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Abstract We present a first-principle computation of the
mass distribution of jets which have undergone the groom-
ing procedure known as Soft Drop. This calculation includes
the resummation of the large logarithms of the jet mass
over its transverse momentum, up to next-to-logarithmic
accuracy, matched to exact fixed-order results at next-to-
leading order. We also include non-perturbative corrections
obtained from Monte-Carlo simulations and discuss ana-
lytic expressions for hadronisation and Underlying Event
effects.

Introduction The study of jets at the Large Hadron Collider
(LHC) has recently taken a new turn with new substructure
observables [1,2] amenable to precise theory calculations [3–
5], including genuine theory uncertainty bands, and corre-
sponding experimental measurements from both the CMS [6]
and ATLAS [7] collaborations. The substructure techniques
we concentrate on are usually referred to as grooming and
they aim to reduce sensitivity to non-perturbative corrections
and pileup.

A first series of studies has focused on the jet mass after
applying the (modified) MassDrop Tagger (mMDT) [1,8] in
dijet events, as measured by the CMS collaboration [6]. On
the theory side, the description of this observable requires
to match a resummed calculation, important in the small-
mass region, to fixed-order results, which are important for
large masses. The former are obtained analytically, includ-
ing to all orders terms enhanced by the large logarithms
of p2

t /m
2 with pt the jet transverse momentum and m

the (groomed) jet mass. The latter is obtained from fixed-
order Monte-Carlo simulations. To date, two theory calcula-
tions are available: a SCET-based next-to-leading logarith-
mic (NLL) resummation in the small zcut limit, matched
to leading order (LO) results [4], and our previous study
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matching a leading logarithmic resummation, including finite
(but small) zcut effects, to next-to-leading order results [5].
Comparing both predictions, we see a small NLL effect
at small mass and non-negligible NLO corrections at large
mass.

The goal of the present letter is to extend our mMDT
study from Ref. [5] to the case of Soft Drop [2], i.e.
allowing for a non-zero value of the angular exponent
β. When β �= 0, the logarithmic counting differs from
the mMDT case, essentially because Soft Drop retains
soft-collinear radiation, which is always groomed away
by mMDT. In this case, the SCET-based calculation from
Ref. [4] reaches NNLL accuracy and it is matched, in the
dijet case, to LO fixed-order results. Here, we present the
results of a NLL resummation matched to NLO fixed-order
accuracy.1

After a brief review of the Soft Drop procedure, we will
present our results first in the resummation region, then
matched to fixed-order. We then provide an analytic estimate
of non-perturbative corrections, extending to the Soft Drop
case the analytic results obtained in Ref. [1] for the mMDT.
We conclude by providing and discussing our final predic-
tions, including the theory uncertainty bands. These have
already been compared to experimental data in [7], where
a good agreement was found, especially in the perturbative
region.

Soft Drop For a given jet, the Soft Drop procedure first re-
clusters the constituents of the jet with the Cambridge/Aachen
algorithm [9,10] into a single jet j . Starting from j , it then
applies the following iterative procedure:

1 We note that explicit comparisons performed by the ATLAS collab-
oration indicate that, in the region where perturbation theory is valid,
the NNLL contribution is a small correction to NLL and lies within its
uncertainties (see Fig. 3 of Ref. [7]).
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1. undo the last clustering step j → j1, j2, with pt1 > pt2.
2. stop the procedure if the Soft Drop condition is met:

min(pt1, pt2)

pt1 + pt2
> zcut

(θ12

R

)β

, (1)

where zcut and β are free parameters, θ2
12 = Δy2

12 +Δφ2
12

and R the original jet radius.
3. otherwise, set j = j1 and go back to 1, or stop if j1 has

no further substructure.

The limit β → 0 corresponds to the mMDT.

NLL resummation We consider the cumulative cross-section
for the ratio m2/(pt R)2 to be smaller than some value ρ,
integrated over the O(α2

s ) matrix element for the Born-level
production of 2 jets, in a given pt bin:

ΣNLL(ρ; pt1, pt2) =
∫ pt2

pt1
dpt

∑
i

dσ
(i)
jet,LO

dpt

e−Ri (ρ)−γE R′
i (ρ)

Γ (1 + R′
i (ρ))

,

(2)

where we have separated contributions from different flavour
channels, R′

i is the derivative of Ri wrt log(1/ρ) and the
radiator Ri is given by

Ri (ρ) = Ci

2παsβ
2
0

{[
W (1 − λB) − W (1 − λc)

1 + β
− 2W (1 − λ1)

+ 2 + β

1 + β
W (1 − λ2)

]
− αs K

2π

[
log(1 − λB) − log(1 − λc)

1 + β

+ 2 + β

1 + β
log(1 − λ2) − 2 log(1 − λ1)

]
+ αsβ1

β0

[
V (1 − λB)

− V (1 − λc)

1 + β
− 2V (1 − λ1) + 2 + β

1 + β
V (1 − λ2)

]}
, (3)

where

λc = 2αsβ0 log(1/zcut), λρ = 2αsβ0 log(1/ρ), (4)

λ1 = λρ + λB

2
, λ2 = λc + (1 + β)λρ

2 + β
, (5)

and λB = 2αSβ0Bi appears due to hard-collinear splittings,
and W (x) = x log(x), V (x) = 1

2 log2(x) + log(x).
Note that αs is calculated using the exact two-loop run-

ning coupling, at the scale pt R, and, in order to reach NLL
accuracy, it is evaluated in the CMW scheme [11]. Further-
more, compared to the original results [2], the hard-collinear
contributions have been expressed as corrections to double-
logarithm arguments. In practice, this is equivalent to replac-
ing Pi (z) → (2Ci/z)Θ(z < eBi ). This introduces unwanted
NNLL terms but has the advantage to give well-defined and

positive resummed distributions which, in turn, makes the
matching to fix order easier.

To avoid any potential issue related to the Landau pole,
appearing in a region anyway dominated by hadronisation,
we have frozen the coupling at a scale μfr = 1 GeV. Corre-
sponding expressions can be found e.g. in Ref. [12].

Matching to NLO The Soft Drop mass distributions for the
dijet processes can be calculated at fixed order at O(α4

s ), i.e.
up to NLO accuracy. This is available for example using the
NLOJet++ [13,14] generator to simulate 2 → 3 events at
LO and NLO. Jets are then clustered with the anti-kt algo-
rithm [15] as implemented in FastJet-3.2.2 [16,17]. In what
follows, we have used the CT14 PDF set [18].

NLO mass distributions need to be matched to our NLL
resummed results. For this, the LO jet mass distribution needs
to be separated in flavour channels, while the flavour separa-
tion of the NLO jet mass distribution is instead subleading.
At O(α3

s ) a jet has at most two constituent and the only case
where the flavour is ambiguous is when a jet is made of two
quarks (or a quark and an anti-quark of different flavours).
We (arbitrarily) treat this as a quark jet, an approximation
which is valid at our accuracy. To keep the required flavour
information in NLOJet++, we have used the patch introduced
in Ref. [19].

To avoid artefacts at large mass, the endpoint of the
resummed calculation is matched to the endpoint of the per-
turbative distribution by replacing

log

(
1

ρ

)
→ log

(
1

ρ
− 1

ρmax,i
+ e−Bq

)
(6)

in the resummed results [20]. The endpoints of the LO
and NLO distributions are found to be (see Appendix B of
Ref. [5]) ρmax,LO ≈ 0.279303 and ρmax,NLO ≈ 0.44974, for
R = 0.8.

Finally, the matching between NLL and NLO results in
each pt bin can be done using log-R matching given by [19]

ΣNLL+NLO(ρ)

=
⎡
⎣∑

i

Σ
(i)
NLL exp

⎛
⎝Σ

(i)
LO − Σ

(i)
NLL,LO

σ
(i)
jet,LO

⎞
⎠

⎤
⎦

× exp

⎛
⎝ Σ̄NLO−ΣNLL,NLO

σjet,LO
−

∑
i

(Σ
(i)
LO)2−(Σ

(i)
NLL,LO)2

σ
(i)
jet,LOσjet,LO

⎞
⎠ .

(7)

In this expression, Σ
(i)
NLL is given by Eq. (2), trivially split

in flavour channels. Σ
(i)
NLL,LO and ΣNLL,NLO (summed over

flavour channels) are the expansion of Σ
(i)
NLL to LO (O(α3

s ))
and NLO (O(α4

s )), respectively. For the fixed-order part
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Σ
(i)
LO = −

∫ 1

ρ

dρ′ dσ
(i)
mass,LO

dρ′ + σ
(i)
jet,NLO, (8)

Σ̄NLO = −
∫ 1

ρ

dρ′ dσmass,NLO

dρ′ , (9)

where dσmass,(N)LO/dρ denotes the mass distribution at
(N)LO as obtained from NLOJet++ and σjet,(N)LO the (N)LO
correction to the inclusive jet cross-section in the pt bin under
consideration. These expressions also require the inclusive jet
cross-section, both at LO and NLO, to be split in flavour chan-
nels. This is done as for the 3-jet LO distribution above using
the flavour-aware NLOJet++ version used in [19]. Alterna-
tively, we have also used the (R-)matching scheme given by
Eq. (3.28) of [19].

From Eq. (7) it is trivial to obtain differential distributions
in bins of ρ. Normalised distributions can then be obtained
by dividing the result by the NLO inclusive jet cross-section
σjet,LO + σjet,NLO.2

The uncertainties on the distributions come from five
sources: renormalisation and factorisation scales, resum-
mation uncertainty, freezing-scale uncertainty and match-
ing uncertainty. The first two are estimated using the 7-
point rule [21]. The resummation uncertainties are obtained
by varying ρ in Eqs. (2) and (3) between ρ/2 and ρ,
introducing the appropriate correction – ± log(2)R′ in the
exponent in (2) – to maintain NLL accuracy. The freez-
ing scale uncertainty is obtained by considering three val-
ues for μfr = 0.5, 1.0, 1.5 GeV,3 while setting all other
scales equal to their central value. The matching uncertainty
is estimated by considering both the log-R and R matching
schemes. We take the central value from the central scale
choice and the uncertainty from the envelope of the scale
variations.

Non-perturbative corrections Power corrections induced by
non-perturbative (NP) effects can be estimated for Soft
Drop using the same approach as the equivalent calcula-
tion for mMDT presented in Section 8.3.3 of Ref. [1]. We
have to take into account two effects: (i) the mass of the
SD jet will be affected by NP corrections, (ii) NP effects
can shift the momentum of the subjets and alter the SD
condition.

First, the mass shift can be written as (see [22]) δm2 =
CRΛhadr pt Reff, where Reff is the effective jet radius after
grooming, i.e. for a mass m and subjets passing the Soft
Drop condition with a momentum fraction z, Reff =
m/(pt

√
z(1 − z)). Following the same steps as in Ref. [1]

2 Note that this normalisation procedure gives consistent results when
computing the uncertainties on the matched distributions.
3 This remains within our non-perturbative uncertainties (see below).

we obtain4

dσ

dm

∣∣∣∣
(m shift)

hadr

= dσ

dm

∣∣∣∣
pert

(
1 + CRΛhadr

m

z−1/2
SD − Δi

LSD + Bi

)
, (10)

with zSD = z
2

2+β

cut

( m
pt R

) 2β
2+β , LSD = log(1/zSD) and

Δq = 3π

8
and Δq = (15CA − 6n f TR)π

32CA
. (11)

Then, hadronisation will shift the momentum of the softer
subjet by an average δpt = −CAΛhadr/Reff, where we have
taken into account that the softer subjet typically corresponds
to a gluon emission. This means that emissions which were
perturbatively passing the Soft Drop condition, with zSD <

z < zSD − δpt/pt , will fail the Soft Drop condition after
hadronisation, leading to a reduction of the cross-section

dσ

dm

∣∣∣∣
(pt shift)

hadr
= dσ

dm

∣∣∣∣
pert

(
1 − CAΛhadr

m

z−1/2
SD

LSD + Bi

)
. (12)

The final hadronisation correction includes both (10) and

(12). Both terms are proportional to Λhadr
pt

( pt
m

) 2+2β
2+β , which

increases with β and has the appropriate limits for β → ∞
and β → 0.

A similar calculation can be carried out for the Underly-
ing Event (UE) contamination. In this case we have δpt =
ΛUEπR2

eff and δm2 = 1
2ΛUE pt R4

eff. Following the same
steps as above, we find

dσ

dm

∣∣∣∣
UE

= dσ

dm

∣∣∣∣
pert

(
1 + ΛUEm2

p3
t R3

z−2
SD(1 − fm,i )

LSD + Bi

)
, (13)

where the 1 in the numerator corresponds to the pt shift and
the fm,i term corresponds to mass-shift effects, with

fm,q = 1 + 3zSD + 2z2
SD(3LSD − 2)

4
,

fm,g = 1+2zSD+3z2
SD(2LSD − 1)

4
+ n f TR

CA
zSD(1 − zSD).

(14)

This time, both sources of corrections give an effect propor-

tional to ΛUE
pt

( pt
m

) 2β−4
2+β , which increase with β and has the

expected ΛUE pt/m2 behaviour in the limit β → ∞.
In Fig. 1, we compare our analytic findings (dashed lines)

with the Monte-Carlo simulations, obtained with Pythia
8.223 [23] (Monash 13 [24] tune, solid lines). We consider

4 Although, instead of averaging Reff over z, we have kept explicit the
z dependence of Reff and averaged the final correction over z.
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Fig. 1 Comparison of our theoretical estimate of hadronisation cor-
rections to what is implemented in a standard Monte-Carlo parton
shower, for different values of the angular exponent β , zcut = 0.1 and
R = 0.8. Quark jets are considered and hadron masses are neglected.

Left: hadronisation corrections (i.e. ratio of hadron level to parton level)
for Λhadr = 0.4 GeV; right: Underlying Event corrections (i.e. ratio of
distributions with and without UE) for ΛUE = 1 GeV

Fig. 2 Resummed and match theoretical predictions for the Soft Drop jet mass distribution, for two different values of the angular exponent β = 1
(left) and β = 2 (right), zcut = 0.1 and R = 0.8. The colours correspond to different accuracy of the calculation, as detailed in the legend

both hadronisation corrections (left) and UE effects (right),
for a range of β values. UE effects are seen to be much
smaller than hadronisation corrections. In the region where
Λhadr,UE � m � pt , our analytic calculation captures
the main features observed in the simulations, including the
increase with β and the global trend in ρ. At smaller mass,
Pythia simulations exhibit a peak in the hadronisation cor-
rections which is beyond the scope of our power-correction
calculation.

Even if the above analytic approach to estimating NP
effects is helpful for a qualitative understanding, it is unclear
how reliable it would be for phenomenology. For example,
hadron masses, which are neglected here, would have an
additional effect, even at large mass. Thus, the analytic esti-
mates can, at best, be trusted up to a fudge factor and analytic
results can not be trusted at small mass (see also [25]).

As for our mMDT calculation [5], for our final predictions,
we have therefore decided to estimate NP corrections using
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different Monte-Carlo simulations: Herwig 6.521 [26] with
the tune AUET2 [27], Pythia 6.428 [28] with the Z2 [29]
and Perugia 2011 [30,31] tunes, and Pythia 8.223 [23] with
the 4C [32] and Monash 13 [24] tunes. For each Monte-
Carlo, we compute the ratio between the full simulation and
the parton level. The average result is taken as the average
NP correction, and the envelope as the uncertainty which is
added in quadrature to the perturbative uncertainty.

Final predictions and conclusions Our final predictions, are
presented for β = 1 (left) and β = 2 (right) in Fig 2.
To highlight our key observations, we present our final
results at NLL matched to NLO and including NP correc-
tions (labelled NLL+NLO+NP), as well as pure perturba-
tive results (NLL+NLO) and results obtained when match-
ing to LO only (NLL+LO). The most striking feature that
we observe is that matching to NLO not only affects quite
significantly the central value of our prediction, but also sig-
nificantly reduces the uncertainty across the entire spectrum.

Then, we see that NP corrections remain small over a
large part of the spectrum, although they start being sizeable
at larger mass when the angular exponent β increases. The
fact that Soft Drop observables can be computed precisely in
perturbative QCD, with small NP corrections, makes them
interesting for further phenomenological studies, including
other observables like angularities or attempts to extract the
strong coupling constant from fits to the data.

Finally, we note that these predictions have recently been
compared to experimental results obtained by the ATLAS
collaboration in Ref. [7]. A good overall agreement between
data and theory is observed, especially in the region where
NP corrections are small.
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