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Abstract In this paper, we analyze cosmological conse-
quences of the reconstructed generalized ghost pilgrim dark
energy F(T, TG) models in terms of redshift parameter z.
For this purpose, we consider power-law scale factor, scale
factor for two unified phases and intermediate scale factor.
We discuss graphical behavior of the reconstructed models
and examine their stability analysis. Also, we explore the
behavior of equation of state as well as deceleration parame-
ters and ω� − ω

′
� as well as r − s planes. It is found that all

models are stable for pilgrim dark energy parameter 2. The
equation of state parameter satisfies the necessary condition
for pilgrim dark energy phenomenon for all scale factors. All
other cosmological parameters show great consistency with
the current behavior of the universe.

1 Introduction

The accelerated cosmic expansion phenomenon is undoubt-
edly the biggest achievement of the twentieth century. The
source behind this expansion is said to be a repulsive force
called dark energy (DE) having large negative pressure. This
energy is evenly scattered in the universe but we do not
know much about its nature as well as composition. It is sug-
gested by WMAP experiment that the universe has budget
as 73% DE, 23% dark matter and 4% baryonic matter. The
cosmic expansion goes through different stages of dark mat-
ter and DE normally characterized by the equation of state
(EoS) parameter. These ranges include ω < −1 for phan-
tom, ω = −1 for vacuum (cosmological constant (�)) and
−1 < ω < 1

3 for quintessence DE dominated eras. The mat-
ter dominated eras corresponding to ω = 0, 1 and 1

3 represent
cold dust, stiff and radiation dominated eras, respectively.
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The cosmological constant is the best ingredient to dis-
cuss the DE mystery but it has issues like coincidence and
fine-tuning. This motivates researchers to find some alterna-
tives to describe the DE nature. The most appealing propos-
als in this scenario are either to modify matter or gravita-
tional side of the Einstein–Hilbert action. The matter mod-
ification provides different DE models like Chaplygin gas,
phantom, quintessence, k-essence, holographic and pilgrim
dark energy (PDE) etc. [1–5]. On the other hand, the gravita-
tional modification leads to modified theories. Among these
theories, there is a modification based on torsional formation
of general relativity dubbed as teleparallel theory. In this the-
ory, the basic entity is torsion instead of curvature.

The generalization of teleparallel theory is known as f (T )

theory in which torsion scalar T is replaced by an arbi-
trary function f (T ) in the action. Recently, an extension of
this theory is proposed by introducing teleparallel equivalent
Gauss–Bonnet term TG known as F(T, TG) theory. The rea-
son behind this generalization is to develop an action that
includes higher torsion correction terms. Kofinas and Sari-
dakis [6] presented this distinct theory by evaluating a torsion
equivalent of Gauss–Bonnet term without using curvature
formalism. They analyzed several observable like EoS, DE
density and matter density parameters by assuming two spe-
cificF(T, TG) models [7] and found this theory as explaining
the cosmic evolution.

Kofinas et al. [8] discussed dynamical analysis of spatially
flat FRW metric by considering a particular F(T, TG) model
and concluded that the universe can exhibit various DE domi-
nated solutions such as cosmological constant, quintessence
or phantom like solutions that depend upon the values of
corresponding model parameters. Waheed and Zubair [9]
investigated energy bounds with perfect fluid using Hubble,
deceleration, jerk and snap parameters. Zubair and Jawad
[10] explored laws of thermodynamics at apparent horizon
of FRW metric. Jawad [11] studied energy conditions for
FRW universe analytically.
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Various DE models have been developed in the con-
text of quantum gravity as well as general relativity. One
of the them is the Veneziano ghost DE model defined as
ρT = μH , where μ is a constant [12]. This model is inter-
esting as it does not involve any new degree of freedom or new
parameter. The Veneziano ghost energy density has the form
H +O(H2) that provides enough amount of vacuum energy
to explore the expansion phenomenon. However, ghost DE
model involves only the term H in its energy density. There-
fore, Cai et al. [13] added the term H2 in the ghost DE model
as ρT = μH + νH2, where ν is another constant, known as
generalized ghost DE model. Fernandez [14] discussed ghost
DE models along with scalar field whereas Malekjani [15]
established different f(R) models considering ghost as well
as generalized ghost DE models.

Wei [16] presented another DE model dubbed as pilgrim
DE (PDE) motivated by the fact that phantom like DE has
enough strength to prevent black hole formation rather than
other types of DE. The PDE also encouraged this fact due to
its same repulsive nature. The generalized ghost DE density
is further established by involving PDE parameter as

ρT = (μH + νH2)u, (1)

where u represents PDE parameter. The generalized ghost
DE model after involving PDE parameter is named as gen-
eralized ghost PDE (GGPDE) model. Sharif and Jawad [17]
examined flat FRW model for interacting as well as non-
interacting GGPDE model and found that this model fulfills
PDE phenomenon.

The reconstruction technique is the most suitable approach
to develop an appropriate DE model which successfully
draws the picture of cosmic history. According to this tech-
nique, one has to equate energy densities of corresponding
DE model and modified theory to derive a reconstructed
model. Jawad and Rani [18] discussed GGPDE model by
applying this technique in Horava–Lifshitz f (R) gravity.
Sharif and Nazir [19] worked on this technique by assuming
GGPDE f (T ) model and investigated the behavior of differ-
ent cosmological parameters. Jawad et al. [20] investigated
ghost DE model in F(T, TG) gravity and examined its cos-
mological consequences through the reconstructed model.
Sharif and Nazir [21] reconstructed GGPDE F(T, TG) mod-
els and discussed their corresponding EoS parameters versus
PDE parameter.

In this paper, we study cosmological behavior of the recon-
structed models [21] versus redshift parameter z and discuss
their stability through squared speed of sound parameter. We
investigate these reconstructed models through EoS param-
eter, deceleration parameter, ω� − ω′

� analysis and r − s
plane. The paper is arranged as follows. Next section pro-
vides basic introduction of F(T, TG) gravity. In Sect. 3, we
briefly describe the well-known scale factors. Section 4 ana-

lyzes the evolution trajectories via cosmological parameters.
In the last section, we summarize the results.

2 F(T, TG) gravity

In this section, we provide a concise review of F(T, TG)

gravity in the background of FRW geometry. The tetrad field
eA(xα) has a fundamental role in f (T ) as well as F(T, TG)

gravity. Trivial tetrad is the simplest one expressed as eA =
∂αδα

A and eB = ∂αδα
B , where δα

a is the Kronecker delta.
These are not commonly used because they provide zero
torsion. The non-trivial tetrad have different behavior, so they
are more supportive in describing teleparallel theory. These
tetrad can be represented as

hA = ∂αh
α
A , hB = dxαhB

α,

satisfying

hA
αh

α
B = δAB , hA

αh
β
A = δβ

α .

The metric tensor can also be expressed in the product of
tetrad fields as

gαβ = ηABh
A
α h

B
β ,

where ηAB = diag(1,−1,−1,−1) is the Minkowski met-
ric. The coordinates on manifold are represented by Greek
indices (α, β, . . .) while coordinates on tangent space are
characterized by Latin indices (A, B, . . .).

The Weitzenböck connection ωA
B(xα) that describes par-

allel transportation, has the following form

ωβ
αγ = hβ

Ah
A

α,γ .

The structure coefficients CCAB are defined as

[hA, hB] = hCCCAB,

where

CCAB = hβ
Bh

α
A(hCα,β − hCβ,α).

Similarly, we can express the torsion as well as curvature
tensors as

T A
BC = −ωA

BC + ωA
CB − CA

BC ,

RA
BCD = −ωE

BCωA
ED + ωA

BD,C + ωE
BDωA

EC

− CE
CDωA

BE − ωA
BC,D .

The contorsion tensor is defined by

KABC = 1

2
(−TBCA − TABC + TCAB) = −KBAC .

Finally, the torsion scalars T and TG take the form

T = 1

4
T ABCTABC − T A

AB T
CB
C + 1

2
T ABCTCBA,

TG = (2KA3
EBKA1A2

AKE A4
FKF

CD
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+KA2
BKA1

E AKA3
FCKFA4

D + 2KA3
EB

×KA1A2
AKE A4

C,D

− 2KA3
EBKA1A2

AKE
FCKFA4

D)δABCD
A1A2A3A4

.

The action for F(T, TG) gravity is proposed by Kofinas
and Saridakis [6]

S =
∫

d4xh

[F(T, TG)

2κ2 + Lm

]
, h = det(hI

β) = √|g|,

where Lm is the matter Lagrangian and κ2 = 1. The telepar-
allel equivalent to general relativity is obtained by substi-
tuting F(T, TG) = −T . We can also have Gauss–Bonnet
theory when F(T, TG) = αTG − T , where α represents
Gauss–Bonnet coupling. The F(T, TG) field equations can
be obtained by varying the action as

2(H [AC]B − H [CB]A + H [BA]C ),C

+ 2(H [AC]B − H [CB]A + H [BA]C )CD
DC

+ (2H [AC]D + HDCA)CB
CD + 4H [DB]CC A

(DC)

+ T A
CDH

CDB − HAB + (F

− T FT − TGFTG )ηAB = T AB, (2)

where

H ABC = FT (ηACKBD
D − KBCA)

+ FTG [εCPRI (2εADK EKBK
P KD

QR + εQDK E

×KAK
P KBD

R + εABK EKK
DPKD

QR)KQE
I

+ εCPRI εABK DKED
P (KK

ER,I

− 1

2
KK

EQC
Q
I R) + εCPRI εAKDEKDE

P (KB
K R,I

− 1

2
KB

K QC
Q
I R)] + εCPRI

× εAK DE [(FTGKBK
P KDE

R ),I + FTGC
Q
P IKBK[QKDE

R]],

and

HAB = FT εA
KCEεBRI E K K

ERK
EC
I ,

ε1234 = −1, ε1234 = 1 and 0 otherwise. Also, FT = ∂F
∂T ,

FTG = ∂F
∂TG

and T AB is the energy-momentum tensor.
Now we discuss cosmological significance of F(T, TG)

theory by considering flat FRW universe model as

ds2 = −dt2 + a2(t)(dx2 + dy2 + dz2),

where a(t) is the scale factor. There exist infinite possible
tetrad fields for each metric, thus we choose a common tetrad
field for FRW metric as

hI
α = diag(1, a(t), a(t), a(t)), (3)

where dual is defined as

h α
I = diag(1, a−1(t), a−1(t), a−1(t)).

The corresponding torsion scalars are

T = 6H2, TG = 24H2(Ḣ + H2). (4)

Here, H = ȧ
a defines Hubble parameter and dot indicates

time derivative. Substituting the above values in Eq. (2), we
obtain

ρ = 1

2

[
F + 6H2 − TGFTG − 12H2FT + 24H3ḞTG

]
,

(5)

−p = 1

2

[
F + 2(2Ḣ + 3H2) − 4(3H2 + Ḣ)FT

− 4H ḞT − TGFTG + 2

3H
ḞTG TG + 8F̈TG H

2
]

. (6)

We can rewrite the above equations in usual form as

3H2 = ρm + ρ�,

2Ḣ = −(ρm + ρ� + pm + p�),

where the energy density and pressure for DE sector are

ρ� = −1

2
(F − TGFTG − 12H2FT + 24H3ḞTG ), (7)

p� = 1

2

(
F − 4H ḞT − 4(Ḣ + 3H2)FT − TGFTG

+ 8H2F̈TG + 2

3H
TGḞTG

)
. (8)

The energy conservation equations in terms of dark matter
and DE are

ρ̇m + 3H(pm + ρm) = 0,

ρ̇� + 3H(p� + ρ�) = 0.

3 Cosmic scale factors

Here, we briefly describe some scale factors through which
we explore the cosmological behavior of our reconstructed
models [21].

• Power-Law Scale Factor

This scale factor is defined as [22]

a(t) = a0t
n,

where n > 0, a0 > 0. This form of scale factor provides
a great consistency for flat FRW metric with the supernova
data. For n > 1, it gives an accelerating universe. Using this
scale factor, we obtain the corresponding values as

H = n

t
, T = 6n2

t2 , TG = 24(n − 1)n3

t4 , (9)
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and Eq. (1) becomes

ρT =
[
μ(nt−1) + ν(nt−1)2

]u

=
[
μu(nt−1)u + uμu−1ν(nt−1)u+1

]
.

• Scale Factor for Unified Phases

The following scale factor unifies matter as well as DE
dominated phases. The Hubble parameter takes the form as
[22–24]

H(t) = H2

t
+ H1, (10)

which leads to the following form of scale factor as

a(t) = a1t
H2eH1t .

When t is very small, we obtain H(t) ∼ H2
t which exhibits

the presence of perfect fluid with ω� = 2
3 H

−1
2 − 1. More-

over, when t is very large, H → H1 yielding constant Hub-
ble parameter which leads to de Sitter universe. This type of
Hubble parameter yields a transition from matter to DE dom-
inated phases. The corresponding values of torsion scalars
are

T = 6

(
H2

t
+ H1

)2

,

TG = 24

(
H2

t
+ H1

)2
((

H2

t
+ H1

)2

− H2

t2

)
.

Using Eqs. (1) and (10), it follows that

ρT =
[
μ

(
H2

t
+ H1

)
+ ν

(
H2

t
+ H1

)2
]u

.

• Intermediate Scale Factor

The scale factor and the corresponding Hubble parameter are
defined as [25]

a(t) = exp(btm), H(t) = bmtm−1, (11)

where 0 < m < 1 and b is an arbitrary constant. This
scale factor is much useful in cosmological analysis as it
has great consistency with astrophysical observations. Both
torsion scalars for this scale factor take the form

T = 6b2m2t (m−1), TG = 24b2m2t2(m−1)

×
[
b2m2t2(m−1) + bmt (m−1)(m − 1)

t

]
.

The corresponding energy density of GGPDE is

ρT = (μbmt (m−1)))u + νμ(bmt (m−1))(u+1)u(u−1).

4 Cosmological analysis via well-known scale factors

In this section, we explore the behavior of the reconstructed
models and investigate their stability. We discuss EoS as well
as deceleration parameters and ω� − ω′

� as well as r − s
planes by using the above three scale factors. We consider the
reconstructed F(T, TG) models [21] obtained by equating
the corresponding energy densities of GGPDE model and
F(T, TG) gravity. For this purpose, we equate Eqs. (1) and
(7), i.e., ρ� = ρT as

−1

2
(F−12H2FT −TGFTG +24H3ḞTG ) = (μH+νH2)u .

(12)

We can determine solution of the above equation only for a
particular choice of the scale factor. Thus we consider all the
above three scale factors and analyze their behavior.

4.1 Power-law scale factor

For this scale factor, we substitute Eq. (9) in (12) and then
solving the resulting equation, we obtain the reconstructed
GGPDE F(T, TG) model as

F̃(T, TG) = (4(n − 1)t
−2n
n−1 (3n2t

2
n−1 (4 + u(7 + u)

− n(4 + 5u))(12 + u(9

+ u) − n(9 + 5u))μ

− 2μu(7n − 11)
(n
t

)u
t

n
n−1 (t

n
n−1 (−12 − u

× (9 + u) + n(9 + 5u))μ

−mt
1

n−1 u(−4 − u(7 + u) + n(4 + 5u))

× ν)))/((7n − 11)(4 + u(7 + u)

− n(4 + 5u))(12 + u(9 + u)

− n(9 + 5u))μ) + c1t
1
2 [7−5n−

√
−(n−1)(33+n(−54+25n))

1−n ]

+ c2t
1
2 [7−5n+

√
−(n−1)(33+n(−54+25n))

1−n ]
. (13)

Here, we denote η =
√

−(n−1)(33+n(−54+25n))
1−n and

the reconstructed model as F̃(T, TG). It is predicted that
phantom-like DE (having repulsive nature) is too strong to
avoid the black hole formation. Wei [16] estimated that total
vacuum energy of a system having size L could cross the
limit of same size black hole mass, i.e., ρL3 ≥ m2

pL , which
is the first requirement for PDE. The energy density of PDE
model is defined as ρ = 3n2m4−u

p L−u , where mp is the
Planck mass. Thus, we have l2−u

p = L2−u ≥ mu−2
p which

implies that u ≤ 2 for L ≥ l p, where l p defines the Planck
length. Hence, we examine the evolution of reconstructed
GGPDE F̃(T, TG) model for two values of PDE parameter
as u = 2 and −2. For this purpose, we take a = a0(1+ z)−1,
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where z is the redshift parameter. Also, we consider the val-
ues of model parameters as μ = 1.55, ν = 1.91 [17,21].
We take the remaining parameters as a0 = 1, c1 = 0.9 and
c2 = −0.004. The plots for reconstructed F̃(T, TG) model
versusn as well as redshift parameter z are displayed in Fig. 1.

It is observed that the left plot of reconstructed F̃(T, TG)

model represents increasing pattern for n ≥ 3. In the right
plot, the reconstructed F̃(T, TG) model exhibits decreasing
behavior initially, then it becomes flat and at the end, it shows
increasing behavior for n ≥ 3.2.

Fig. 1 Plots of power-law reconstructed GGPDE F̃(T, TG) model for u = 2 (left) and −2 (right)

Fig. 2 Plots of power-law v2
s for u = 2 (left) and −2 (right)
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Fig. 3 Plots of power-law EoS parameter ω� for u = 2 (left) and u = −2 (right)

123



77 Page 6 of 14 Eur. Phys. J. C (2018) 78 :77

Fig. 4 Plots of power-law deceleration parameter q for u = 2 (left) and −2 (right)

Fig. 5 Plots of power-law ω� − ω�′ for u = 2

• Now, we investigate stability of the reconstructed GGPDE
F̃(T, TG) model through the squared speed of sound v2

s
defined as

v2
s = ṗ�

ρ̇�

.

The positive value (v2
s > 0) indicates stability of the

model whereas its negative value (v2
s < 0) corresponds

to instability of the model. Using Eqs. (7), (8) and (13)
in the above expression, we discuss squared speed of
sound parameter graphically. The plots of v2

s versus n and

redshift parameter z are shown in Fig. 2. In the left plot of
Fig. 2 (u = 2), the squared speed of sound parameter is
positive showing that the reconstructed F̃(T, TG) model
is stable. For u = −2 (right), the corresponding model is
not stable at present as well as future epoch.

• The evolutionary behavior of EoS parameter for the
reconstructed F̃(T, TG) model is analyzed by evaluating
ω� through Eqs. (7) and (8) as follows

ω� = −1 + (−4Ḣ − 24H3ḞTG − 4ḢFT

− 4H ḞT + (2/3)HTGḞTG

123
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Fig. 6 Plots of power-law ω� − ω′
� for u = −2

+ 8H2F̈TG )(6H2 − F + 12H2FT

+ TGFTG − 24H3ḞTG )−1. (14)

Substituting Eq. (13) in the above expression, we obtain
the EoS parameters for u = 2 (Fig. 3 left) and u = −2
(right) in terms of z. We consider same values of the
corresponding constants as taken earlier. We investigate
the evolution of EoS parameter in the interval −0.9 ≤
z ≤ 2 for n1 = 3.2, n2 = 4 and n3 = 5. Figure 3 (left
plot) shows that ω� starts from phantom region, cuts the
phantom divide line and at the end, it becomes zero. This
means that EoS parameter shows quintom behavior for
u = 2. Similarly, the right plot represents that ω� starts
from dust like matter era, passes via quintessence as well
as vacuum DE eras and finally enters in the phantom era.
Hence, ω� behaves like quintom for u = −2. In both
cases, the reconstructed F̃(T, TG) model satisfies PDE
phenomenon.

• The deceleration parameter q is described as

q = −(ä/a)H−2 = −(1 + Ḣ H−2) = 1

2
+ 3

2
ω�. (15)

Its positive value indicates decelerating behavior, q = 0
expresses constant expansion and negative value corre-

sponds to accelerating universe. Substituting the value of
ω� in the above equation, we obtain deceleration param-
eter (Fig. 4). The left plot for u = 2 indicates that q
attains negative values in the range −0.9 ≤ z < 0.15,
hence represents accelerating universe in this interval.
At z = 0.15, it becomes zero showing constant behavior
and for z > 0.15, it leads to decelerating universe. In the
right plot of Fig. 4 (u = −2), the deceleration parameter
exhibits negative values in the interval −0.9 ≤ z ≤ 1.5
showing accelerating behavior.

• The plane ω� − ω�′ is developed for examining dif-
ferent DE models. Initially, Caldwell and Linder [26]
used this method to study the behavior of quintessence
DE model. They suggested that the covered area in
the phase plane corresponds to two regions, thawing
region (ω� < 0, ω�′ > 0) as well as freezing region
(ω� < 0, ω�′ < 0). Here, we discuss ω� − ω�′ plane
corresponding to u = 2,−2 for three different values of
n. Figure 5 (u = 2) shows that ω� −ω′

� plane represents
thawing regions for all three values of n. Similarly, all the
curves exhibit the same behavior for u = −2 in the inter-
val −0.9 ≤ z ≤ 1 as shown in Fig. 6. Hence, ω� − ω′

�

plane shows consistency with the current behavior of the
universe for n = 3.2, 4 and 5.
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Fig. 7 Plots of power-law r − s plane for u = 2

• Many DE models have been suggested to understand the
phenomenon of DE that ultimately explain the current
behavior of the universe. Some of them provide same
values of the Hubble and deceleration parameters. Thus
it is necessary to determine which one gives better infor-
mation about acceleration of the expanding universe. For
this purpose, Sahni et al. [27] presented two dimension-
less parameters named as statefinder parameters and are
defined as

r =
...
a

a

1

H3 , s = r − 1

(3q − 3
2 )

.

We can also write the parameter r in terms of q as
r = 2q2 + q − q ′. These parameters describe the well-
known cosmic regions such as (r, s) = (1, 1) indicating
CDM (cold dark matter) limit and (r, s) = (1, 0) showing
�CDM limit. The region s > 0, r < 1 describes phan-
tom and quintessence eras while s < 0, r > 1 represents
Chaplygin gas model. Here, we establish r − s planes
corresponding to our reconstructed GGPDE F̃(T, TG)

models for the same three values of n. We assume the
same values of corresponding parameters as in the pre-
vious section in the range −0.5 ≤ z ≤ 5. Figures 7 and
8 show that both reconstructed models for u = 2 and

−2 provide the regions of quintessence and phantom DE
eras as s > 0 and r < 1 for all three values of n.

4.2 Scale factor for the unified phases

Now, we investigate the behavior of F̃(T, TG) models
through the scale factor for unified phases. For this pur-
pose, we substitute Eq. (10) in (12) with a = a0(1 + z)−1

to get a differential equation. We obtain the reconstructed
GGPDE F̃(T, TG) model in terms of z by solving this dif-
ferential equation numerically. For both u = 2 as well
as −2, we consider H1 = 0.9 and three different values
of H2 = 2.7, 2.75, 2.8. Figure 9 shows that both recon-
structed models represent increasing behavior as the value
of z increases.

• Figure 10 represents the behavior of squared speed of
sound parameter for u = 2 and −2. Both plots show that
positive values of v2

s for z > 1.02 confirm the stability
of F̃(T, TG) models.

• Figure 11 indicates that EoS parameter starts from matter
dominated era initially (ω� = 0) for u = 2 as well
as −2. At z = 0, ω� crosses the phantom divide line
for u = 2 except when H2 = 2.7. For u = −2, the
EoS parameter remains in the matter dominated era for
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Fig. 8 Plots of power-law r − s plane for u = −2

Fig. 9 Plots of unified phases reconstructed GGPDE F̃(T, TG) model for u = 2 (left) and −2 (right). Also, H2 = 2.7 (red), H2 = 2.75 (green)
and H2 = 2.8 (blue)

all values of H2 and represents phantom dominated era
for z > 2.2. However, in both cases, the EoS parameter
shows consistency with the current expanding behavior
of the cosmos as the value of z increases.

• Figure 12 shows deceleration parameter in terms of red-
shift parameter z. This is zero in the interval −0.9 ≤
z ≤ 1.1 representing the constant cosmic expansion in
both cases u = 2 as well as −2. However, for z > 1.1,
negative values of q give rise to accelerating universe.

• The behavior of ω� − ω′
� is shown in Fig. 13. The left

plot represents freezing region for H2 = 2.7 and 2.75
while it corresponds to thawing region for H2 = 2.8.
In the right plot, ω� − ω′

� expresses thawing region for
H2 = 2.75 and 2.8.

• The behavior of statefinder parameters is shown in
Fig. 14. In the left plot (u = 2), we notice that s < 0,
r > 1 showing Chaplygin gas model while the right plot
(u = −2) indicates s > 0, r < 1 implying phantom and
quintessence eras of the universe.
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Fig. 10 Plots of unified phases v2
s for u = 2 (left) and −2 (right). Also, H2 = 2.7 (red), H2 = 2.75 (green) and H2 = 2.8 (blue)

ω ω

Fig. 11 Plots of unified phases EoS parameter ω� for u = 2 (left) and −2 (right). Also, H2 = 2.7 (red), H2 = 2.75 (green) and H2 = 2.8 (blue)

Fig. 12 Plots of unified phases deceleration parameter q for u = 2 (left) and −2 (right). Also, H2 = 2.7 (red), H2 = 2.75 (green) and H2 = 2.8
(blue)

4.3 Intermediate scale factor

For this scale factor, we obtain reconstructed GGPDE
F̃(T, TG) models numerically by using Eq. (11) in (12) as
shown in Fig. 15. We investigate the behavior of our mod-
els by assuming three different values of m as m1 = 0.33,
m2 = 0.35, m3 = 0.40 and choose b = 0.1. The left plot for

u = 2 represents decreasing behavior while the right plot for
u = −2 expresses increasing behavior.

• Figure 16 confirms the stability of our corresponding
model in the range −0.9 ≤ z ≤ 1.15 for u = 2, while
for u = −2, the model shows instability.

• Figure 17 indicates that for both values of the PDE param-
eter, the EoS parameter exhibits transition from phantom
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Fig. 13 Plots of unified phases ω� − ω′
� for u = 2 (left) and −2 (right). Also, H2 = 2.7 (red), H2 = 2.75 (green) and H2 = 2.8 (blue)

Fig. 14 Plots of unified phases r − s plane for u = 2 (left) and −2 (right). Also, H2 = 2.7 (red), H2 = 2.75 (green) and H2 = 2.8 (blue)

Fig. 15 Plots of intermediate reconstructed GGPDE F̃(T, TG) model for u = 2 (left) and −2 (right)

towards matter dominated era by crossing the phantom
divide line for all three values of m.

• Figure 18 implies that both plots attain negative values
in the range −0.9 ≤ z ≤ 1.8 which describe the acceler-
ating behavior of the universe.

• Figure 19 shows the plots for intermediate ω�−ω′
� plane

that correspond to thawing regions.

• In Fig. 20 for u = 2 (left), we attain the point (r, s) =
(1, 0) which shows �CDM limit. Also, the statefinder
parameters represent phantom and quintessence regions
for 0 ≤ z ≤ 1. On the other hand, these parameters
indicate Chaplygin gas model for 1 ≤ z ≤ 2.5. Sim-
ilarly, the right plot for u = −2 shows Chaplygin gas
model.
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Fig. 16 Plots of intermediate v2
s for u = 2 (left) and −2 (right)

Fig. 17 Plots of intermediate EoS parameter ω� for u = 2 (left) and −2 (right). Also, H2 = 2.7 (red), H2 = 2.75 (green) and H2 = 2.8 (blue)

Fig. 18 Plots of intermediate deceleration parameter q for u = 2 (left) and −2 (right). Also, H2 = 2.7 (red), H2 = 2.75 (green) and H2 = 2.8
(blue)

5 Concluding remarks

In this paper, we have investigated the behavior of reconstruc-
tion models [21] in F(T, TG) gravity along with GGPDE
model as well as three scale factors. For this purpose, we
have considered two values of PDE parameter, i.e., u = 2
and −2. We have explored the role of some cosmological
parameters versus redshift parameter z in this scenario. We

have observed that our models show stability for all the scale
factors except power-law and intermediate for u = −2.
The equation of state parameter in both cases (u = 2,−2)

represents quintom behavior for all the scale factors. It is
found that reconstructed GGPDE F̃(T, TG) models fulfill
the condition of PDE phenomenon. The plot of decelera-
tion parameter versus z exhibits accelerated expansion of the
universe.

123



Eur. Phys. J. C (2018) 78 :77 Page 13 of 14 77

Fig. 19 Plots of intermediate ω� − ω′
� for u = 2 (left) and −2 (right)

Fig. 20 Plots of intermediate r − s plane for u = 2 (left) and −2 (right)

We have observed that ω� − ω′
� plane displays thawing

region for power-law as well as intermediate scale factor.
The scale factor for two unified phases provides freezing
region for H2 = 2.8. The r − s plane shows phantom and
quintessence regions for power-law model (u = 2) as well as
for the scale factor of unified phases (u = −2). For interme-
diate case, we have achieved �CDM limit. We have found
that both the planes, i.e., ω� − ω�′ as well as r − s are
consistent with the current cosmic behavior.

Sharif and Jawad [17] analyzed GGPDE model by inves-
tigating its cosmological consequences in general relativ-
ity. Our results are consistent with them for non-interacting
case with μ = 1.55 and ν = 1.91. Jawad and Rani [18]
investigated the reconstructed models, their stability and EoS
parameter in the modified Horava–Lifshitz f (R̃) gravity. Our
results are in great agreement with their work. Sharif and
Nazir [19] discussed the same cosmological parameters for
GGPDE model in f (T ) gravity. We have also compared our
results with [19] and found that the EoS parameter and cos-
mological planes for u = 2 represent consistency with the
same values of model parameters. We have noticed that EoS
parameter is also consistent with the observational data [28]
given as

ω� = −1.13+0.24
−0.25 (Planck + WP + BAO),

ω� = −1.09 ± 0.17 (Planck + WP + Union 2.1),

ω� = −1.13+0.13
−0.14 (Planck + WP + SNLS).

ω� = −1.24+0.18
−0.19 (Planck + WP + H0),

These constraints have been evaluated by imposing various
observational techniques at 95% level of confidence.
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