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Abstract In this paper, we study Joule–Thomson expan-
sion for Kerr–AdS black holes in the extended phase space.
A Joule–Thomson expansion formula of Kerr–AdS black
holes is derived. We investigate both isenthalpic and numer-
ical inversion curves in the T –P plane and demonstrate the
cooling–heating regions for Kerr–AdS black holes. We also
calculate the ratio between minimum inversion and critical
temperatures for Kerr–AdS black holes.

1 Introduction

Since the first studies of Bekenstein and Hawking [1–6],
black holes as thermodynamic system have been an interest-
ing research field in theoretical physics. The black hole ther-
modynamics provides fundamental relations between theo-
ries such as classical general relativity, thermodynamics and
quantum mechanics. Black holes as thermodynamic system
have many exciting similarities with general thermodynamic
system. These similarities become more obvious and precise
for the black holes in AdS space. The properties of AdS black
hole thermodynamics have been studied since the seminal
paper of Hawking and Page [7]. Furthermore, the charged
AdS black holes thermodynamic properties were studied in
[8,9] and it was shown that the charged AdS black holes have
a van der Waals like phase transition.

Recently black hole thermodynamics in AdS space has
been intensively studied in the extended phase space where
the cosmological constant is considered as the thermody-
namic pressure. Extended phase space leads to important
results: Smarr relation is satisfied for the first law of the black
holes thermodynamics in the presence of variable cosmolog-
ical constant. It also provides the definition of the thermo-
dynamic volume which is more sensible than the geometric
volume of the black hole. In addition to similar behaviours
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with conventional thermodynamic systems, studying the AdS
black holes is another important reason for the AdS/CFT cor-
respondence [10]. Considering the cosmological constant as
thermodynamic pressure,

P = − Λ

8π
, (1)

and its conjugate quantity as thermodynamic volume,

V =
(

∂M

∂P

)
S,Q,J

, (2)

lead us to investigate thermodynamic properties, rich phase
structures and other thermodynamic phenomena for AdS
black holes in a similar way to the conventional thermody-
namic systems.

Based on this idea, the charged AdS black hole thermody-
namic properties and phase transition were studied by Kubiz-
nak and Mann [11]. It was shown in this study that the charged
AdS black hole phase transition has the same characteristic
behaviors with van der Waals liquid–gas phase transition.
They also computed critical exponents and showed that they
coincide with exponents of van der Waals fluids. It was shown
in [12] that the cosmological constant as pressure requires
considering the black hole mass M as the enthalpy H rather
than as internal energy U . In recent years, thermodynamic
properties and phase transition of AdS black holes have been
widely investigated [13–54].1 The phase transition of AdS
black holes in the extended phase space is not restricted to
a van der Waals type transition, but also the reentrant phase
transition and the triple point for AdS black holes were stud-
ied in [31–34]. The compressibility of rotating AdS black
holes in four and higher dimensions was studied in [35,36].
In [37], a general method was used for computing the critical
exponents for AdS black holes which have a van der Waals
like phase transition. Furthermore, heat engines behaviours

1 See [50–52] and the references therein for various black hole solu-
tions.
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of the AdS black holes have been studied. For example, in
[38] two kind of heat engines were proposed by Johnson
for charged AdS black holes and heat engines were studied
for various black hole solutions in [39–49].2 More recently,
adiabatic processes [53] and Rankine cycle [54] have been
studied for the charged AdS black holes.

In [55], we also studied the well-known Joule–Thomson
expansion process for the charged AdS black holes. We
obtained inversion temperature to investigate inversion and
isenthalpic curves. We also showed heating–cooling regions
in T –P plane. However, so far, Joule–Thomson expansion
for Kerr–AdS black holes in extended phase space has never
been studied. The main purpose of this study is to investigate
Joule–Thomson expansion for Kerr–AdS black holes.

The paper is arranged as follows. In Sect. 2, we briefly
review some thermodynamic properties of Kerr–AdS black
holes which are introduced in [14].3 In Sect. 3, we first of all
derive a Joule–Thomson expansion formula for Kerr–AdS
black hole by using first law and Smarr formula. Then we
obtain the equation of inversion pressure Pi and entropy S to
investigate the inversion curves. We also show that the ratio
between minimum inversion and critical temperatures for
Kerr–AdS black holes is the same as the ratio of charged AdS
black holes [55]. Finally, we discuss our results in Sect. 4.
(Here we use the units GN = h̄ = kB = c = 1.)

2 Kerr–AdS black hole

In this section, we briefly review Kerr–AdS black hole ther-
modynamic properties in the extended phase space. The line
element of Kerr–AdS black hole in four dimensional AdS
space is given by

ds2 = − Δ

ρ2

(
dt − a sin2 θ

Ξ
dφ

)2

+ ρ2

Δ
dr2 + ρ2

Δθ

dθ2

+ Δθ sin2 θ

ρ2

(
adt − r2 + a2

Ξ
dφ

)2

, (3)

where

Δ = (r2 + a2)(l2 + r2)

l2
− 2mr, Δθ = 1 − a2

l2
cos2 θ,

ρ2 = r2 + a2 cos2 θ, Ξ = 1 − a2

l2
, (4)

and l represents AdS curvature radius. The metric parameters
m and a are related to the black hole mass M and the angular
momentum J by

M = m

Ξ2 , J = a
m

Ξ2 . (5)

2 See [52] and the references therein.
3 Indeed, Kerr–Newman–AdS black hole thermodynamics functions
are introduced in [14]. But one can easily obtain Kerr–AdS black holes
thermodynamic functions, when electric charge Q goes to zero.

The mass of a Kerr–AdS black hole in terms of S, J and P
[14,56] is given by

M = 1

2

√√√√
(
S + 8PS2

3

)2 + 4π2
(
1 + 8PS

3

)
J 2

π S
. (6)

The first law and the corresponding Smarr relation of the
Kerr–AdS black hole are given by

dM = TdS + VdP + Ωd J, (7)
M

2
= T S − V P + Ω J, (8)

respectively, and the Smarr relation can be derived by a scal-
ing argument [12]. From Eq. (7), one can obtain the ther-
modynamic quantities. The expression for the temperature
is

T =
(

∂M

∂S

)
J,P

= 1

8πM

[ (
1 + 8PS

3

)
(1 + 8PS)

− 4π2
(
J

S

)2
]

. (9)

The thermodynamic volume is defined by

V =
(

∂M

∂P

)
S,J

= 2

3πM

[
S

(
S + 8PS2

3

)
+ 2π2 J 2

]
.

(10)

Finally, we obtain the angular velocity as follows:

Ω =
(

∂M

∂ J

)
S,P

= π J

MS

(
1 + 8PS

3

)
. (11)

In this section, we obtain some thermodynamic quanti-
ties of Kerr–AdS black holes. In the next section, we will
use these quantities to investigate Joule–Thomson expansion
effects for Kerr–AdS black holes.

3 Joule–Thomson expansion

In this section, we will investigate Joule–Thomson expansion
for Kerr–AdS black holes. The expansion is characterized
by temperature change with respect to pressure. Enthalpy
remains constant during the expansion process. As we know
from [12], black hole mass is identified enthalpy in AdS
space. Therefore, the black hole mass remains constant dur-
ing expansion process. Joule–Thomson coefficient μ, which
characterizes the expansion, is given by [57]

μ =
(

∂T

∂P

)
J,M

. (12)

Cooling–heating regions can be determined by sign of
Eq. (12). Change of pressure is negative since the pressure
always decreases during the expansion. The temperature may
decrease or increase during process. Therefore temperature
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determines sign of μ. If μ is positive (negative), cooling
(heating) occurs. The inversion curve, which is obtained at
μ = 0 for infinitesimal pressure drops, characterizes the
expansion process and it determines the cooling–heating
regions in the T –P plane.4

We begin to derive Joule–Thomson expansion coefficient
formula for Kerr–AdS black holes. First, we differentiate
Eq. (8) to obtain

dM = 2(TdS + SdT − VdP − PdV + Ωd J

+ JdΩ). (13)

Since dM = d J = 0, Eqs. (7) and (13) can be written

TdS = −VdP, (14)

TdS + SdT − VdP − PdV + JdΩ = 0, (15)

respectively. If Eq. (14) can be substituted into Eq. (15), one
can obtain

− 2V+S

(
∂T

∂P

)
M

− P

(
∂V

∂P

)
M

+J

(
∂Ω

∂P

)
M

= 0, (16)

which can be rearranged to give the Joule–Thomson formula
as follows:

μ =
(

∂T

∂P

)
M

= 1

S

[
P

(
∂V

∂P

)
M

− J

(
∂Ω

∂P

)
M

+ 2V

]
.

(17)

Here we obtain the Joule–Thomson expansion formula in
terms of the Kerr–AdS black hole parameters. At inversion
pressure Pi , μ equals zero and therefore we obtain Pi from
Eq. (17),

Pi =
(

∂P

∂V

)
M

[
J

(
∂Ω

∂P

)
M

− 2V

]
. (18)

From Eq. (6), we can obtain the pressure as a function of
mass, entropy and angular momentum,

P = 3

8

[
2
√

π
√

π3 J 4 + M2S3 − 2π2 J 2

S3 − 1

S

]
. (19)

If we combine Eqs. (10), (11) and (19) with Eq. (18), we
obtain a relation between inversion pressure and entropy as
follows:

256P3
i S

7 + 256P2
i S

6 + 84Pi S
5 + (9 − 384π2 J 2P2

i )S4

−336π2 J 2Pi S
3 − 72π2 J 2S2 − 72π4 J 4 = 0. (20)

The last equation is useful to determine inversion curves,
but first we will investigate minimum inversion temperature.

4 There are two approaches for the Joule–Thomson expansion process.
The differential and integral versions correspond to infinitesimal and
finite pressure drops, respectively. In this paper, we considered differ-
ential version of Joule–Thomson expansion for Kerr–AdS black holes.
See [57].

Eq. (20) can be given for Pi = 0

S4 − 8π2 J 2S2 − 8π4 J 4 = 0, (21)

and we find four roots for this equation. However, one root
is physically meaningful. This root is given by

S =
√

2(2 + √
6)π J. (22)

One can substitute Eq. (22) into Eq. (9) and obtain the mini-
mum inversion temperature,

Tmin
i =

√
3

4(916 + 374
√

6)
1
4 π

√
J

. (23)

For Kerr–AdS black holes, the critical temperature Tc is given
by [16]

Tc = 64k2
1k

4
2 + 32k1k3

2 + 3k2
2 − 12

4πk2

√
k2(8k1k2 + 3)(8k1k3

2 + 3k2
2 + 12)

1√
J

� 0.041749√
J

, (24)

where

k1 = 1

64
(

103 − 3
√

87
)17/3

×
(

− 22/3
(

225679003807 − 24183767608
√

87
)

× 3
√

103 − 3
√

87 − 17
(

103 − 3
√

87
)2/3

×
(

484826973
√

87 − 5116133497
)

− 3
√

2
(

68098470527 + 5855463275
√

87
) )

,

k2 = 2

3

(
2 + 3

√
206 − 6

√
87 + 3

√
206 + 6

√
87

)
.

The ratio between minimum inversion and critical tempera-
ture is given by

Tmin
i

Tc
≈ 0.504622, (25)

which is the same as the value of charged AdS black holes
[55].

Solving Eq. (20) may not be analytically possible. There-
fore, we use numerical solutions to plot inversion curves in
the T –P plane. In Fig. 1, we plotted inversion curves for var-
ious angular momentum values. In contrast to van der Waals
fluids, it can be seen from Fig. 1 that the inversion curves are
not closed and there is only one inversion curve. We found
similar behaviours for the charged AdS black holes in our
previous work [55].

In Fig. 2, we plot isenthalpic (constant mass) and inversion
curves for various values of angular momentum in the T –P
plane. If the entropy from Eq. (6) can be substituted into
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Fig. 1 Inversion curves of Kerr–AdS black hole in T–P plane. From
bottom to top,the curves correspond to J = 1, 2, 10, 20

Eq. (9), we obtain constant mass curves in the T –P plane.
As it can be seen from Fig. 2, the inversion curves divide
the plane into two regions. The region above the inversion
curves corresponds to cooling region, while the region under
the inversion curves corresponds to heating region. Indeed,

heating and cooling regions are already determined from the
sign of isenthalpic curves slope. The sign of the slope is
positive in the cooling region and it changes in the heating
region. On the other hand, cooling (heating) does not happen
on the inversion curve which plays the role of a boundary
between the two regions.

4 Conclusions

In this study, we investigated Joule–Thomson expansion for
Kerr–AdS black holes in the extended phase space. The Kerr–
AdS black hole Joule–Thomson formula was derived by
using the first law of black hole thermodynamics and the
Smarr relation. We plotted isenthalpic and inversion curves
in the T –P plane. In order to plot the inversion curves,
we solved Eq. (20) numerically. Moreover, we obtained the
minimum inversion temperature Ti and calculated the ratio
between inversion and critical temperatures for Kerr–AdS
black holes.

Fig. 2 Inversion and isenthalpic (constant mass) curves of Kerr–AdS
black holes. Red and black lines present isenthalpic and inversion
curves, respectively. From bottom to top, isenthalpic curves correspond
to increasing values of M . (Top-left) J = 1 and M = 1.5, 2.2.5, 3.

(Top-right) J = 2 and M = 2.5, 3, 3.5, 4. (Bottom-left) J = 10
and M = 10.5, 11, 11.5, 12. (Bottom-right) J = 20 and M =
20.5, 21, 21.5, 22
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Cooling
Region

Heating
Region

Cooling
Region

Heating
Region

Fig. 3 (Left) Inversion curves for van der Waals fluids. Red thick line
and black solid line correspond to lower and upper inversion curves,
respectively. (Right) Lower inversion curves for the charged AdS and
Kerr–AdS black holes

Similar results were reported for the charged AdS black
holes in [55] by us. For example, there is only a lower inver-
sion curve for Kerr–AdS and the charged AdS black holes.
Therefore, we only consider a minimum inversion tempera-
ture Tmin

i at Pi = 0. Cooling regions are not closed for both
systems. The ratios between minimum inversion tempera-
tures and critical temperatures are nearly the same for the
two black hole solutions. The ratio may deviate from 0.5 for
other black hole solutions. The same ratio may be obtained
for other black hole solutions in the different limit cases.
Furthermore, we restricted the study to a four-dimensional
solution. Therefore the ratio may depend on the dimensions
of space-time.

In order to compare the charged AdS/Kerr–AdS black
holes with van der Waals fluids, we present schematic inver-
sion curves for van der Waals fluids and the charged AdS/Ker-
AdS black holes in Fig. 3. In contrast to the charged AdS and
Kerr–AdS black holes, there are upper and lower inversion
curves for van der Waals fluids [55]. Therefore the cool-
ing region is closed and we only consider both the minimum
inversion temperature Tmin

i and the maximum inversion tem-
perature Tmax

i for this system. While cooling always occurs
above the inversion curves for both black hole solutions, cool-
ing only occurs in the region surrounded by the upper and
lower inversions curves for van der Waals fluids.
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