q2 − 3x + x2,

H(x, Q) =
√
Q2 − 2x + x2. (40)

The Jext(r;ω, Q) function determines both stable and unsta-
ble stationary positions of the string loop. Radial profiles of
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Fig. 4 The behavior of string loop’s angular momentum parameter
corresponding to effective potential’s equatorial extreme (thick black)
along with angular momentum parameters JL1 and JL2 defining the

trapped motion boundaries (dashed). If the Jext’s profile is within the
shaded lines string loop’s motion is always in some toroidal space oth-
erwise it escapes to infinity

Jext(r;ω, Q) function are plotted in Fig. 4. for various com-
binations of ω and Q charges.

Depending on the black hole charge Q and string loop
charge parameter ω, there can exist one, two or three station-
ary points of the effective potential in the equatorial plane.
The sign of d Jext

dx defines type of the extrema, the positive

derivation term, d Jext
dx > 0, determines the effective poten-

tial equatorial minima while negative derivative, d Jext
dx < 0,

determines the maxima. The extremal point of the Jext func-
tion, given by d Jext

dx = 0, defines the innermost stable string
loop position.

Exploration of the effective potential Veff allows us to
determine all possible types of the string loop trajectories in
the RN backgrounds. In addition to the effective potential
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extrema, given by the Jext function, we need to explore when
the string loop can escape to infinity along the z axis. From
Eq. (36) we know that the energetic boundary will be open
in the z direction for the string loop motion, if string energy
E satisfies the condition

E > Veff(flat) = 2J. (41)

Therefore, condition Veff(x, z; Q, ω) < 2J gives the bound-
aries of string loop’s trapped motion. Solving the Eq. (41)
with respect to J , we find the regions where string loop’s
motion is trapped. We thus derive the loop trapping function
in the form

JL1,2 = −Qx3H ± x
√

(Q2ω2H − 2(x2 − x)P)√
2P

. (42)

The trapped oscillatory string loop motion occurs under the
circumstance given by the relations

JL1(x; Q, ω) > J > JL1(x; Q, ω). (43)

In Fig. 4 we demonstrate the behavior of the extrema Jext

function, along with the boundary functions JL1 and JL2

giving trapped motion boundaries; if the string loop angular
momentum is located within the dashed boundaries the string
loop can never escape to infinity in the vertical direction at
the corresponding fixed x .

In Fig. 5 we use the diagonal pictures of Fig. 4 and con-
struct the corresponding effective potential along x-axis and
z-axis at xmin given for the chosen values of J , where xmin

is position of the effective potential minima. In Fig. 6 we
give some typical trajectories of the string loop motion. In
the top row of the Fig. 5, we consider Q = 0.3, ω = −1
case. First we take J = 10 as it is crossing the Jext profile at
two points (Fig 5). In this case, there is one stable and one
unstable equilibrium position.

In Fig. 6a we show trajectories of string loop’s motion
cross-section along with the boundary energy profiles – we
observe that the motion is trapped in the closed region. Then
we consider J = 7.44, as this value of J is touching the
extremal point of the function Jext (Fig 5), corresponding to
the innermost stable equilibrium position (ISEP) – any small
deviation from this position causes the string to collapse to
the black hole. String loop’s trajectory for this case is given
in Fig. 6b; we can conclude that the motion is finite in the
z-direction and the energy boundary profile is open to the
black hole, and the string finally falls down to the black hole.
And last case of Q = 0.3, ω = −1 configuration, we take
J = 4 value as it is not crossing the Jext profile at all. In this
case, there is no possible trapped motion and the string loop
has to escape to infinity in the vertical direction (Fig. 6c).
Another possible string loop trajectory around the black hole

is given for Q = 0.3, ω = 1, J = 10 case in Fig. 6d, with
string escaping to infinity.

Medium line elements of Fig. 5 represent the naked sin-
gularity Q = 1.0677, ω = 0 case. The most distinctive
behavior of the effective potential is given by the presence of
two minima for J = 5.5. This indicates that the string loop
has in the x-direction two stable positions around the naked
singularity, and escape along vertical direction is impossi-
ble for sufficiently low string loop energy. The trajectory of
the string loop for this type of motion is given in Fig. 6e.
This type of energy boundary profile corresponds to trapped
motion – the trapped motion can take place in one of two
possible closed toroidal spaces around the RN naked singu-
larity. At the bottom line on Fig. 5 we consider Q = 1.414,
ω = 1 situation. There is one minimum of the potential well
corresponding to stable equilibrium position. String loop’s
motion in x-direction is limited. There is also small potential
barrier resisting the string loop to cross the z = 0 equato-
rial plane. String loop escapes to infinity loosing oscillatory
energy in the x direction (Fig. 6f) [8,9,13].

Effective potential Veff(x, z = 0) has real extrema only
for real values of the extreme angular momentum function
Jext given by expression (39). We thus find the condition
relating the limiting values of RN charge parameter Q and
the string loop charge parameter ω in the form

ω2 = ω2
crit(x, Q) ≡ −Q2(2Q2 − 3x + x2)(x − 1)

Q2x2(Q2 − 2x + x2)
, (44)

along with the condition Q2 − 2x + x2 ≥ 0. This allow
us to distinguish regions with different string loop effective
potential behavior for any central charge Q, as demonstrated
in Fig. 7, where the region around a black hole or naked
singularity is separated into regions where effective potential
has minima (light grey region), or maxima (grey region), or
there are no extrema at all (white region). The line dividing
grey and light grey regions gives the location of innermost
stable equilibrium position (ISEP).

It is useful to compare the ISEP for charged string loops
with its particle equivalent – the charged particle innermost
stable circular orbit (ISCO), in the same RN black hole back-
ground [17,18]. In Fig. 8, such comparison is given for all
three (positive, neutral, negative) variants of the charged test
object. As it can be seen, the charged string loop ISEP is
always located between the photon orbit and the charged
particle ISCO in the RN spacetime, revealing true about the
string loop real nature.

4 Quasi-periodic oscillations of string loops

The quasi-periodic oscillatory motion of the string loops
trapped in a toroidal space (or in “lake”) around the minima
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Fig. 5 The behavior of Jext function and boundary angular momentum parameter functions JL1, JL2 and the corresponding effective potentials.
Dots denote the extreme points of effective potential Veff . Shaded region stands for area below black hole horizon

of the effective potential Veff(x, z) function could be used
to interpret interesting astrophysical phenomenon – high-
frequency quasi-periodic oscillations (HF QPOs). Most of
compact X-ray binaries that contain a black hole or a neu-
tron star demonstrate quasi-periodic variability of the X-ray
flux in the kHz frequency range. Some of these HF QPOs
appear in pairs as upper and lower frequencies (νU, νL) and
in Fourier spectra are observed twin peaks. Since the peaks
of high frequencies are close to the orbital frequency of

the marginally stable circular orbit representing the inner
edge of Keplerian discs orbiting black holes (or neutron
stars), the strong gravity effects must be relevant to inter-
pret HF QPOs [23]. So far, many models have been pro-
posed to explain HF QPOs in black hole binaries: the rel-
ativistic precession model, the warped disc model, reso-
nance model [16,24–26,28]. Usually, Keplerian orbital and
epicyclic (radial and latitudinal) frequencies of geodetical
circular motion are assumed in models explaining the HF
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Fig. 6 (prepsat) Trajectories of the string loop and energy boundaries of their motion. Four various types of motion possible: trapped in some
“lake”-like region (a, e), capture by black hole (b), collapse or escape to infinity (c), escape to infinity (d, f)

Fig. 7 Local extrema position x and type (maxima/minima) of the
effective potential Veff (r, θ = π/2) for different values of RN charge
parameter Q and for all three considered values of ω parameter. Thick
black line corresponds to event horizon and restrict the dynamical
region. Darker grey colour denotes region where maxima of the Veff

function can exist, while lighter grey colour denotes region where min-
ima can exist. Only in the lighter grey areas can exist stable string loop
position – the boundary between darker/light areas act as innermost
stable string loop position. In white areas above RN black hole horizon
there are no extrema point of Veff function

QPOs in both black hole and neutron star systems [27]. How-
ever, neither of these models is able to explain the HF QPOs in
all microquasars [29]. On the other hand, there is possibility

of the relevance of string loop’s oscillations, characterized by
their radial and vertical (latitudinal) frequencies that are com-
parable to the epicyclic geodetical frequencies, but slightly
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Fig. 8 ISEP for string loop and ISCO for charged particle with respect
to black hole charge Q. ISEP for string are given for attracting ω = −1,
not interacting ω = 0 and repulsing ω = 1 interaction types between

string and charged black hole. ISCO for charged particles are defined
for three different charge to mass ratio ε values

different, enabling thus some corrections to the predictions of
the models based on the geodetical epicyclic frequencies. Of
course, the frequencies of string loops oscillations in physical
units have to be related to distant observers.

Let have string loop located in the equatorial plane and
at a effective potential Veff(r, θ) minimum (r = r0, θ =
θ0 = π/2). Slight displacement from minima position r =
r0 + δr, θ = θ0 + δθ , causes small string loop oscillations
around the stable equilibrium positions, determined by the
equations of harmonic oscillations

δ̈r + ωr
2δr = 0, δ̈θ + ωθ

2δθ = 0, (45)

where locally measured frequencies of the oscillatory motion
are given by

ω2
r = ∂2Veff

∂r2 , ω2
θ = 1

r2 f (r)

∂2Veff

∂θ2 . (46)

Local observers, at the position of the string loop in the RN
spacetime measure angular frequencies

ω2
r =

2
(
J 2

ext

(
6Q2 + (r − 6)r

) + √
2JextQr2ω + Q2r2

)

r5
,

ω2
θ = (Jext − r)(Jext + r)

r3 . (47)

where Jext(r) gives J parameter for equatorial minima. Fre-
quencies measured by static observers at infinity� are related
to the locally measured frequencies (47) by the gravitational
redshift transformation

Table 1 Observed twin HF QPOs data for three microquasars, and the
restrictions on mass of black holes located in them, based on indepen-
dent measurements on the HF QPO measurements

Source GRO 1655-40 XTE 1550-564 GRS 1915+105

νU (Hz) 447–453 273–279 165–171

νL (Hz) 295–305 179–189 108–118

M/M� 6.03–6.57 8.5–9.7 9.6–18.4

�(r,θ) = dX(r,θ)

dt
= dX(r,θ)

dζ

dζ

dt
= ω(r,θ)

E
f (r), (48)

here E = E(r0, θ0) is the energy of the string loop on its
minima position and f (r) is the characteristic lapse function
of the RN metric (1). The frequencies for observers at infinity
�, have to be multiplied by the factor c3/GM to be expressed
in the standard physical units

ν(r,θ) = 1

2π

c3

GM
�(r,θ). (49)

We focus our attention to resonance frequencies with ratio
3:2 observed in X-ray data from GRO 1655-40, XTE 1550-
564, and GRS 1915+105 that require the string loop frequen-
cies corresponding to twin peaks appears in the νr :νθ = 3:2
or νθ : νr = 3:2 ratio – see Table 1. We explore the displace-
ment of resonance frequencies with respect to black hole’s
charge Q and string loop ω parameter. In Fig. 9 we illus-
trate the radial coordinates of equilibrium positions where
νr :νθ = 3:2 or νθ :νr = 3:2 ratios appear in dependence on
parameters Q and ω. On the top row of Fig. 9 we present
Q = 0.5 case. As it is seen, with changing from strong elec-
tric attraction, ω = −1, to absence of interaction, ω = 0,
and finally to strong electric repulsion, ω = 1, the position
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Fig. 9 Radial profiles of radial and vertical fundamental frequencies
νr , νθ measured by distant observers, determined for harmonic string
loop oscillations around stable equatorial equilibrium states. String

loops are considered around Reissner–Nordström black hole of 10 solar
masses. Radii of 3:2 and 2:3 resonances are given as dashed lines

of resonance frequencies tend to come closer to the black
hole. For the naked singularity case of Q = 1.0677 on the
middle row of Fig. 9, in the similar step of changes of ω,
we observe different scenario from Q = 0.5 situation. Here,
for ω = −1 case three equilibrium points satisfying the 3:2
ratio condition for νr and νθ occur. Further, in ω = 0 case,
the resonance frequencies occur at four positions. Finally,
when ω = 1, the resonance frequencies does not appear at
all. Bottom line elements on Fig. 9 represent the Q = 1.414

naked singularity case. In this scenario, the resonance 3:2
frequencies appear at two locations for the ω = −1 case,
while for the ω = 0 case they occur only at one position, and
in the ω = 1 case vertical frequencies disappear, the string
loops are unstable relative to vertical perturbations.

For fixed black hole charge Q and fixed string loop charge
parameter ω, upper frequency of the twin HF QPOs can be
given as a function of black hole’s mass M . If the black hole
mass is restricted by separated observations, as is commonly
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Fig. 10 The upper frequency νU of string loop oscillations at 3:2 or 2:3 resonant radii, calculated in the framework of the string loop model with
maximal range string loop parameter ω as a function of black hole mass for several values of the black hole charge Q = 0, 0.5, 0.8

the case, we obtain some restrictions on the string loop res-
onant oscillations model, as illustrated in Fig. 10. Here, the
situation is demonstrated for several values of black hole’s
charge Q and limits on the black hole mass as given in Table 1.
We can see that for the Schwarzschild black hole (Q = 0),
the string loop model can explain only the HF QPOs in GRS
1915+105. Introducing black hole charge Q and parameter ω,
the string loop resonant oscillations model widens the area of
its applicability. For ω = 1 and Q = 0.5, 0.8 case, the model
fully describes observed values from GRO 1655-40 source.
It contains the whole range of expected mass range from
Table 1. Nevertheless, the string loop resonant oscillation
model in Reissner–Nordström background can not explain
the observed values from XTE 1550-564 source. For any
value of ω parameter and for any low values of black hole
charge Q, the string loop model can not fit observed mass
range for the XTE 1550-564 source and an additional influ-
ence of the black hole rotation has to be expected.

Moreover, in Fig. 10 we can clearly see that the predicted
value of the black hole mass is increasing with the black
hole charge Q increase. It will become harder and harder
to fit the observed HF QPOs as the Q parameter increases,
hence we can conclude that introducing new parameter Q
into the string loop HF QPOs model is not successfully effi-
cient in explaining the observed HF QPOs in microquasars,
and inclusion of the black hole spin that can be sufficiently
efficient as demonstrated in [23] is necessary.

5 String loop acceleration and asymptotical ejection
speed

From the astrophysical perspective, one of the most relevant
applications of the axisymmetric string loop motion is the
possibility of strong acceleration of the linear string motion

due to the transmutation process in the strong gravity field
of immensely compact objects that arises due to the chaotic
character of the string loop motion and could well simu-
late acceleration of relativistic jets in Active Galactic Nuclei
(AGN) and microquasars [8,10,21]. Since the RN spacetime
is asymptotically flat, we have to examine the linear string
loop motion in the flat spacetime; as the Columbian elec-
tric field disappears asymptotically at the RN spacetime, this
approximation is sufficient to understood the results of the
acceleration process. The energy of string loop (32) in the
Cartesian coordinates reads

E2 = ż2 + ẋ2 +
(
J 2

x
+ x

)2

= E2
z + E2

x , (50)

where dot denotes derivative with respect to the affine param-
eter ζ . The energies related to the x− and z− directions are
given by the relations

E2
z = ż2, E2

x = ẋ2 +
(
J 2

x
+ x

)2

= (xi + xo)
2 = E2

0 ,

(51)

where xi (xo) represents inner (outer) boundary of the oscilla-
tory motion. The energy E0 representing the internal energy
of the string loop is minimal when the inner and outer radii
coincide, leading to the relation

E0(min) = 2J (52)

that determines the minimal energy needed for escaping of
the string loop to the infinity in the spacetimes related to
black holes or naked singularities.

Clearly, Ex = E0 and Ez are constants of string motion in
the flat spacetime and transmutation between energy modes
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Fig. 11 Escaping trajectories of string in flat spacetime with respect to
string charge parameter ω. Asymptotical Lorenz factor γ of transmit-
ted string loops is given for three values of ω parameter for the value

of black hole charge Q = 1. The Lorenz factor γ is calculated for
string loops with angular momentum J = 1.1 and starting from initial
position x0 = 1.9, z0 = 0

Fig. 12 Escaping trajectories of string loop in RN(top line elements)
and flat spacetime(bottom line elements). Asymptotical speed of trans-
mitted string loops given for three values of ω parameter for charged
black hole Q and flat spacetime. The asymptotical ejection speed of

string loop Vz is calculated for the values of angular momentum J = 7,
energy E = 20 and initial position z0 = 7. x0 is found from the expres-
sions of energy in RN (34) and flat spacetime (32)

are not possible there. However, in the vicinity of black holes,
the kinetic energy of oscillating string can be transformed
into the kinetic energy of the translational linear motion.

The energy in the x-direction E0 can be interpreted as
an internal energy of the oscillating string, consisting from
the potential and kinetic parts; only in the limiting case of
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xi = xo, the internal energy has zero kinetic component.
The string internal energy can quite reasonably represent the
rest energy of string moving in the z-direction in flat space-
time [21]. The final Lorentz factor of the translational motion
of an accelerated string loop as observed in asymptotically
flat region of the Reissner–Nordström spacetimes is, from
(51) defined by the relation [8,21].

γ = E

E0
= E

xi + xo
, (53)

where E is the total energy of the string loop moving with the
internal energy E0 in the z-direction, with the velocity cor-
responding to the Lorenz factor γ . Apparently, the maximal
Lorentz factor of the transitional motion reads [21]

γmax = E

2J
. (54)

From this equation we can see that for observing ultra-
relativistic acceleration of the string loop large ratio of the
string energy E versus its angular momentum parameter J
is needed. In Fig. 11 we illustrate asymptotic linear speed of
transmitted string loops. We demonstrate the influence of the
ω parameter on ejection speed of string loops for extremal
black holes with charge Q = 1, string angular momentum
parameter J = 1.1, starting from position x0 = 1.9, z0 = 0.
Ejection speeds are expressed by the Lorentz factor (γ =
1/

√
1 − v2

ejection). As presented in Fig. 11, for bigger values

of ω we observe greater values of ejection speed. This can
be explained due to repulsion from the center of the acceler-
ation of the string loop. Nevertheless, the observed ejection
speeds are not so highly relativistic as they are in the Kerr
naked singularity spacetimes [10].

In Fig. 12 we give escaping trajectories of the transmit-
ted string loops in the RN background and flat spacetime
for attracting, ω = −1, not interacting, ω = 0, and repuls-
ing, ω = 1, types of the string loop interaction with the
charged black hole and central point charge in flat spacetime.
It is expected to observe bigger ejection speed in repulsing
case(ω = 1) than attracting one(ω = −1). However, surpris-
ingly the string loop acceleration is higher in ω = −1 case
than ω = 1 case. This can be explained by studying their
trajectories within the energy boundaries. In the ω = −1
case, due to attraction by the black hole, the string loops
enters deeper in a black hole’s potential well and the tran-
sition effect of oscillating energy to escaping translational
energy in the z-direction becomes more effective. Due to the
chaotic nature of string loop dynamics, we can expect com-
pletely different set of velocities for different set of initial
conditions.

6 Conclusion

The astrophysically relevant problems of current carrying
string loops in spherically symmetric spacetimes have been
studied recently [9,21,22]. In the present paper we investi-
gate the relevant issues for Reissner–Nordström background,
giving the attention on the influence of black hole charge Q
and its electromagnetic interaction with string loop charge ω

created by scalar field ϕ living on the string loop.
Scalar field ϕ, living on the string loops and represented

by the angular momentum parameter J , is essential for cre-
ating the centrifugal forces, and therefore for existence of
stable string loop positions. In RN background is the charged
string loop innermost stable equilibrium position (ISEP)
located between the photon circular orbit at rph and inner-
most stable charged particle orbit (ISCO). The condition
rph < rISSP < rISCO, already proven for rotating Kerr black
hole background [10], is supporting consideration of string
loop model as a composition of charged particles and their
electromagnetic fields [5].

We have shown different types of string loop energy
boundaries and different string loop trajectories in RN back-
grounds. There are not any new types of the string loop
motion for RN black hole background [8], but in the field
of RN naked singularities two closed toroidal regions for
the string loop motion are possible (Q = 1.0677, ω = 1,
J = 10) .

String loop harmonic oscillations around stable equilibria,
defined by Eq. (47), could be one of the perspective explana-
tions of the HF QPOs observed in binary systems containing
black holes or neutron starts. In the present paper, we applied
the string loop resonant oscillations model to fit observed
data from GRO 1655-40, XTE 1550-564, GRS 1915+105
microquasar sources. Our fittings are substantially compati-
ble with the observed data from the GRO 1655-40 source and
partially coincide with the GRS 1915+105 data. For the latter
source the values of ω parameter are significant. Observed
data from XTE 1550-564 can be explained only for Q ∼ 0.9
values. We can conclude that the twin HF QPOs could be
efficiently explained by the string loop oscillatory model,
if we consider interaction of an electrically charged current
carrying axisymmetric string loop with the combined grav-
itational and electromagnetic fields of Kerr–Newman black
hole where due to the combination of the black hole spin
even small electric charge of the black hole can cause rele-
vant modifications of the frequencies of the string loop oscil-
lations.

String loop acceleration to the relativistic escaping veloc-
ities in the black hole neighbourhood, is one of the possible
explanations of relativistic jets coming from AGN. We have
studied the effect of black hole and string loop charges inter-
action on to the acceleration process. Due to the chaotic char-
acter of equations of motion, the positively charged string
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loop ω > 0 can be ejected from equatorial plane even in
flat background. The RN black hole charge Q does not con-
tribute to the string loop acceleration speeds due to electro-
static repulsion, it only modifies the effective potential Veff

and allows the string loop to came closer to the black hole,
where the transmutation is more effective. This implies a
surprising phenomena: the transmutation effect is more effi-
cient, and the string loop is more significantly accelerated for
the electric attraction of the string loop and the black hole, as
the transmission process can occur in deeper regions of the
gravitational potential well than in the case of electric attrac-
tion. Note that contrary to the standard Blandford–Znajek
mechanism of jet acceleration to high velocities [3], where
fast rotating black hole must be assumed, in the string-loop
acceleration model rotation of the black hole is nor required.

The RN solution is simple and elegant solution of com-
bined Einstein and Maxwell equations and by studying
charged string loop dynamics in this solution, we would like
to just complete our previous string loop studies in order to
map potential role of the Coulombic electric interaction. We
explore theoretical properties of charged string loop motion
in RN background and we show that unrealistically high val-
ues of RN charge are needed to explain real astrophysical
data. In some dynamic situations, as those corresponding to
unstable states of accretion disks wider ionization processes,
the electric charge could be momentarily larger as indicated
above for stationary situations.
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Appendix A: Dimensional analysis and estimates of string
loop parameters

In the geometrized units the gravitational constant G and the
speed of light c are taken to be dimensionless units. Their
values and values of the Coulomb or electrostatic constant
ke and the Sun mass M� in the SI units are

G = 6.67 × 10−11 m3 · kg−1 · s−2,

c = 3.00 × 108 m · s−1,

ke = 8.99 × 108 kg · m3 · C−2 · s−2,

M� = 2.00 × 1030 kg. (A.1)

For central Schwarzschild black hole with M = 10M�, black
hole length scales can be calculated in SI units

rhor = 2MG/c2 = 3 × 104 m,

rloop = 2π · 6MG/c2 = 5.6 × 105 m, (A.2)

where rhor Schwarzschild horizon radius (black hole size)
and rloop is length of loop located at ISCO (inner edge of
Keplerian accretion disc). For Schwarzschild or RN black
hole, the radial coordinate r is circumferential.

Appendix A.1: Astrophysical relevance of black hole charge

One can compare the characteristic length scale given by
the charge of the RN black hole QG with its gravitational
radius. This gives the charge, whose gravitational effect is
comparable with the spacetime curvature of a black hole.
For the black hole of mass M this condition implies that
the gravitational effect of the charge Q on the background
geometry can be neglected if

Q << QG = 2

√
G

ke
M ≈ 1020 M

M�
C. (A.3)

If Q << QG, the electric field cannot modify the background
geometry of the black hole, but still there can be electrostatic
interaction between black hole and particle/string charges.

Reissner–Nordström black hole charge Q is assumed to
be small or even negligible for realistic black holes. Since
gravitation interaction is quite weak compared to the elec-
tromagnetic interaction, with ration e/

√
Gmp ∼ 1018, any

RN charged black hole will easily separate electrons and pro-
tons from surrounding plasma and neutralizing the RN black
hole with charge Q > 10−18QG quickly [6]. The amount of
material, necessary for neutralization of maximally charged
RN black hole Q = QG is small

Macretion ∼ 10−18M ∼ 1012 M

M�
kg. (A.4)

Appendix A.2: String loop parameters

The string loop model enables to apply and compare the
derived solutions for different physical mechanisms to obtain
the estimates of the parameters characterizing the string loop
dynamics. In order to make the estimate of the tension μ

strength, one can use, e.g., the similarity between the role of
the parameter μ and the Lorentz force acting on a charged
particle in the action governing the string loop dynamics.
On the other hand, we can find estimates of the fundamental
string loop parameter values related to the so called cosmic
strings, giving the upper limit of the application of the string
loop model. Realistic estimations give in the SI units the
string loop tension μ in order [31]
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μ(L) ≤ μ < μ(CS), μ(L) = 10−14 kg m−1, (A.5)

μ(CS) < 1020 kg m−1. (A.6)

To prove that string loop is test object only, we give some
examples of string loop mass and charge. Total string loop
massmloop will be related to the total string loop energy Eloop

by mass-energy equivalence formula

Eloop = mloopc
2. (A.7)

For the Nambu–Goto string loop with radius r the total string
energy is just string length 2πr times tension μ, giving for
string loop mass formula

mloop = 2πrμ/c2. (A.8)

For our choice (A.2) of black hole M = 10Msun, we
have extremely light string loop in Lorentz case mloop(L) ∼
10−10 kg, while “Earth mass” loop mloop(CS) ∼ 1024 kg in
cosmic string case.

We can give ratio between the total mass of the charged
string loop mloop and the mass of RN black hole M , and ratio
between string loop charge qloop and charge of RN black hole
Q in SI units by formulas

mloop

M
=2π

μG

c4 E,
q2

loop

Q2 = 4π2

a2

μG

c4 �2, (A.9)

where E and � are previously used dimensionless string
loop energy and charge density and a is ratio between charge
and mass of the RN black hole a = Q/M ∈ (0, 1). For
charged string loop ω = 1 at stable position r = 6 around
RN black hole with a = 0.5, the dimensionless parameters
are E

.= 13,�
.= 10. Since the term Gμ/c4 is very small,

10−31 for Lorentz and 10−7 for cosmic strings, the string
loop total mass mloop and total charge qloop are negligible in
comparison the the RN black hole mass M and charge Q.
Only if a → 0 then RN black hole charge Q will become
comparable to the charge of string loop qloop.
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