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Abstract Though the one-loop amplitudes of the Higgs
boson to massless gauge bosons are finite because there is no
direct interaction at tree level in the Standard Model, a well-
defined regularization scheme is still required for their correct
evaluation. We reanalyze these amplitudes in the framework
of the four-dimensional unsubtraction and the loop-tree dual-
ity (FDU/LTD), and show how a local renormalization solves
potential regularization ambiguities. The Higgs boson inter-
actions are also used to illustrate new additional advantages
of this formalism. We show that LTD naturally leads to very
compact integrand expressions in four space-time dimen-
sions of the one-loop amplitude with virtual electroweak
gauge bosons. They exhibit the same functional form as the
amplitudes with top quarks and charged scalars, thus opening
further possibilities for simplifications in higher-order com-
putations. Another outstanding application is the straight-
forward implementation of asymptotic expansions by using
dual amplitudes. One of the main benefits of the LTD rep-
resentation is that it is supported in a Euclidean space. This
characteristic feature naturally leads to simpler asymptotic
expansions.

1 Introduction

The gg → H and H → γ γ are the golden channels for pro-
duction and decay of the Higgs boson at the CERN’s Large
Hadron Collider (LHC). The one-loop contributions to the
Hgg vertex are known since a long time ago [1–3], as well
as the Higgs decay into a photon pair [4–8]. It is well known
that these amplitudes are finite due to the absence of a direct
interaction at tree level in the Standard Model. However,
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contrary to what it is naively expected, dimensional regular-
ization (DREG) – or another regularization technique [9] –
and a well-defined renormalization scheme are still required
for their correct evaluation. Indeed, the naive calculation
in four space-time dimensions not only leads to incorrect
results [10], but it also spoils gauge invariance and produces
inconsistent physical effects such as the absence of decou-
pling in the limit M2

f � M2
H , with M f the mass of the virtual

particle running in the loop.
We have recently proposed a new approach to dealing

with perturbative computations avoiding DREG. The four-
dimensional unsubtraction method (FDU) [11–13] is based
on an integrand-level transformation that achieves a fully
local cancellation of singularities. The key component of
this approach is the loop-tree duality theorem (LTD) [14–
18], which separates the loop contribution into sums of dual
integrands obtained by applying a number of cuts equal to
the number of loops.

A generic one-loop amplitude with N -internal propaga-
tors has the form

A(1) =
∫

�

(
N∏
i=1

GF (qi )

)
N (�, {pk}) , (1)

where∫
�

= −ı
∫

dd�

(2π)d
, (2)

is the standard one-loop integration measure, GF (qi ) =
(q2

i −m2
i + ı0)−1 are Feynman propagators, and N (�, {pk})

is the numerator that has a polynomial dependence in the
loop and external momenta. The corresponding LTD rep-
resentation is obtained by setting sequentially the internal
propagators on-shell,

A(1) = −
∫

�

N∑
i=1

δ̃ (qi )

( ∏
j �=i

GD(qi ; q j )

)
N (�, {pk}) , (3)
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with δ̃ (qi ) = ı 2π θ(qi,0) δ(q2
i − m2

i ), and promoting the
remaining propagators to dual propagators with a modified
ı0-prescription: GD(qi ; q j ) = (q2

j −m2
j −ı0 η ·(q j −qi ))−1,

where η is a future-like vector, i.e. η2 ≥ 0 and η0 > 0. From
now on, we set ημ = (1, 0).

In this paper, we reanalyze the gg → H and H →
γ γ scattering amplitudes at one-loop and their asymptotic
expansion in the FDU/LTD formalism. The four-dimensional
nature of the FDU/LTD approach allows one to get an alter-
native insight into the structure of these scattering ampli-
tudes, unveiling the origin of local UV singularities that van-
ish in the integrated amplitude but lead to finite contributions.
In the first place, we show how to apply the LTD theorem
to obtain compact expressions for the amplitude integrand
that exhibit the same functional form for virtual charged
scalars, fermions (top quarks) or W gauge bosons. This is
a highly non-trivial result as intermediate expressions with
gauge bosons diverge faster in the UV than those with scalars
and fermions. After that, we discuss the local renormalization
of the one-loop amplitude by introducing a suitable counter-
term that locally cancels the UV behavior of the one-loop
integrand and allows a direct integration of the amplitude
in d = 4 space-time dimensions. The second relevant result
presented in this paper is related with asymptotic expansions.
The simplicity and well-behaved convergence of the large-
mass and small-mass asymptotic expansions of the Higgs
boson amplitudes in the LTD formalism avoids considering
complementary expansions in different regions of the loop
momentum [19,20].

2 Dual amplitudes for gg → H and H → γ γ

The one-loop scattering amplitudes of the Higgs boson to
two massless gauge bosons have the form

|M(1)
gg→H 〉 = ı g2

S Tr(TaTb) εμ
a (p1) εν

b(p2)A(1,t)
μν ,

|M(1)
H→γ γ 〉 = ı e2

( ∑
f =φ,t,W

e2
f N

f
C A(1, f )

μν

)

× (εμ(p1))
∗ (εν(p2))

∗ , (4)

with ε the polarization vectors of the external gluons and
photons, Tr(TaTb) = TR δab the color factor, N f

C the number
of colors, and e f the electric charge. Eventually, the sum in
Eq. (4) might include the other quarks, and the leptons with
Nl
C = 1. By Lorentz invariance, the color and electric charge

stripped tensor amplitude is given by

A(1, f )
μν =

5∑
i=1

A(1, f )
i T i

μν , (5)

as a function of the tensor basis

Tμν
i =

{
gμν − 2 pν

1 pμ
2

s12
, gμν ,

2 pμ
1 pν

2

s12
,

2 pμ
1 pν

1

s12
,

2 pμ
2 pν

2

s12

}
,

(6)

where s12 = (p1 + p2)
2, with s12 = M2

H if the Higgs boson

is on-shell. We can extract the scalar coefficients A(1, f )
i by

using the projectors

Pμν
1 = 1

d − 2

(
gμν − 2 pν

1 p
μ
2

s12
− (d − 1)

2 pμ
1 pν

2

s12

)
, (7)

Pμν
2 = 2 pμ

1 pν
2

s12
, (8)

with Pμν
i A(1, f )

μν = A(1, f )
i . Because of gauge invariance, only

the first coefficient A(1, f )
1 is relevant, while A(1, f )

2 should
vanish upon integration. The other three coefficients do not
contribute to the scattering amplitude after contracting with
the polarization vectors.

The one-loop amplitude can be expressed in terms of the
internal momenta q1 = � + p1, q2 = � + p12 with p12 =
p1 + p2, q3 = �; and q4 = �+ p2 to account for the diagrams
with the two photons/gluons exchanged. Explicitly, the one-
loop amplitude with virtual top quarks is

A(1,t)
μν = Mt

〈v〉
∫

�

(
3∏

i=1

GF (qi )

)

× Tr
[
γν (q/1 + Mt ) γμ (q/3 + Mt ) (q/2 + Mt )

]
+ (p1 ↔ p2) , (9)

with 〈v〉 the vacuum expectation value of the Higgs boson,
and GF (qi ) = (q2

i − M2
t + ı0)−1 the Feynman propagators.

For the W boson amplitude, we work in the unitary gauge
because all of the propagating degrees of freedom are phys-
ical and the internal propagators

− ı

(
gμν − qμqν

M2
W

)
1

q2
i − M2

W + ı0
, (10)

do not introduce additional poles in the loop momentum
space, allowing a straightforward application of the LTD the-
orem [14]. We do not provide here the explicit expressions
equivalent to Eq. (9) for the charged scalar and W boson loop
amplitudes; they can be obtained straightforwardly from the
standard Feynman rules.

Partial results for the W boson loop amplitude are more
singular in the UV than the corresponding expressions for
the charged scalar and top quark loops due to the presence
of higher powers of the loop momentum. These additional
powers are introduced through theWWγ vertex, which is lin-
ear in the loop momentum, and the W propagator, as shown
in Eq. (10). Also, the W loop amplitude receives contribu-
tions from bubble diagrams with WWγ γ interaction vertices
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that do not exist for the top quark loop. Those contributions
are necessary to preserve gauge invariance. It is a remark-
able feature of LTD that by setting the internal propagators
on-shell the rank of the numerators of intermediate expres-
sions is reduced automatically. Moreover, the gauge invari-
ance cross-cancellations between the bubble and triangle dia-
grams explicitly arise in LTD without extra manipulations.

As a consequence, we obtain the following expressions
for the scalar coefficients in Eq. (5) that exhibit the same
functional form for charged scalars, fermions (top quarks)
and W bosons:

A(1, f )
1 = g f

∫
�

δ̃ (�)

×
[(

�
(+)
0

q(+)
1,0

+ �
(+)
0

q(+)
4,0

+ 2 (2� · p12)
2

s2
12 − (2� · p12 − ı0)2

)

×
( s12 M2

f

(2 � · p1)(2 � · p2)
c( f )

1 + c( f )
2

)

+ 2 s2
12

s2
12 − (2� · p12 − ı0)2

c( f )
3

]
, (11)

A(1, f )
2 = g f

c( f )
3

2

∫
�

δ̃ (�)

(
�
(+)
0

q(+)
1,0

+ �
(+)
0

q(+)
4,0

− 2

)
, (12)

with f = φ, t,W . The on-shell loop energies are given by

q(+)
1,0 =

√
(� + p1)2 + M2

f , q(+)
4,0 =

√
(� + p2)2 + M2

f ,

�
(+)
0 = q(+)

2,0 = q(+)
3,0 =

√
�2 + M2

f . (13)

It is worth mentioning that Eqs. (11) and (12) were derived
from the application of the LTD theorem to the projected
amplitudes in Eq. (9) and the proper unification of the dual
coordinate system, as carefully explained in Ref. [11,12]. The
coefficients c( f )

i have indeed the form c( f )
i = c( f )

i,0 + r f c
( f )
i,1

with r f = s12/M2
f . For the three different flavors that we

consider, f = φ, t,W , these coefficients are given by

g f = 2 M2
f

〈v〉 s12
, c( f )

1,0 =
(

4

d − 2
,− 8

d − 2
,

4(d − 1)

d − 2

)
,

c( f )
1,1 =

(
0, 1,

2(5 − 2d)

d − 2

)
,

c( f )
3,0 = (d − 2) c( f )

1,0 , c( f )
3,1 = 0 , c( f )

23,0 = (d − 4)
c( f )

1,0

2
,

c( f )
23,1 =

(
0, 0,

d − 4

d − 2

)
, (14)

with c( f )
2 = c( f )

23 −c( f )
3 . This result indicates that the calcula-

tion of the amplitude for other virtual states could be reduced
to the determination of the scalar coefficients c( f )

i . The uni-
versality of the expressions in Eqs. (11) and (12) could be sup-
ported by supersymmetric Ward identities at tree level simi-
lar to those relating amplitudes with heavy quarks and heavy

scalars [21,22], because the dual representation is indeed
a tree-level like object. It is also interesting to notice that
the two-loop amplitudes for scalar and pseudoscalar Higgs
bosons to two photons have been calculated in Ref. [23] based
on the assumption that if two physical processes correspond
to a similar set of Feynman diagrams, then their cross sections
should be described by a common set of analytical functions.
Their calculation is thus reduced to determine the coefficients
of a linear combination of those functions by solving a large
set of linear equations arising from comparing the asymptotic
expansions of a given ansatz and a one-dimensional integral
representation of the amplitude. Such motivation could also
be argued in this case, since similar physical processes should
be described by similar integrand representations although
with different coefficients. The LTD approach appears to be
suitable for this purpose. We leave that discussion and the
possible extension to two loops as an open question for a
future publication.

Although the coefficient A(1, f )
2 vanishes upon integration

in d-dimensions, notice that the naive calculation with d = 4
leads to a finite contribution that violates gauge invariance.
So, we can exploit that information to simplify the integrand-
level expression for A(1, f )

1 by introducing non-trivial inte-
grals which vanish in d-dimensions. Then we can rewrite
A(1, f )

1 in the most compact form:

A(1, f )
1 = g f s12

∫
�

δ̃ (�)

×
[(

�
(+)
0

q(+)
1,0

+ �
(+)
0

q(+)
4,0

+ 2 (2� · p12)
2

s2
12 − (2� · p12 − ı0)2

)

× M2
f

(2 � · p1)(2 � · p2)
c( f )

1

+ 2 s12

s2
12 − (2� · p12 − ı0)2

c( f )
23

]
, (15)

which depends only on two independent coefficients. The
integral proportional to the coefficient c( f )

1 is indeed finite
in the UV; thus, it will lead to the same result, up to O(ε),
if evaluated in four or d-dimensions. On the contrary, the
remaining contribution must necessarily be calculated in d-
dimensions because c( f )

23 ∝ d − 4 and the accompanying
integral is logarithmically divergent. Since the coefficients
c( f )
i depend on the nature of the particle circulating the loop

through the associated Feynman rules, a consistent treatment
of the dimensional extension of Dirac and Lorentz algebras
is required to avoid potential mismatches in finite pieces.
Explicitly, if we use the four-dimensional Dirac algebra by
setting d = 4 in the very first steps of the calculation, we get
c( f )

23 = 0 and the second line in Eq. (15) is absent. However, a
fully d-dimensional calculation shows that this terms leads to
a finite non-vanishing contribution, arising from the UV pole
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of the bubble integral accompanying c( f )
23 . From the mathe-

matical point of view, this behavior is due to the absence of a
local regularization, i.e. the integrand-level functions appear-
ing in Eq. (15) are not integrable. In the next section, we will
discuss how to implement a completely local renormalization
to achieve integrability in four dimensions.

3 Local renormalization and four-dimensional dual
representation

Since there is no direct interaction of the Higgs boson to
massless gauge bosons, the one-loop amplitude is UV finite
and does not need to be renormalized. However, the integrand
of the one-loop amplitude is locally singular in the UV. This
explains the requirement of introducing a well-defined reg-
ularization scheme to treat it properly. Therefore, we define
in this section a UV counter-term that exactly cancels locally
the UV behavior of the one-loop amplitude, but integrates to
zero and does not lead to any effective renormalization.

The approach that we follow in this paper differs slightly
from the previously used in Refs. [11–13]. Instead of expand-
ing around the UV propagator GF (qUV) = (q2

UV − μ2
UV +

ı0)−1 at Feynman integral level, we first switch to the
LTD representation and then expand. The UV expansion of
Eq. (15) is particularly simple because only the contribution
proportional to c( f )

23 presents a singular behavior. The UV
counter-term is defined as

A(1, f )
1,UV = −g f s12

∫
�

1

4(q(+)
UV,0)

3

(
1 + 1

(q(+)
UV,0)

2

3 μ2
UV

d − 4

)
c( f )

23 ,

(16)

with q(+)
UV,0 =

√
�2 + μ2

UV. The measure of the integral in
Eq. (16) is defined in the spatial components of the loop
momentum, i.e.

∫
� = ∫

dd−1�/(2π)d−1. The term propor-
tional to μ2

UV is subleading in the UV limit and is used to fix
the renormalization scheme. The factor 3/(d − 4) has been
adjusted to impose A(1)

1,UV = 0 in d-dimensions. This is the
only place of the calculation where DREG is still necessary.
Though, once the unintegrated UV counter-term has been
computed, its four-dimensional limit can be used to regular-
ize any other similar process. Notice that the renormaliza-
tion scale μUV is arbitrary because the one-loop amplitude
is indeed not renormalized. For the scalar and the top quark
amplitudes, the Dyson prescription [24], which consists in
subtracting the amplitude evaluated with vanishing external
photon (or gluon) momenta, has a similar effect. It fails, how-
ever, for the W boson loop; although it correctly subtracts the
leading non-decoupling term in the limit M2

W /s12 → ∞, it
does not account properly for the relevant subleading contri-
butions.

The difference of Eqs. (15) and (16) defines the locally
renormalized amplitude A(1, f )

1,R . Remarkably, it has a smooth
four-dimensional limit and can directly be calculated with
d = 4,

A(1, f )
1,R

∣∣∣
d=4

=
(
A(1, f )

1 − A(1, f )
1,UV

)
d=4

. (17)

Notice that c( f )
23 vanishes in four dimensions and therefore the

first term of the integrand in Eq. (16) vanishes, but ĉ( f )
23 =

c( f )
23 /(d − 4) leads to a finite contribution because c( f )

23 ∝
d − 4 but it is multiplied by an integral whose leading UV
divergence behaves as 1/(d−4). Explicitly, the final and most
compact expression for the unintegrated loop amplitude of
this paper is

A(1, f )
1,R

∣∣∣
d=4

= g f s12

∫
�

[
1

2�
(+)
0

(
�
(+)
0

q(+)
1,0

+ �
(+)
0

q(+)
4,0

+ 2 (2� · p12)
2

s2
12 − (2� · p12 − ı0)2

)

× M2
f

(2 � · p1)(2 � · p2)
c( f )

1 + 3 μ2
UV

4(q(+)
UV,0)

5
ĉ( f )

23

]
,

(18)

with the coefficients c( f )
1 and ĉ( f )

23 evaluated at d = 4, i.e.

c( f )
1 = (2,−4 + rt , 6 − 3 rW ),

ĉ( f )
23 = (1,−2, 3 + rW /2). (19)

The integrated amplitude reads

A(1, f )
1,R

∣∣∣
d=4

= g f s12

16π2

(
M2

f

s12
log2

(
β f − 1

β f + 1

)
c( f )

1 + 2 ĉ( f )
23

)
,

(20)

with β f =
√

1 − 4M2
f /(s12 + ı0), and it agrees with the

expected well-known result [1–8]. For the explicit integra-
tion, we have used the following parametrization of the loop
three-momentum:

� = M f ξ (2
√

v(1 − v) e⊥, 1 − 2v) , (21)

with ξ its modulus normalized to the internal mass M f , and
e⊥ the unit vector in the transverse plane. The dual integration
measure is
∫

�

δ̃ (�) =
∫

�

1

2�
(+)
0

= M2
f

4π2

∫ ∞

0
ξ−1

0 ξ2dξ

∫ 1

0
dv , (22)

with ξ0 = √
ξ2 + 1. The square roots present in Eq. (18) can

be transformed into rational functions of x by implementing
the change of variables

ξ = 1

2

(√
x − 1√

x

)
, (23)
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with x ∈ [1,∞).

4 Asymptotic expansions in the Euclidean space of the
loop three-momentum

LTD reduces the original d-dimensional integration domain
with Minkowski metric, to a (d −1)-dimensional space with
Euclidean metric: the loop momentum spatial components.
In the particular cased = 4, this Euclidean space corresponds
to the domain of the loop three-momentum. This is an inter-
esting feature that allows one to circumvent potential diffi-
culties that arise when performing asymptotic expansions of
the integrand in a Minkowski space [19,20]. We can use the
production and decay of the Higgs boson to massless gauge
bosons as benchmark example to illustrate the ease of per-
forming asymptotic expansions in the LTD formalism. The
method is also applicable to other more complex processes.

As starting example, we consider the large-mass limit
M2

f � s12 of the dual contribution with q3 on-shell, i.e.

δ̃ (q3) GD(q3; q2) = δ̃ (q3)

s12 + 2q3 · p12 − ı0
, (24)

where q3 · p12 = q(+)
3,0

√
s12 in the center-of-mass frame. The

on-shell energy q(+)
3,0 is defined in Eq. (13). Since q(+)

3,0 ≥ M f ,

the asymptotic expansion for M2
f � s12 is straightforwardly

written as

δ̃ (q3) GD(q3; q2) = δ̃ (q3)

2q3 · p12

∞∑
n=0

( −s12

2q3 · p12

)n

. (25)

Likewise, we shall expand the terms

�
(+)
0

q(+)
1,0

=
∞∑
n=0

�(2n + 1)

�2(n + 1)

(
−2� · p1 + p2

1

(2�
(+)
0 )2

)n

, (26)

which is a valid expansion because �
(+)
0 > M f . Notice that

each term of the expansions in Eqs. (25) and (26) is less sin-
gular in the UV than the previous one, and is well behaved in
the IR. There is no need to consider additional loop momen-
tum regions to obtain the correct asymptotic expansion.

Taking into account the previous considerations, we obtain
the following expansion in the center-of-mass frame, again
with d = 4:

A(1, f )
1,R (s12 < 4M2

f )

∣∣∣
d=4

= M2
f

2〈v〉
∫

�

[ M2
f

(�
(+)
0 )5

( ∞∑
n=1

Qn(z)

(
s12

(2�
(+)
0 )2

)n−1)
c( f )

1

+ 3 μ2
UV

(q(+)
UV,0)

5
ĉ( f )

23

]
, (27)

with z = (2� · p1)/(�
(+)
0

√
s12) = ξ(1 − 2v)/ξ0, and

Qn(z) = 1

1 − z2 (P2n(z) − 1) , (28)

where P2n(z) is the Legendre polynomial. The asymptotic
expansion of the amplitude in Eq. (27) can easily be inte-
grated without using DREG. At the lowest orders, we find

A(1, f )
1,R

∣∣∣
d=4

= s12

8π2 〈v〉
(

2ĉ( f )
23,0 − c( f )

1,0

r f
+ 2ĉ( f )

23,1 − c( f )
1,0

12
− c( f )

1,1

−
(
c( f )

1,0

90
+ c( f )

1,1

12

)
r f −

(
c( f )

1,0

560
+ c( f )

1,1

90

)
r2
f

−
(
c( f )

1,0

3150
+ c( f )

1,1

560

)
r3
f −

(
c( f )

1,0

16632
+ c( f )

1,1

3150

)
r4
f

+O(r5
f )

)
. (29)

The 1/r f non-decoupling term vanishes because ĉ( f )
23,0 =

c( f )
1,0 /2, leading to the following explicit results for the dif-

ferent internal particles:

A(1,φ)
1,R

∣∣∣
d=4

= s12

16π2 〈v〉
(

− 1

3
− 2

45
rφ − 1

140
r2
φ

− 2

1575
r3
φ − 1

4158
r4
φ + O(r5

φ)

)
,

A(1,t)
1,R

∣∣∣
d=4

= s12

16π2 〈v〉
(

− 4

3
− 7

90
rt − 1

126
r2
t

− 13

12600
r3
t − 8

51975
r4
t + O(r5

t )

)
,

A(1,W )
1,R

∣∣∣
d=4

= s12

16π2 〈v〉
(

7 + 11

30
rW + 19

420
r2
W

+ 29

4200
r3
W + 41

34650
r4
W + O(r5

W )

)
. (30)

The asymptotic expansion for small M f can also be
obtained from Eq. (18)

A(1, f )
1,R (M2

f � s12)

∣∣∣
d=4

= M2
f

2〈v〉
∫

�

[ −4m2
f

(�
(+)
0 )3 (1 − z2)

×
⎛
⎜⎝1 −

∞∑
n=1

4 (�
(+)
0 )2

(
s12 m2

f (2 − m2
f )

)n−1

(
4 �2 − s12 (1 + m2

f )
2
)n

⎞
⎟⎠ c( f )

1

+ 3 μ2
UV

(q(+)
UV,0)

5
ĉ( f )

23

]
, (31)

with m2
f = −M2

f /(s12 + ı0). Once again, the terms of the
expansion in Eq. (31) are less and less singular in the UV at
higher orders, allowing a full calculation with d = 4. Integra-
tion of Eq. (31) leads to the awaited logarithmic contributions
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A(1, f )
1,R (M2

f � s12)

∣∣∣
d=4

= s12

8π2 〈v〉
(

2 ĉ( f )
23,1 −

(
2 ĉ( f )

23,0 + c( f )
1,1 L2

f

)
m2

f

+
(
c( f )

1,0 L2
f + 4 c( f )

1,1 L f

)
m4

f

−
(

4 c( f )
1,0 L f + 2 c( f )

1,1 (2 + 3 L f )
)
m6

f

+
(

2 c( f )
1,0 (2 + 3 L f ) + 4 c( f )

1,1

(
3 + 10

3
L f

))
m8

f

+O
(
m10

f

) )
, (32)

with L f = log
(
m2

f

)
. As expected, the leading term in

Eq. (32) vanishes for charged scalars and top quarks since
ĉ( f )

23,1 = 0 for these particles, but it leads to a constant for the

W boson loop with ĉ(W )
23,1 = 1/2. Explicitly,

A(1,φ)
1,R

∣∣∣
d=4

= M2
φ

8π2 〈v〉
(

2 − 2 L2
φ m2

φ + 8 Lφ m4
φ

− 4 (2 + 3 Lφ)m6
φ

)
+ O(m10

φ ) ,

A(1,t)
1,R

∣∣∣
d=4

= M2
t

8π2 〈v〉
(

− 4 + L2
t − 4 (1 − Lt ) Lt m

2
t

+ 2 (2 − 5 Lt )m
4
t

+ 4

(
1 + 8

3
Lt

)
m6

t

)
+ O(m10

t ) ,

A(1,W )
1,R

∣∣∣
d=4

= s12

8π2 〈v〉
(
1 − 3 (2 − L2

W )m2
W

− 6 (2 − LW ) LW m4
W + 6 (2 − LW )m6

W

− 4 (3 + LW )m8
W + O(m10

W )
)
, (33)

and these expressions are in agreement with the expansions
shown in Ref. [25]. In both cases – the small- and the large-
mass limits – all the asymptotic expansions have been calcu-
lated directly in four space-time dimensions. This is achiev-
able thanks to the fact that in the Euclidean space of the
loop three-momentum it was necessary to consider a single
kinematical region to achieve the correct asymptotic expan-
sion in either of the two limits. In fact, this is a direct con-
sequence of dealing with integrable and locally regularized
representations of the scattering amplitudes: there is a strict
commutativity between integrals and parametric expansions
at integrand level.

5 Conclusions

We have presented a very compact and universal integrand-
level representation of the one-loop amplitude for the Higgs
boson to two massless gauge bosons. The functional form of
the amplitude is the same for internal scalars, fermions and

vector bosons, and could be supported by tree-level super-
symmetric Ward identities or be motivated by the fact that
similar physical processes should be described by similar
integrand representations with different coefficients. Presum-
ably, this universality could be exploited further at higher
orders. The amplitude has been locally renormalized such
that a pure four-dimensional expression free from poten-
tial scheme subtleties is obtained. All the previously known
results were recovered within a pure four-dimensional rep-
resentation of the loop amplitude.

Since the integration of the FDU/LTD amplitude effec-
tively occurs in an Euclidean space, namely the loop three-
momentum space, asymptotic expansions are easily imple-
mented. In fact, the local regularization in an Euclidean space
implies that the series expansion of the integrand commutes
with the integral symbol. Thus, expanding the integrand in
any parameter (for instance, the mass of the particle circulat-
ing the loop) an integrating order-by-order, will lead to the
right result. The asymptotic expansion of the Higgs boson
amplitudes leads to very simple expressions that can easily
be integrated. The results obtained, although focused on the
Higgs boson interactions, can be generalized to other pro-
cesses. In particular, the methods presented in this article
open new possibilities for more efficient implementations
and further simplifications of higher-order computations and
asymptotic expansions.
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