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Abstract In this work we present the minimal supersym-
metric extension of the five-dimensional dilaton-gravity the-
ory that captures the main properties of the holographic dual
of little string theory. It is described by a particular gauging
of N = 2 supergravity coupled with one vector multiplet
associated with the string dilaton, along the U (1) subgroup
of SU (2) R-symmetry. The linear dilaton in the fifth coor-
dinate solution of the equations of motion (with flat string
frame metric) breaks half of the supersymmetries to N = 1
in four dimensions. Interest in the linear dilaton model has
lately been revived in the context of the clockwork mecha-
nism, which has recently been proposed as a new source of
exponential scale separation in field theory.

1 Introduction

Besides its own theoretical interest, little string theory pro-
vides a framework with interesting phenomenological con-
sequences. It offers a way to address the hierarchy when the
string scale is at the TeV scale [1–3], without postulating large
extra dimensions (in string units) but instead an ultra-weak
string coupling [4,5]. Recently, interest in the holographic
dual to LST (the linear dilaton model) has been revived in
the context of the so-called clockwork models [6–8] which
address the exponential scale separation in field theory in a
new way [9,10].

Little string theory (LST) corresponds to a non-trivial
weak coupling limit of string theory in six dimensions with
gravity decoupled and is generated by stacks of (Neveu–
Schwarz) NS5-branes [11]. Its holographic dual corresponds
to a seven-dimensional gravitational background with flat
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string-frame metric and the dilaton linear in the extra dimen-
sion [12]. Its properties can be studied in a simpler toy model
by reducing the theory in five dimensions. Introducing back
gravity weakly coupled, one has to compactify the extra
dimension on an interval and place the Standard Model on
one of the boundaries, in analogy with the Randall–Sundrum
model [13] on a slice of a five-dimensional (5d) anti-de Sitter
bulk [1].

Since we know that the bulk LST geometry preserves
space-time supersymmetry, in this work we study the corre-
sponding effective supergravity which in the minimal case
is N = 2. In principle, there should be a generalisation
with more supersymmetries, or equivalently in higher dimen-
sions. The N = 2 gravity multiplet contains the graviton,
a graviphoton and the gravitino (8 bosonic and 8 fermionic
degrees of freedom), while the heterotic (or type I) string dila-
ton is in a vector multiplet containing a vector, a real scalar
and a fermion. The corresponding supergravity action [15]
admits a gauging of the U (1) subgroup of the SU (2) R-
symmetry, that generates a potential for the single scalar
field [15,16]. This potential depends on two parameters
allowing a multiple of possibilities with critical or non critical
points, or even flat potential with supersymmetry breaking.
Here, we observe that the vanishing of one of the parameters
generates the runaway dilaton potential of the non-critical
string. This potential has no critical point with 5d maximal
symmetry but it leads to the linear dilaton solution in the fifth
coordinate that preserves 4d Poincaré symmetry. We show
that this solution breaks one of the two supersymmetries,
leading to N = 1 in four dimensions.

The outline of the paper is the following. In Sect. 2, we
review the gauged N = 2 supergravity in five dimensions,
based on the references [14–17], and specialize in the case of
one vector multiplet using the results of the string effective
action of Ref. [18]. In Sect. 3, we present the 5d graviton-
dilaton toy model that describes the holographic dual of
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LST and identify it with a particular choice of the gaug-
ing of the N = 2 supergravity. We also show that the linear
dilaton solution preserves half of the supersymmetries, i.e.
N = 1 in four dimensions. In Sect. 4, we write the com-
plete Lagrangian, including the fermion terms, depending
on three constant parameters. In Sect. 5, we derive the spec-
trum classified using the 4d Poincaré symmetry and we con-
clude with some phenomenological remarks. Finally, there
are three appendices containing our conventions, the equa-
tions of motion with the linear dilaton solution, and some
explicit calculations that we use in the study of supersym-
metry transformations.

2 Gauged N = 2, D = 5 supergravity

The references used in the following are [14–17], while our
conventions may be found in the Appendix A. In D = 5
spacetime dimensions, the pure N = 2 supergravity multi-
plet contains the graviton emM , the gravitino SU (2)-doublet
ψ i
M , where i is the SU (2) index, and the graviphoton, while

the N = 2 Maxwell multiplet contains a real scalar φ, an
SU (2) fermion doublet λi and a gauge field. Upon coupling
n Maxwell multiplets to pure N = 2, D = 5 supergravity,
the total field content of the coupled theory can be written as

{
emM , ψ i

M , AI
M , λia , φx

}
, (1)

where I = 0, 1, . . . , n , a = 1, . . . , n and x = 1, . . . , n.
The real scalars φx can be seen as coordinates of an n-
dimensional space M that has metric gxy that is symmetric
for our purposes, while the spinor fields λia transform in the
n-dimensional representation of SO(n), which is the tangent
space group of M, so that

gxy = f ax f by δab, (2)

where f ax is the corresponding vielbein. The bosonic part of
the Lagrangian is

e−1Lbos = − 1

2
R(ω) − 1

2
gxy(∂Mφx )(∂Mφy)

− 1

4
GI J F

I
MN F

MN J

+ e−1

6
√

6
CI J K εMN P	
F I

MN F
J
P	 AK


,

(3)

where e = det(emM ), ω is the spacetime spin-connection,
GI J is the symmetric gauge kinetic metric, CI J K are totally
symmetric constants and the gravitational coupling κ has
been set equal to 1. The supersymmetry transformations of
the fermions of the theory are

δψMi = DM (ω)εi + · · ·
δλai = −1

2
i f ax (/∂φx )εi + · · · ,

(4)

where εi is the supersymmetry spinor parameter and the dots
stand for terms that vanish in the vacuum.

In fact, then-dimensionalM can be seen as a hypersurface
of an (n + 1)-dimensional space E with coordinates

ξ I = ξ I (φx ,F), (5)

where F is the additional coordinate of E compared to M. It
can be shown that F is a homogeneous polynomial of degree
three and, more precisely, that

F = β3CI J K ξ I ξ J ξ K , (6)

where β = √
2/3. It can also be shown that, on M, the

scalars φx satisfy the constraint

F = 1. (7)

Moreover,

GI J = −1

2
∂I ∂J lnF |F=1, gxy = GI J ∂xξ

I ∂yξ
J |F=1,

(8)

where ∂I = ∂
∂ξ I and ∂x = ∂

∂φx . Finally, we note that the
symmetric third-rank tensor Txyz on M is covariantly con-
stant for the symmetric M that we will be concerned with
and thus satisfies the algebraic constraint

Tw
(xyTzu)w = 1

2
g(xygzu). (9)

The gauging of the U (1) subgroup of SU (2) generates a
scalar potential P , with

P = −P2
0 + Pa P

a, (10)

where P0 and Pa are functions of the scalars φx that satisfy
the following constraints due to supersymmetry

P0,x = −√
2βPx

P0,x;y + β T z
xy P0,z − β2gxy P0 = 0,

(11)

where the symbols “,” and “;” denote differentiation and
covariant differentiation respectively and Px = f ax Pa . The
functions P0 and Pa also appear in the fermion transforma-
tions that get deformed due to the gauging, namely
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δ̃ψMi = DM (ω)εi + ig

2
√

6
P0 �Mεi jδ

jkεk + · · ·

δ̃λai = −1

2
i f ax (/∂φx )εi + g√

2
Paεi jδ

jkεk + · · · ,

(12)

where δ̃ denotes the supersymmetry transformation after the
gauging (under which the deformed action is invariant), g
is the U (1) coupling constant, �μ is the �-matrix in five
spacetime dimensions and the dots stand again for terms that
vanish in the vacuum.

Now let us consider the case in which there is only one
real physical scalar s. In the following, we use t to denote the
additional coordinate on E , namely ξ I = ξ I (s, t) , I = 0, 1.
The effective supergravity related to the 5-dimensional model
for the gravity dual of LST is given by

F = ts2 + as3, (13)

where a is a constant parameter. Indeed in the graviton-
dilaton system obtained from string compactifications in
five dimensions, the first term corresponds to the tree-level
contribution (identifying t with the inverse heterotic string
coupling) and the second term to the one-loop correction
[18].1

The solution of the constraint (7) is then

t = 1 − as3

s2 . (14)

and the components of the gauge kinetic metric are

Gtt = 1

2
s4, Gst = 1

2
as4, Gss = 1

s2 + 1

2
a2s4. (15)

We then find that the scalar metric, the Christoffel symbols
and the third-rank tensor (that have only one component each)
are respectively

gss = 3

s2 , f as =
√

3

s
, �s

ss = −1

s
, Tsss = 3

β

1

s3 , (16)

where we have used (9) to compute Tsss . The system (11)
takes thus the form

Ps = −
√

3

2
P ′

0

P ′′
0 + 2

s
P ′

0 − 2

s2 P0 = 0,

(17)

1 Note a change of notation between s and t compared to Ref. [18].

whose solution is

P0 = As + B
1

s2

Ps = −
√

3

2

(
A − 2B

1

s3

)
,

Pa = f as g
ss Ps = − A

2
s + B

1

s2 .

(18)

where A, B are constant parameters. Using (10) we then find
the potential to be

P = − 3A
( A

4
s2 + B

1

s

)
(19)

so that the kinetic term and the potential for s take the form

e−1Ldilaton = −1

2

3

s2 (∂Ms)(∂Ms)+3A

(
A

4
s2 +B

1

s

)
. (20)

Upon redefining

√
3 ln s = �, (21)

we obtain the Lagrangian for the canonically normalized �

e−1Ldilaton = − 1

2
(∂M�)(∂M�)

+ 3g2A

(
A

4
e

2√
3
� + Be

− 1√
3
�
)

.

(22)

3 The 5D dual of LST

The holographic dual of six-dimensional Little String Theory
can be approximated by a five-dimensional model, in which
the Lagrangian in the bulk takes the following form [1]2

e−1LLST = −M̃3
5R − 1

3
(∂M�̃)(∂M�̃) − e

2
3

�̃

M̃
3/2
5 
 (23)

in the Einstein frame, where �̃ is the dilaton and 
 is a
constant. Upon redefining

�̃ =
√

3

2
�, M̃3

5 = 1

2
M3

5 (24)

and setting the gravitational coupling κ in five dimensions
equal to one (κ2 = 1/M3

5 , where M5 is the Planck mass in five

2 We neglect the remaining spectator five dimensions of the string back-
ground which play no role in the properties of the model relevant for
our analysis.
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dimensions), we obtain the Lagrangian for the canonically
normalized dilaton �

e−1LLST = −1

2
R − 1

2
(∂M�)(∂M�) − e

2√
3
�

. (25)

We thus observe that the potential that arises from LST is
equal to the potential in (22) for a scalar that belongs to
a gauged N = 2, D = 5 Maxwell multiplet coupled to
supergravity, upon making the identification

3

4
g2A2 = −
, B = 0. (26)

We then have

P0 = Ae
1√
3
�
, Pa = − A

2
e

1√
3
�
. (27)

Moreover, it is known that the dilaton potential in (25)
exhibits a runaway behaviour and does not have a five-
dimensional maximally symmetric vacuum, but has a four-
dimensional Poincaré vacuum in the linear dilaton back-
ground

� = Cy, (28)

where y > 0 is the fifth dimension and C a constant param-
eter. The background bulk metric is then

ds2 = e
− 2√

3
Cy

(ημνdx
μdxν + dy2), (29)

where ημν is the Minkowski metric of four-dimensional
space, under the fine-tuning condition (see Appendix B)

C = gA√
2
. (30)

To have at least one unbroken supersymmetry, the fermion
transformations must vanish in the vacuum for at least one
linear combination of the supersymmetry parameters. Using
Eq. (27), the fermion transformations (12) take the following
form on the four-dimensional brane (in the vacuum)3

δ̃ψμi = i

2
√

3
�μ

(
iC�5εi + gA√

2
εi jδ

jkεk

)

δ̃λi = −1

2
e

1√
3
Cy

(
iC�5εi + gA√

2
εi jδ

jkεk

)
.

(31)

Upon diagonalizing the second of Eq. (31) and using (30),
we find that N = 2 supersymmetry is partially broken to
N = 1, with

δ̃(λ1 + i�5λ2) = 0, δ̃(i�5λ1 + λ2) ∼ i�5ε1 + ε2. (32)

3 The details of this calculation are given in the Appendix C.

We thus identify λ1 + i�5λ2 with the fermion residing in
a multiplet of the unbroken N = 1 supersymmetry and
i�5λ1 + λ2 with the Goldstino of the broken N = 1 super-
symmetry. To determine the dependence of εi on y, we con-
sider the fifth component of the first of the Eq. (12) in the
vacuum4

δ̃ψ5i = ∂5εi + igA

2
√

6
�5εi jδ

jkεk, (33)

which gives

ε1 = e
C

2
√

3
y
ε̃, ε2 = −e

C
2
√

3
y
i�5 ε̃, (34)

where ε̃ is a constant symplectic spinor. The above relations
are consistent with the direction of the unbroken supersym-
metry ε2 = −i�5ε1 from Eq. (32).

4 Final Lagrangian

The Lagrangian of ungauged N = 2, D = 5 supergravity is

e−1L = − 1

2
R(ω) − 1

2
gxy(∂Mφx )(∂Mφy)

− 1

4
GI J F

I
MN F

MN J

− 1

2
ψ̄ i
M�MN P DNψPi

− 1

2
λ̄ia( /Dδab + �ab

x /∂φx )λbi

− 1

2
i λ̄ia�M�NψMi f

a
x ∂Nφx

+ 1

4
haI λ̄

ia�M�
PψMi F
I

P

+ 1

4
i�I abλ̄

ia�MNλbi F
I
MN

+ e−1

6
√

6
CI J K εMN P	
F I

MN F
J
P	 AK




− 3i

8
√

6
hI

[
ψ̄ i
M�MN P	ψNi F

I
P	+2ψ̄MiψN

i F I
MN

]

+ (4-fermion terms),

(35)

where �ab
x is the spin-connection of the scalar manifold and

hI , hxI and �I xy are functions of the scalars that will be
defined later.

Upon gauging U (1), the Lagrangian acquires the addi-
tional terms

4 The details of this calculation are given in the Appendix C.
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e−1L′ = − g2P − i
√

6

8
gψ̄ i

M�MNψ
j
N δi j P0

− g√
2
λ̄ia�Mψ

j
Mδi j Pa + ig

2
√

6
λ̄iaλ jbδi j Pab,

(36)

and the derivatives become

DMλia + �ab
x ∂Mφxλbi ⇒ (D̃Mλa)i

≡ DMλia + �ab
x ∂Mφxλbi + gυI A

I
Mδi jλaj ,

(37)

where υI is an arbitrary constant vector and

Pab ≡ 1

2
δab P0 + 2

√
2Tabc P

c. (38)

Using (16) and (27) we find that for a single scalar

Paa = 1

2
P0 + 2

√
2( f as )−3Tsss P

a = − A

2
e

1√
3
�
. (39)

Consequently,

e−1L′ = 3g2A2

4
e

2√
3
� − i

√
6

8
gA e

1√
3
�

ψ̄ i
M�MNψ

j
N δi j

+ gA

2
√

2
e

1√
3
�

λ̄i�Mψ
j
Mδi j − igA

4
√

6
e

1√
3
�

λ̄iλ jδi j .

(40)

In addition, after the gauging, the following equations hold
[15]

P0 = 2hIυI , Pa = √
2hIaυI , (41)

so using (27) we find that

hI = A

2
υ I e

1√
3
�
, hIa = − A

2
√

2
υ I e

1√
3
�
, (42)

where we have assumed that υ IυI = 1 for simplicity. It thus
follows that

hI ≡ GI J h
J = A

2
GI Jυ

J e
1√
3
�
,

haI ≡ GI J h
Ia = − A

2
√

2
GI Jυ

J e
1√
3
�
,

(43)

where we have used the fact that GI J raises and lowers I, J
indices. Moreover,

�I ab ≡ �I xy f
x
a f yb ≡

√
2

3

(1

4
gxyh I + Txyzh

z
I

)
f xa f yb ,

(44)

using which we find that for a single scalar

�I aa = − A

8

√
2

3
GI Jυ

J e
1√
3
�
. (45)

Using (15), we find that the final Lagrangian L̃ = L+L′
takes the form

e−1L̃ = − 1

2
R(ω) − 1

2
(∂M�)(∂M�)

− 1

8
e

4√
3
�
F0
MN F

MN0 − 1

4
ae

4√
3
�
F0
MN F

MN1

− 1

4

(
e
− 2√

3
� + 1

2
a2e

4√
3
�
)
F1
MN F

MN1

− 1

2
ψ̄ i
M�MN PDNψPi − 1

2
λ̄i /̃Dλi

− i

2
(∂N�) λ̄i�M�NψMi

− Aυ̃

16
√

2
e

5√
3
�

λ̄i�M�
PψMi F
0

P

− A

8
√

2

(
1

2
aυ̃ e

5√
3
� + υ1e

− 1√
3
�
)

× λ̄i�M�
PψMi F
1

P

− i Aυ̃

64

√
2

3
e

5√
3
�

λ̄i�MNλi F
0
MN

− i A

32

√
2

3

(
1

2
aυ̃ e

5√
3
� + υ1e

− 1√
3
�
)

× λ̄i�MNλi F
1
MN

+ e−1

6
√

6
CI J K εMN P	
F I

MN F
J
P	 AK




− 3i Aυ̃

32
√

6
e

5√
3
�

+ 3
[
ψ̄ i
M�MN P	ψNi F

0
P	 + 2ψ̄MiψN

i F0
MN + 4

]

− 3i A

16
√

6

(
1

2
aυ̃ e

5√
3
� + υ1e

− 1√
3
�
)

×
[
ψ̄ i
M�MN P	ψNi F

1
P	 + 2ψ̄MiψN

i F1
MN

]

+ 3g2A2

4
e

2√
3
� − i

√
6

8
gA e

1√
3
�

ψ̄ i
M�MNψ

j
N δi j

+ gA

2
√

2
e

1√
3
�

λ̄i�Mψ
j
Mδi j − igA

4
√

6
e

1√
3
�

λ̄iλ jδi j

+ (4-fermion terms).

(46)

where A0
M and A1

M correspond to the graviphoton and the
gauge field of the vector multiplet respectively and we have
set υ̃ = υ0 + aυ1. Since the parameter A appears only
through the combination gA in the additional terms L′
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induced by the gauging, we choose to set A = 1. More-
over, at tree-level we may set a = 0, as discussed in Sect. 2.
The final Lagrangian then takes the form

e−1L̃ = − 1

2
R(ω) − 1

2
(∂M�)(∂M�)

− 1

8
e

4√
3
�
F0
MN F

MN0 − 1

4
e
− 2√

3
�
F1
MN F

MN1

− 1

2
ψ̄ i
M�MN PDNψPi − 1

2
λ̄i /̃Dλi

− i

2
(∂N�) λ̄i�M�NψMi

− υ0

16
√

2
e

5√
3
�

λ̄i�M�
PψMi F
0

P

− υ1

8
√

2
e
− 1√

3
�
λ̄i�M�
PψMi F

1

P

− iυ0

64

√
2

3
e

5√
3
�

λ̄i�MNλi F
0
MN

− iυ1

32

√
2

3
e
− 1√

3
�
λ̄i�MNλi F

1
MN

+ 1

6
√

6
e

5√
3
�
CI J K εMN P	
F I

MN F
J
P	 AK




− 3iυ0

32
√

6
e

5√
3
�

×
[
ψ̄ i
M�MN P	ψNi F

0
P	 + 2ψ̄MiψN

i F0
MN

]

− 3iυ1

16
√

6
e
− 1√

3
�

×
[
ψ̄ i
M�MN P	ψNi F

1
P	 + 2ψ̄MiψN

i F1
MN

]

+ 3g2

4
e

2√
3
� − ig

√
6

8
e

1√
3
�

ψ̄ i
M�MNψ

j
N δi j

+ g

2
√

2
e

1√
3
�

λ̄i�Mψ
j
Mδi j − ig

4
√

6
e

1√
3
�

λ̄iλ jδi j

+ (4-fermion terms).

(47)

This Lagrangian has three free parameters: g, υ0 and υ1.

5 Spectrum and concluding remarks

The spectrum of the above model can be decomposed using
the 4d Poincaré invariance of the linear dilaton vacuum solu-
tion and should form obviously N = 1 supermultiplets. It is
known that every 5d field should give rise to a 4d zero mode
and a continuum starting from a mass gap fixed by the linear
dilaton coefficient C = g/

√
2. Using the results of Ref. [1]

and the correspondence (24), one finds that the parameter α

of [1] is given by α = √
3C and that the mass gap Mgap is

Mgap =
√

3

2
√

2
g. (48)

The continuum becomes an ordinary discrete Kaluza–Klein
(KK) spectrum on top of the mass gap, when the fifth coor-
dinate y is compactified on an interval [1], allowing to intro-
duce the Standard Model (SM) on one of the boundaries.
This spectrum is valid for the graviton, dilaton and their
superpartners by supersymmetry. Notice that the 5d gravi-
ton zero-mode has five polarisations that correspond to the
4d graviton, a KK vector and the radion. For the rest of the
fields, special attention is needed because of the gauging that
breaks half of the supersymmetry around the linear dilaton
solution.

Indeed, one of the 4d gravitini acquires a mass fixed by g,
giving rise to a massive spin-3/2 multiplet together with two
spin-1 vectors. These are the 5d graviphoton and the addi-
tional 5d vector that have non-canonical, dilaton dependent,
kinetic terms, as one can see from the Lagrangian (47). Using
the background (28), (29), one finds that the y-dependence
of the vector kinetic terms at the end of the first line of (47)
is exp {±√

3C} with the plus (minus) sign corresponding
to the 5d graviphoton I = 0 (extra vector I = 1). It
follows that they both acquire a mass given by the mass
gap.

We conclude with some comments on some possible phe-
nomenological implications of the above lagrangian. One
has to dimensionally reduce it from D = 5 to D = 4,
upon compactification of the y-coordinate. Moreover, one
has to introduce the SM, possibly on one of the boundaries, a
radion stabilization mechanism and the breaking of the left-
over supersymmetry. An interesting possibility is to combine
all of them along the lines of the stabilisation proposal of [3]
based on boundary conditions.

There are several possibilities for Dark Matter (DM) can-
didates in this gravitational sector. There are two gravitini
that, upon supersymmetry breaking can recombine to form a
Dirac gravitino [19] or remain two different Majorana ones.
Depending on the nature of their mass, the exact freeze-out
mechanism will be different. There are three possible dark
photons A0

μ, A1
μ and the KKU (1) coming from the 5d metric

that could also be DM or their associated gaugini could also
play a similar role, again depending on the compactification
of the extra coordinate, on how supersymmetry breaking is
implemented, as well as on the radion stabilisation mecha-
nism. In general there could be a very rich phenomenology
in the gravitational sector.

Regarding LHC or FCC phenomenology it is going to
depend on how the SM fields are included in this setup, we
will leave that to a forthcoming publication [20]. In general
this theory will have KK massive resonances that could be
strongly coupled to the SM in a similar fashion as in Randall–
Sundrum [13] models.
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Note added After the completion of this work, we received
the paper [21] which contains very similar results.
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Appendix A: Conventions

Our convention for the five-dimensional Minkowski metric
is

ηmn = diag(−,+,+,+,+), (A.1)

where m, n, . . . are inert indices and m = 1, . . . , 5. For �-
matrices we write

�mn ≡ �[m�n] ≡ 1

2
(�m�n − �n�m). (A.2)

We also have that

�5 = �5 = iγ 5 = iγ5, (A.3)

where γ 5 is the standard γ 5 in four-dimensions, such that in
the Dirac representation

�5 = iγ 5 =
(

02×2 i12×2

i12×2 02×2

)
. (A.4)

The five-dimensional bulk metric of the LST dual is given
by

gMN =
⎛
⎝e

− 2√
3
Cy

ημν 04×1

01×4 e
− 2√

3
Cy

⎞
⎠ = e

− 2√
3
Cy

ηMN . (A.5)

Appendix B: Einstein equation in 5D

In our conventions, the Einstein equation takes the form

GMN = TMN , (B.1)

where GMN and TMN are the Einstein and the energy–
momentum tensor respectively. Moreover, we have that

GMN =3

2

[
1

2
∂M�∂N� + ∂M∂N�

− ηMN

(
∂l∂

l� − 1

2
∂l�∂ l�

)]
,

(B.2)

where � = �(y) = 2√
3
Cy in our case. This gives

G55 = 3

2

(d�

dy

)2 = 2C2. (B.3)

In addition,

TMN = (∂M�)(∂N�) − gMN

(
1

2
(∂K�)(∂K�) + e

2√
3
�



)
,

(B.4)

so T55 = 1
2C

2 − 
. The Einstein equation G55 = T55 then
gives

C = gA√
2
, (B.5)

where we have used (26).

Appendix C: Spacetime calculations

In the following M, N , . . . are coordinate indices and
n,m, . . . are (inert) frame indices of the five-dimensional
spacetime. We have that

gMN = emMηmne
n
N . (C.1)

The only non-vanishing components of the vielbein em are
thus

eaμ = e
− 1√

3
Cy

δaμ, e5
5 = e

− 1√
3
Cy

, (C.2)

where μ, ν, . . . are the coordinate and a, b, . . . the frame
indices on the four-dimensional brane respectively. More-
over,

ea5 = g55ea5 = 0 , e55 = g55e5
5 = e

2√
3
Cy

e5
5 (C.3)

and

eaν = gνκeaκ = e
2√
3
Cy

ηνκeaκ , eμb = ηabe
a
μ. (C.4)
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Consequently,

/∂� = (∂M�)�M = (∂M�)eMm �m = (∂M�)(emM )−1�m

= C(e5
5)

−1�5 = Ce
1√
3
Cy

�5.

(C.5)

Using the second of the Eq. (27), the second of the Eq. (12)
then takes the form (in the vacuum)

δ̃λi = −1

2
e

1√
3
Cy

(
iC�5εi + gA√

2
εi jδ

jkεk

)
. (C.6)

The components of the spacetime spin-connection are
given by

ωmn
M (e) = 2e[mNen]

[N ,M] + em
enPel[
,P]eMl . (C.7)

Consequently,

ωab
μ (e) =

(
− e[a5eb]μ,5+

1

2
ea
eb5el
,5eμl−1

2
eb
ea5el
,5eμl

)

= 0,

(C.8)

since ea5 = 0. Moreover,

ωa5
μ (e) =

(
−e[a5e5]

μ,5+
1

2
ea
e55el
,5eμl

)

=
(1

2
e55eaμ,5 + 1

2
eaνe55ebν,5eμb

)

= e55
(
∂5e

− C√
3
y
)(1

2
δaμ + e

1√
3
Cy

ηνκδaκ δbνηcbe
c
μ

)

= − C√
3
δaμ .

(C.9)

Similarly, we find that

ωab
5 = ωa5

5 = 0. (C.10)

Since ∂μεi1 = 0, we have that (in the vacuum) on the
brane

Dμεi = 1

4
ωmn

μ �mnεi = − C

2
√

3
�μ�5εi . (C.11)

Then, using the first of the Eq. (27), the first of the Eq. (12)
takes the following form on the brane

δ̃ψμi = i

2
√

3
�μ

(
iC�5εi + gA√

2
εi jδ

jkεk

)
, (C.12)

while the fifth component of the first of the Eq. (12) takes the
form

δ̃ψ5i = ∂5εi + igA

2
√

6
�5εi jδ

jkεk . (C.13)
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