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Abstract A new calculation using off-shell matrix ele-
ments with TMD parton densities supplemented with a newly
developed initial state TMD parton shower is described. The
calculation is based on the KaTie package for an automated
calculation of the partonic process in high-energy factoriza-
tion, making use of TMD parton densities implemented in
TMDlib. The partonic events are stored in an LHE file, sim-
ilar to the conventional LHE files, but now containing the
transverse momenta of the initial partons. The LHE files are
read in by the Cascade package for the full TMD parton
shower, final state shower and hadronization from Pythia

where events in HEPMC format are produced. We have deter-
mined a full set of TMD parton densities and developed an
initial state TMD parton shower, including all flavors fol-
lowing the TMD distribution. As an example of application
we have calculated the azimuthal de-correlation of high pt
dijets as measured at the LHC and found very good agree-
ment with the measurement when including initial state TMD
parton showers together with conventional final state parton
showers and hadronization.

1 Introduction

Measurements in today’s high-energy experiments have
reached a new level of precision of a few percent in experi-
mental uncertainty. In many cases in strong interactions the
theoretical predictions have larger uncertainties, mainly com-
ing from the unknown higher order corrections which can be
estimated by variation of the factorization and renormaliza-
tion scales.

While calculations in fixed order perturbation theory in
quantum chromodynamics (QCD) even at next-to-leading (or
even next-to-next-to-leading) order expansion in the strong
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coupling αs are often not sufficient, the predictions can be
improved when parton showers are included to simulate
even higher order corrections, as done for example with
the Powheg [1,2] or Mc@nlo [3–6] methods. However,
when supplementing a calculation of collinear initial partons
with parton showers, the kinematics of the hard process are
changed due to the transverse momentum generated in the
initial state shower [7]. This effect can be significant even at
large transverse momenta, as has been discussed and shown
explicitly in [8–10].

With the development of transverse momentum dependent
(TMD) parton distributions, this problem can be overcome,
since the transverse momentum of the initial partons can
be obtained from the TMD parton distributions. The great
advantage of using TMD parton densities is that a parton
shower will not change the kinematics of the matrix element
process, in contrast to the conventional approach of collinear
hard process calculations supplemented with parton show-
ers, and that the main parameters of the TMD parton shower
are fixed with the determination of the TMD.

Already some time ago a TMD parton shower has been
developed for the case of initial state gluons within the frame
of the CCFM evolution equation [11–14] and implemented in
the Cascade package [15–19]. However, TMD parton den-
sities defined over a large range in x , kt and scale μ for all
different flavors including quarks and gluons were not avail-
able until recently. In [20,21] a new method for determina-
tion of TMD parton densities is described, another method to
obtain TMD parton densities from collinear parton densities
has been proposed in [22], which we apply in the present
study. In order to fully account for the potential of a TMD
parton shower, the initial state kinematics for the hard process
calculation should include the transverse momenta. With the
development of an automated calculation of multi-leg matrix
elements with off-shell initial states [23] the full potential of
TMD parton densities and parton showers can be explored.
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In this article we will describe how the TMD parton den-
sities can be obtained from the KMRW approach [22] and
how they can be used in calculations using off-shell matrix
elements obtained from KaTie [23], which is based on high-
energy factorization [24–26]. The matrix elements in [23] are
defined in a gauge invariant manner following the approach
explained in [27]. For the case of heavy quark production,
this method is equivalent to the construction of the matrix
element in [25,28].

We then describe how this matrix element calculation is
supplemented with a newly developed TMD parton shower,
which makes use of the TMD parton densities without chang-
ing the kinematics of the matrix element process. We illus-
trate the advantage of using TMD densities with off-shell
matrix element calculations in an application to azimuthal
de-correlations of high pt dijet measurements at the LHC.

In Sect. 2 we briefly describe the main features of the auto-
mated calculation of off-shell matrix elements with KaTie

and Sect. 3 describes the procedure to obtain the TMD parton
densities with the KMRW method. In Sect. 4 we describe a
new development of the TMD parton shower which can be
combined with the matrix element calculation via LHE files,
similar to what is being used in standard methods. In Sect. 5
we present a case-study of azimuthal correlations of dijets at
large transverse momenta as obtained at the LHC.

2 Off-shell matrix element calculation and partonic
cross section

KaTie is a parton-level event generator for arbitrary pro-
cesses within the Standard Model, with the special fea-
ture that it can generate events with space-like initial-state
momenta that have non-vanishing transverse components.
It produces weighted parton-level event files in the Les
Houches format [29], or in a custom format. For the latter,
KaTie also provides the tools to produce distributions for
arbitrary observables. It relies on LHAPDF [30] for collinear
PDFs and the running coupling constant, and on TMDlib [31]
for transverse momentum dependent PDFs. Alternatively,
the latter can be provided as hyper-rectangular grids which
KaTie itself interpolates. The hard matrix elements are calcu-
lated as the summed squares of helicity amplitudes, defined
following the approach of [27,32] which guarantees gauge
invariance. The amplitudes are calculated numerically with
recursive methods [33,34] which keep the computational
complexity under control, even for larger final-state multi-
plicities. We have checked numerically that the method of
KaTie [23] gives the same results as obtained using the off-
shell calculation for g∗g∗ → bb̄ as given in Ref. [25]. Good
agreement has been also found in the case of charm produc-
tion [35].

A project is defined in a single user-defined input file,
containing all the information about the desired center-of-

mass energy, inclusive phase space cuts, and values of model
parameters like particles masses and widths. If the user wants
to apply TMDPDFs that are not included in TMDlib, this file
must also include the paths to the files containing the hyper-
rectangular grids. Finally, KaTie does not generate a list of
partonic sub-processes itself, and the user must provide this
list in the same input file.

Event generation happens in two stages. During the fist
stage, the phase space sampler is optimized for each sub-
process separately. This stage is very cheap in terms of CPU
time compared to the second stage during which the actual
event files are generated. This stage can trivially be paral-
lelized by running several instances of the executable with
different seeds for the random number generator.

3 TMD parton density functions

The complete set of transverse momentum dependent PDFs
consistent with the matrix elements that we use can be
obtained by applying Lipatov’s effective action approach
combined with the Curci–Furmanski–Petronzio method,
which allows to formally define new splitting functions. The
construction of a new set of evolution equations and the corre-
sponding parton densities is still to be achieved. Only recently
all the real contributions to the TMD splitting functions have
been obtained [36]. At present, we obtain TMD parton den-
sities from collinear parton densities by the application of
the KMRW procedure [22]. In this method the kt -dependent
distributions are calculated from the DGLAP equation by
taking into account only the contribution corresponding to a
single real emission. The virtual contributions between the
scales kt and μ are resummed into a Sudakov factor, which
describes the probability that there are no emissions.

The precise expressions for the TMD distributions read
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Fig. 1 Comparison between the integrated TMD using the method of Ref. [22] and the underlying collinear CT10nlo gluon PDFs [37] at a scale
μ = 500 GeV for gluons (left) and u-quarks (right)
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Fig. 2 Transverse momentum distribution of the TMD at a scale μ = 500 GeV for gluons and u-quarks at x = 0.01 (left) and x = 0.1 (right)

Here, nF is the active number of quark–antiquark flavours
into which the gluon may split, and we set nF = 5. The
infrared cutoff zM ≡ kt

μ+kt
arises because of the singular

behaviour of the splitting functions Pqq(z) and Pgg(z) at
z = 1, which correspond to soft gluon emission.

The TMDs are defined only for kt > μ0, where μ0 ∼ 1
GeV is the minimum scale for the the integrated (collinear)
PDFs. In order to extend the TMD to the region kt < μ0, we
tested three methods. One is to set the TMD proportional to
kt , the second is to freeze the TMD at kt = μ0 and the third
is taken from Ref. [22] and is used here:

Ai (x, k
2
t , μ

2) = 1

μ2
0

x fi (x, μ
2
0)�i (μ

2
0, μ

2). (4)

The TMDs used here (MRW-CT10nlo) are based on the
CT10nlo collinear PDF set [37] including the appropriate
running coupling αs. In Fig. 1 we show a comparison of the
original CT10 parton density with the TMDs constructed here
integrated over kt up to the scale μ using the TMDplotter tool
[31,38]. We observe reasonable agreement, except at large
x , where the integration limits in the Sudakov form factor
play a role. The large x region is, however, not relevant for
the processes studied here.

In Fig. 2 we show the kt dependence of the TMD at a scale
μ = 500 GeV for different values of x . One can clearly see
the treatment of the non-perturbative region of kt < 1 GeV.
The discontinuity at small kt comes from the matching pro-
cedure in Eq. (4).
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Fig. 3 Transverse momentum distribution of the TMD gluon density at a scale μ = 50 GeV (left) and μ = 500 GeV (right) obtained with the
MRW approach and the CCFM evolution of Ref. [39]

In Fig. 3a comparison of the TMD gluon density as a
function of kt obtained with the KMRW method described
here and the CCFM evolution as described in Ref. [39] is
shown for μ = 50(500) GeV. The CCFM gluon TMD shows
a very different behavior at small kt compared to the KMRW
one, which is explained by the matching procedure used in
Eq. (4). At μ = 50 GeV the behavior at large kt of the
KMRW gluon TMD is similar to the CCFM one, while at
μ = 500 GeV the CCFM TMD shows a different behavior,
which could originate from the limited range of scales used
in the CCFM fit of Ref. [39].

4 Initial state parton shower based on TMDs

The parton shower, which is described here, follows consis-
tently the parton evolution of the TMDs. By this we mean
that the splitting functions Pab, the order in αs, the scale in the
calculation of αs as well as the kinematic restrictions applied
are identical in both the parton shower and the evolution of
the parton densities.

A backward evolution method, as now common in Monte
Carlo event generators, is applied for the initial state par-
ton shower, evolving from the large scale of the matrix-
element process backwards down to the scale of the incom-
ing hadron. However, in contrast to the conventional parton
shower, which generates a transverse momentum of the initial
state partons during the backward evolution, the transverse
momentum of the initial partons of the hard scattering pro-
cess is fixed by the TMD and the parton shower does not
change the kinematics. The transverse momenta during the
cascade follow the behavior of the TMD. The hard scattering
process is obtained directly using off-shell matrix element
calculations as described in Sect. 2. The partonic configura-

qti, µi

qt i−1, µi−1

kt i−2, zi−2

kt i−1, zi−1

kti, zi

qt i−2, µi−2

a

cz = xa/xb

xbp
+, kt,b

xap
+, kt,a

qt,c → µ

b

Fig. 4 Left: schematic view of a parton branching process. Right:
branching process b → a + c

tion is stored in the form of an LHE (Les Houches Event)
text file, but now including the transverse momenta of the
incoming partons. This LHE files are input to the shower and
hadronization interface of Cascade [15,16] (new version
2.4.X) for the TMD shower where events in HEPMC [40]
format are produced.

The backward evolution of the initial state parton shower
follows very closely the description in [7,15–17]. The evolu-
tion scale μ is selected from the hard scattering process, with
μ2 = p̂2

T or μ2 = Q2
t + ŝ for an evolution in virtuality or

angular ordering, with p̂T being the transverse momentum
of the hard process, Qt being the vectorial sum of the initial
state transverse momenta and s being the invariant mass of
the subprocess.

Starting with the hard scale μ = μi , the parton shower
algorithm searches for the next scale μi−1 at which a resolv-
able branching occurs. This scale μi−1 is selected from the
Sudakov form factor �S making use of the TMD densities
Aa(x ′, k′

t , μ
′) which depend on the longitudinal momentum

fraction x ′ = xz of parton a, its transverse momentum k′
t

probed at a scale μ′ (see also [15]). The Sudakov form factor
�S for the backward evolution is given by (see Fig. 4 left):
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which describes the probability that parton b remains at x
with transverse momentum kt when evolving from μi to
μi−1 < μ. Please note, that the argument in αs is μ̃′ and
depends on the ordering condition as discussed later.1

In the parton shower language, the selection of the next
branching comes from solving the Sudakov form factor
Eq. (5) for μi−1. However, to solve the integrals in Eq. (5)
numerically for every branching would be too time consum-
ing, instead the veto-algorithm [7,41] is applied. The selec-
tion of μi−1 and the branching splitting zi−1 follows the
standard methods [7].

The splitting function Pab as well as the argument μ̃ in the
calculation of αs is chosen exactly as used in the evolution
of the parton density. In a parton shower one treats “resolv-
able” branchings, defined via a cut in z < zM in the splitting
function (see Eq. (3)) to avoid the singular behavior of the
terms 1

1−z , and branchings with z > zM are regarded as “non-
resolvable” and are treated similarly as virtual corrections:
they are included in the Sudakov form factor �S .

The longitudinal momentum fraction xi−1 = xi
zi−1

is cal-
culated by generating zi−1 according to the splitting function.
With zi−1 and μi−1 all variables needed for a collinear parton
shower are obtained.

The calculation of the transverse momentum kt is sketched
in Fig. 4 right. The transverse momentum qt i can be obtained
by giving a physical interpretation to the evolution scale μi

(see Fig. 4 right), and qt i can be calculated in case of angular
ordering (μ is associated with the angle of the emission) in
terms of the angle � of the emitted parton wrt the beam
directions qt,c = (1 − z)Eb sin �:

q2
t,i = (1 − z)2μ2

i . (6)

Once the transverse momentum of the emitted parton qt is
known, the transverse momentum of the propagating parton
can be calculated from

kt i−1 = kt i + qt i−1 (7)

with a uniformly distributed azimuthal angle φ is assumed
for the vector components of k and q.

The whole procedure is iterated until one reaches a scale
μi−1 < q0 with q0 being a cut-off parameter, which can

1 In equation Eq. (5) ordering in μ is assumed, if angular ordering, as
in CCFM [11–14], is applied then the ratio of parton densities would

change to x ′Aa (x ′,k′
t ,μ

′/z)
xAb(x,kt ,μ′) as discussed in[15].

be chosen to be the starting evolution scale of the TMD.
However, it turns out that during the backward evolution
the transverse momentum kt can reach large values, even
for small scales μi−1, because of the random φ distribution.
On average the transverse momentum decreases, and it is of
advantage to continue the parton shower evolution to a scale
q0 ∼ 
qcd ∼ 0.3 GeV, to allow enough emissions to share
the transverse momenta generated.

5 Predictions for high pt dijets in pp at the LHC

We show predictions obtained with off-shell matrix elements
of 2 → 2 QCD processes using the TMDs obtained in
Sect. 3. The results of the parton level calculation are fed
via LHE files to the shower and hadronization interface of
Cascade [15,16] (new version2.4.X) for the TMD shower
where events in HEPMC format are stored for further pro-
cessing as via Rivet [42].

First we show parton level results of azimuthal de-
correlations of high pt dijet production at the LHC at

√
s =

7 TeV [43]. In Fig. 5 we compare predictions obtained from
our calculation (without parton shower) with the one from
Powheg dijet (without parton shower). One can observe rea-
sonable agreement between both parton level calculations at
high �φ. The Powheg prediction shows a sharp drop at
�φ = 2π/3, which is the kinematic limit for a 3 parton
configuration. The prediction using TMDs shows a smooth
distribution to smaller values of �φ which is typical for a
configuration where more partons are radiated in the initial
state. The distribution of our prediction depends entirely on
the shape of the TMD. Thus, with a precise determination of
the TMD, we expect the �φ distribution to be well described,
without any tuning and without any adjustment of additional
parameters.

5.1 Predictions including TMD parton showers

In Fig. 5 we have shown the advantage in using TMD par-
ton densities compared to a fixed order collinear calculation:
due to the resummation of multiple parton emissions in the
TMD parton density, the phase space for multi-jet produc-
tion is covered, as seen in the tail to small �φ. Of course,
the experimental measurement is different from a purely 2-
parton final state, even using TMDs, since the jet clustering
is based on multiple partons (hadrons). In Fig. 6 we show a
comparison of the prediction using TMDs with and without
initial state TMD parton showering and including final state
parton shower and hadronization (taken from Pythia [44]),
with a final state parton shower scale of μ f ps = 2 p̂t being
the average transverse momentum of the outgoing matrix
element partons. While even without parton shower a tail
towards small �φ is observed, the simulation of the parton
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Fig. 5 �φ distribution for high pt dijet production [43]. The solid (blue) histogram shows the prediction using off-shell 2 → 2 matrix elements
with TMD parton densities, the dashed (red) line is a 3-parton configuration obtained with Powheg. Both predictions are without parton shower
and hadronization

Fig. 6 �φ distribution of high ptdijet events for different regions of
pleadingt : without parton shower (noPS, dashed red line), with final

state parton shower (FPS, dashed-dotted brown line), with initial TMD
shower and final state parton shower (IFPS, blue solid line). The fac-
torization scale μ2 = Q2

t + ŝ was chosen

shower, both initial TMD and final state parton shower con-
tributes to the shape of the distribution and brings it close to
the measurement.

In Fig. 7 we show predictions for the azimuthal de-
correlation �φ for high pt dijets for different regions of
pleadingt using TMD parton densities with off-shell matrix
elements, parton shower and hadronization in comparison
with measurements at

√
s = 7 TeV in pp collisions at the

LHC [43]. We show predictions for two different factoriza-
tion scales: μ2 = Q2

t + ŝ, where Qt is the vectorial sum of
the initial state transverse momenta and

√
ŝ is the invariant

mass of the partonic subsystem and μ2 = p̂t
2. The first scale

choice is motivated by angular ordering (see Ref. [45]), the
second one is the conventional scale choice. The scale choice
motivated from angular ordering describes the measurements
significantly better than the conventional one.

It is important to note, that there are no free parameters left:
once the TMD parton density is determined, the initial state
parton shower follows exactly the TMD parton distribution.
The TMD parton distribution is the essential ingredient in the
present calculation, and a precise determination of the TMD

parton distribution over a wide range in x , kt and scale μ is an
important topic. First steps towards a precision determination
of the TMD densities from HERA measurements have been
performed in Ref. [20,21].

6 Conclusion

A new calculation using off-shell matrix elements with TMD
parton densities supplemented with a newly developed initial
state TMD parton shower has been presented. The calculation
is based on the KaTie package for an automated calculation
of the partonic process in high-energy factorization, mak-
ing use of TMD parton densities implemented in TMDlib.
The partonic events are stored in an LHE file, similar to the
conventional LHE files, but now containing the transverse
momenta of the initial partons. The LHE files are read in by
theCascade package for the full TMD parton shower where
events in HEPMC format are produced for further process-
ing, like with Rivet.
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Fig. 7 �φ distribution as measured by [43] for different regions of
pleadingt . The data are compared with predictions using off-shell 2 → 2
matrix elements with TMD parton densities, an initial state TMD par-

ton shower, conventional final state parton shower and hadronization.
Shown are predictions for two different choices of the factorization
scale, as discussed in the text

We have determined a full set of TMD parton densities
using the KMRW approach, which include all flavours and
are valid over a wide range in x , kt , and μ. These TMD parton
densities are available in TMDlib.

We have developed an initial state TMD parton shower,
including all flavors and following the TMD distribution,
without the need for adjusting further parameters.

As an example of application we have calculated the
azimuthal de-correlation of high pt dijets as measured at the
LHC and found very good agreement with the measurement.
It is remarkable, that using TMDs with off-shell matrix ele-
ment calculations covers already a larger phase space than
is accessible in collinear higher order calculations. Including
initial state TMD parton showers together with conventional
final state parton showers gives a remarkably good descrip-
tion of the measurements, which opens the floor for a rich
phenomenology at the LHC making use of the advantages of
automatic off-shell matrix element calculations with a fully
TMD consistent parton shower.
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