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Abstract The B → D transition form factor (TFF)
f B→D+ (q2) is determined mainly by the D-meson leading-
twist distribution amplitude (DA) , φ2;D , if the proper chiral
current correlation function is adopted within the light-cone
QCD sum rules. It is therefore significant to make a compre-
hensive study of DA φ2;D and its impact on f B→D+ (q2). In
this paper, we calculate the moments of φ2;D with the QCD
sum rules under the framework of the background field the-
ory. New sum rules for the leading-twist DA moments 〈ξn〉D
up to fourth order and up to dimension-six condensates are
presented. At the scale μ = 2 GeV, the values of the first four
moments are:

〈
ξ1
〉
D = −0.418+0.021

−0.022,
〈
ξ2
〉
D = 0.289+0.023

−0.022,
〈
ξ3
〉
D = −0.178 ± 0.010 and

〈
ξ4
〉
D = 0.142+0.013

−0.012. Basing
on the values of 〈ξn〉D (n = 1, 2, 3, 4), a better model of φ2;D
is constructed. Applying this model for the TFF f B→D+ (q2)

under the light cone sum rules, we obtain f B→D+ (0) =
0.673+0.038

−0.041 and f B→D+ (q2
max) = 1.117+0.051

−0.054. The uncer-
tainty of f B→D+ (q2) from φ2;D is estimated and we find its
impact should be taken into account, especially in low and
central energy region. The branching ratio B(B → Dlν̄l) is
calculated, which is consistent with experimental data.

1 Introduction

The B → D(∗) decays have received a lot of attention
in recent years. Experimentally, the BABAR Collaboration
measured the semi-leptonic decays B → D(∗)lν̄l in 2012
[1–3], and these decays were also measured by the Belle
[4–6] and LHCb Collaborations [7] in 2015. Theoretically,
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the semi-leptonic decays B → D(∗)lν̄l are studied by the
heavy quark effective theory (HQET) [8], perturbative QCD
(pQCD) factorization approach [9,10], light-cone sum rules
(LCSR) [11–15], and the lattice QCD theory [16,17] within
the framework of Standard Model (SM) and the new physics
model [18–21].

The D-meson distribution amplitude (DA) is an important
input for theoretical studies. By using the usual correlation
function in the LCSR calculation, the B → D transition form
factor (TFF) f B→D+ (q2) is represented as a complex formula
containing the D-meson twist-2, 3, . . . DAs. If a proper chiral
current correlation function is adopted, the TFF f B→D+ (q2)

shall be dominated by the contribution of φ2;D [11,12,14],

f B→D+ (q2) = m2
b fD

m2
B fB

em
2
B/M2

∫ 1

�

du

u
φ2;D(u)

× exp

[

−m2
b − ū(q2 − um2

D)

uM2

]

, (1)

where mb is the b-quark mass, mB(D) and fB(D) are the
B(D)-meson mass and decay constant, sB0 is threshold
parameter, M is the Borel parameter, and the lower limit
of integral takes the form

� = 1

2m2
D

[√(
sB0 − q2 − m2

D

)2 + 4m2
D

(
m2

b − q2
)

−
(
sB0 − q2 − m2

D

) ]
.

Equation (1) reduces the error sources of f B→D+ (q2), such
as the uncertain twist-3 DAs disappear in the LCSR. In turn,
it provides us with a precise platform for testing the behavior
of the leading-twist DA φ2;D [22].

In the existing researches on f B→D+ (q2), the DA φ2;D is
simply treated as an input parameter, whose error analysis
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is often not considered carefully. The most simple model
is based on the expansion of the Gegenbauer polynomials,
which reads [23,24]:

φKLS
2;D (x) = 6x(1 − x) [1 + CD(1 − 2x)] , (2)

where x stands for the momentum fraction of the light quark
and the shape parameter CD is usually taken as ∼ 0.7, cor-
responding to a peak around x ∼ 0.3. Considering a simple
harmonic-like k⊥-dependence in the D-wavefunction, its DA
is improved as [25]:

φLLZ
2;D (x) = 6x(1 − x) [1 + CD(1 − 2x)] exp

[
−ω2b2

2

]
,

(3)

where the parameters b = 0.38 GeV−1, CD = 0.5, ω =
0.1 GeV [25]. By employing the solution of a relativistic
scalar harmonic oscillator potential [26,27] for the orbital
part of the wavefunction [28,29], the authors of Ref. [30]
suggest a Gaussian-type model:

φLM
2;D(x) = ND

√
x(1 − x) exp

[
−1

2

( xmD

ω

)2
]

, (4)

where mD = 1.87 GeV, ND = 4.86952, fD = 220 MeV
and ω = 0.8 GeV. By using the Brodsky–Huang–Lepage
prescription [31–33], Ref. [34] proposes a light-cone har-
monic oscillator model:

φGH
2;D(x) = NDx(1 − x) exp

[

−b2
D
m̂2

c x + m̂2
d(1 − x)

x(1 − x)

]

,

(5)

where the constituent quark masses m̂c = 1.3 GeV and
m̂d = 0.35 GeV, ND = 19.908, and b2

D = 0.292 GeV−2

[11]. By including the Melosh rotation effect into the spin
space, a more complete form than the model (5) has also
been presented in Ref. [34]. In addition, there are other two
D-meson leading-twist DA models, the exponential model
[35] and the one obtained by solving the equations of motion
without three-parton contributions [36].

As a matter of fact, our understanding of φ2;D is far from
enough, a detail analysis on the uncertainty of various DA
models is necessary. In this article, we shall improve the φ2;D
model (5) to a more accurate form. As we have done in Refs.
[37–39], its input parameters shall be fixed by using sev-
eral reasonable constraints, such as the probability of find-
ing the leading Fock-state |c̄q〉 in the D-meson Fock-state
expansion, the normalization condition, and the known φ2;D
Gegenbauer moments. Those Gegenbauer moments shall be
computed by using the QCD sum rules [40] in the framework
of background field theory (BFT) [37,41,42]. As a further
step, we shall analyze the properties of the model in detail,
and the influence of φ2;D on f B→D+ (q2) shall also be pre-
sented.

The remaining parts of the paper are organized as follows.
An improved model for the D-meson leading twist DA φ2;D
is given in Sect. 2. Procedures for deriving the QCD sum
rules for the moments of φ2;D in the BFT are given in Sect. 3.
For convenience, we present the explicit expressions of those
moments in the Appendix. Numerical results and discussions
are presented in Sect. 4. Section 5 is reserved for a summary.

2 An improved model for the D-meson leading-twist
DA φ2;D

As discussed in Refs. [38,39], we improve the harmonic
oscillator model of the D-meson leading-twist wavefunction
�2;D(x,k⊥) suggested in Ref. [11] as

�2;D(x,k⊥) = χ2;D(x,k⊥)�R
2;D(x,k⊥), (6)

where k⊥ is the transverse momentum, χ2;D(x,k⊥) stands
for the spin-space wavefunction and �R

2;D(x,k⊥) indi-
cates the spatial wavefunction. The spin-space wavefunction
χ2;D(x,k⊥) takes the form [43]

χ2;D(x,k⊥) = m̂cx + m̂q(1 − x)
√
k2⊥ + [m̂cx + m̂q(1 − x)

]2
, (7)

where m̂c and m̂q are constituent quark masses of the D-
meson, and we adopt m̂c = 1.5 GeV and m̂q = 0.3 GeV. q

stands for the light quark, q = u is for D
0

and q = d is for
D−. The spatial wavefunction takes the form

�R
2;D(x,k⊥) = ADϕD(x) × exp

×
[

− 1

β2
D

(
k2⊥ + m̂2

c

1 − x
+ k2⊥ + m̂2

q

x

)]

, (8)

where AD is the normalization constant, βD is the harmo-
nious parameter that dominates the wavefunction’s trans-
verse distribution, and ϕD(x) dominates the wavefunction’s
longitudinal distribution, which can be expanded as a Gegen-
bauer polynomial,

ϕD(x) = 1 +
4∑

n=1

BD
n C3/2

n (2x − 1). (9)

Using the relationship between the D-meson leading-twist
wavefunction and its DA,

φ2;D(x, μ0) = 2
√

6

fD

∫

|k⊥|2≤μ2
0

d2k⊥
16π3 �2;D(x,k⊥), (10)
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we obtain a new model for φ2;D , i.e.

φ2;D(x, μ0) =
√

6ADβ2
D

π2 fD
x(1 − x)ϕD(x)

× exp

[

− m̂2
c x + m̂2

q(1 − x)

8β2
Dx(1 − x)

]

×
{

1 − exp

[

− μ2
0

8β2
Dx(1 − x)

]}

, (11)

where μ0 ∼ �QCD is the factorization scale. Because
m̂c 
 �QCD, the spin-space wavefunction χD → 1. In this
work we ignore the (constituent) mass difference between
u and d quarks, the wavefunction �2;D(x,k⊥) and the DA

φ2;D(x, μ) are the same for both D
0

and D−. By replacing
x with 1 − x in Eqs. (6, 11), one can obtain the leading-twist
wavefunction and DA of D0 and D+.

The model parameters AD , BD
n and βD are scale depen-

dent, their values at an initial scale μ0 can be determined
by reasonable constraints, and their values at any other scale
μ can be obtained via the evolution equation [38,39]. More
explicitly, we shall adopt the following constraints to fix the
parameters:

• The normalization condition,

∫ 1

0
dxφ2;D(x, μ0) = 1. (12)

• The probability of finding the leading Fock-state | c̄q〉 in
the D-meson Fock state expansion [34],

PD =
∫ 1

0
dx
∫

d2k⊥
16π3

∣∣∣�R
2;D(x,k⊥)

∣∣∣
2

= A2
Dβ2

D

4π2

∫ 1

0
dxx(1 − x)ϕ2

D(x)

× exp

[

−m2
c x + m2

q(1 − x)

4β2
Dx(1 − x)

]

. (13)

We will take PD � 0.8 [34] in subsequent calculation.
Numerically, we find that similar to the case of heavy
pseudo-scalar meson [38], our model depends very little
on the value of PD .

• The Gegenbauer moments of φ2;D(x, μ0) can be calcu-
lated by the following way,

aD
n (μ0) =

∫ 1
0 dxφ2;D(x, μ0)C

3/2
n (2x − 1)

∫ 1
0 dx6x(1 − x)[C3/2

n (2x − 1)]2
. (14)

If knowing their values, we can inversely determine the
behavior of φ2;D(x, μ0).

3 Sum rules of the moments of the leading-twist DA
φ2;D

To derive the sum rules for the D-meson leading-twist DA
φ2;D , we introduce the following correlation function


(n,0)
D (z, q) = i

∫
d4xeiq·x 〈0

∣∣∣T
{
Jn(x)J

†
0 (0)

}∣∣∣ 0
〉

= (z · q)n+2 I (n,0)
D (q2), (15)

where z2 = 0, n = 0, 1, 2, . . ., and the currents

Jn(x) = c̄(x)z/γ5(i z·
↔
D)nq(x), (16)

J †
0 (0) = q̄(0)z/γ5c(0). (17)

Following the standard procedures of QCD sum rules, we
first apply the operator product expansion (OPE) for the cor-
relation function (15) in the deep Euclidean region. With the
basic assumption of BFT and the corresponding Feynman
rules, Eq. (15) can be rewritten as


(n,0)
D (z, q) = i

∫
d4xeiq·x

×
{
−Tr

〈
0
∣∣∣ScF (0, x)z/γ5(i z·

↔
D)n SqF (x, 0)z/γ5

∣∣∣ 0
〉

+ Tr
〈
0
∣∣∣ScF (0, x)z/γ5(i z·

↔
D)nq̄(0)q(x)z/γ5

∣∣∣ 0
〉}

+ · · · , (18)

where ScF (0, x) and SqF (x, 0) are quark propagators in the

background field, and (i z· ↔
D)n stands for the vertex opera-

tors. The tedious expressions of the propagators and vertex
operators with terms leading to dimension-six condensates
in the sum rules can be found in Ref. [37].

Figures 1 and 2 show the Feynman diagrams for the first
and the second terms in Eq. (18), respectively. In those two
figure, the left big dot and the right big dot stand for the

vertex operators  zγ5(z·
↔
D)n and  zγ5 in the currents Jn(x)

and J †
0 (0), respectively; the cross symbol attached to the

gluon line indicates the tensor of the local gluon background
field, and “n” indicates nth-order covariant derivative; the
cross symbol attached to the quark line stands for the local
light u or d quark background field.

Figure 1a1 gives the perturbative contribution, Fig. 1b1,
c1, d1 give the contributions proportional to dimension-four
gluon condensate

〈
αsG2

〉
, and the remaining diagrams in

Fig. 1 give the contributions proportional to dimension-six
gluon condensate

〈
g3
s f G

3
〉
. Figure 2 gives the terms involv-

ing dimension-three quark condensate 〈q̄q〉, dimension-five
quark-gluon mixing condensate 〈gsq̄σTGq〉 and dimension-
six quark condensate 〈gsq̄q〉2. There is infrared (IR) diver-
gence in Fig. 1e1, e3, e5, e7, f1, f3, g1, i2, i4, j1, which
contain the terms proportional to ̃,
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Fig. 1 Feynman diagrams for the first term of Eq. (18). The left big dot

and the right big dot stand for the vertex operators  zγ5(z·
↔
D)n and  zγ5

in the currents Jn(x) and J †
0 (0), respectively. The cross symbol attached

to the gluon line indicates the tensor of the local gluon background field,
and “n” indicates nth-order covariant derivative. The diagrams whose
contributions vanish in the sum rules are not shown

Fig. 2 Feynman diagrams for the second term of Eq. (18). The left big

dot and the right big dot stand for the vertex operators  zγ5(z·
↔
D)n and

 zγ5 in the currents Jn(x) and J †
0 (0), respectively. The cross symbol

attached to the gluon line indicates the tensor of the local gluon back-

ground field, and “n” indicates nth-order covariant derivative, and the
cross symbol attached to the quark line stands for the local light u or d
quark background field

̃ = μ2ε

∫
dD p2

(2π)D

(2p2 · z − p1 · z)n × · · ·
[(q − p2)2 − m2

c]α(p2
2)

β
, (α < β)

(19)

where we have completed the integration over x , the c-
quark momenta p1 and p2 indicates the u/d quark momen-
tum, and the ellipsis “· · · ” stands for the possible Lorenz
structures, such as pμ

2 , pμ
2 pν

2 , and etc. Taking the limit,

m2
u/d → 0, the infrared divergence appears in ̃. We adopt

the D-dimensional regularization approach to deal with the
infrared divergence, D = 4 − 2ε (ε → 0). Then our task
is to extract the divergent terms proportional to 1/ε. Using
Feynman parameterization formula,

1

AαBβ
= �(α + β)

�(α)�(β)

∫ 1

0
dx

xα−1(1 − x)β−1

[Ax + B(1 − x)]α+β
(20)
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and completing the integration over the momentum p2, we
get the key integration for ̃

I (m, a, b, c) =
∫ 1

0
dx(2x − 1)mx−a−ε(1 − x)b

×
(

1 − −q2

−q2 + m2
c
x

)−c−ε

, (21)

where m(≤ n), a, b, c are integers. Equation (21) can be
further represented as

I (m, a, b, c) =
m∑

k=0

(−1)km!
k!(m − k)!

∫ 1

0
dxxm−k−a−ε(1 − x)k+b

×
(

1 − −q2

−q2 + m2
c
x

)−c−ε

. (22)

It can be simplified with the help of the hypergeometric func-
tion, i.e.

F(α, β, γ, Z) = �(γ )

�(β)�(γ − β)

×
∫ 1

0
dxxβ−1(1 − x)γ−β−1(1 − Zx)−α

=
∞∑

l=0

(α)l (β)l

l! (γ )l
Zl , (23)

where |Z | < 1 and (λ)l = �(λ + l)/�(λ), we obtain

I (m, a, b, c) =
m∑

k=0

(−1)km!
k!(m − k)!

�(k + b + 1)

�(c + ε)

×
∞∑

l=0

�(l+c+ε)�(l+m − k−a+1 − ε)

l!�(l + m − a + b + 2 − ε)

×
( −q2

−q2 + m2
c

)l
. (24)

The IR divergence appears in �(l + m − k − a + 1 − ε)

at the lowest several l-terms. It should be pointed out that
if the two constituent quarks that make up the meson are
heavy ones [38,39], such IR-divergence can be avoided, since
the heavy quark mass provides a natural hard scale for the
correlator. For the D-meson or the light meson with at least
one light constituent quark [37], there is IR-divergence in the
perturbative coefficients of the condensates, which should
be regularized, be separated out, and be absorbed into the
redefinition of the condensates. For the purpose, we adopt
the MS-scheme to regularize the IR-divergent terms, which
shall be absorbed into the redefinition of the condensates such
that to achieve a final IR-free prediction.

On the other hand, the correlation function (15) can be cal-
culated by inserting a completed set of intermediate hadronic
states in the physical region. With the definition

〈
0
∣∣∣c̄(0)  zγ5(i z·

↔
D)nq(0)

∣∣∣ D(q)
〉

= i(z · q)n+1 fD
〈
ξn
〉
D , (25)

and the quark-hadron duality, the hadron expression of


(n,0)
D (z, q) can be obtained. In Eq. (25),

〈
ξn
〉
D =

∫ 1

0
du(2u − 1)nφ2;D(u) (26)

is the nth-order moment of φ2;D . The 0th-order moment cor-
responds to the normalization condition for φ2;D ,

〈
ξ0
〉

D
=
∫ 1

0
duφ2;D(u) = 1. (27)

The operator expansion of the correlation function (15)
and its hadron expansion in deep Euclidean region can be
matched by the dispersion relation. By further applying the
Borel transformation for both sides, the sum rules for the
moments of the D-meson leading-twist DA φ2;D can be writ-
ten as

〈
ξn
〉
D = M2e

m2
D

M2

f 2
D

{
1

π

1

M2

∫ sD0

tmin

dse− s
M2 ImIpert(s)

+ L̂M I〈q̄q〉(−q2) + L̂M I〈G2〉(−q2)

+ L̂M I〈q̄Gq〉(−q2) + L̂M I〈q̄q〉2(−q2)

+ L̂M I〈G3〉(−q2)

}

, (28)

where sD0 is the continuous threshold parameter, L̂M is the
Borel transformation operator. For convenience, we present
the expressions for every term in the sum rules (28) in the
Appendix.

4 Numerical analysis

4.1 Input parameters

To determine the moments of the D-meson leading-twist DA,
we take [44]

mD− = 1869.59 ± 0.09 MeV,

m̄c(m̄c) = 1.28 ± 0.03 GeV,

m̄d(2 GeV) = 4.7+0.5
−0.4 MeV, (29)

and [38,45]

〈q̄q〉 (1 GeV) = −(240 ± 10 MeV)3,
〈
αsG

2
〉
= 0.038 ± 0.011 GeV4,

〈
g3
s f G

3
〉
= 0.013 ± 0.007 GeV6,

〈gsq̄σTGq〉 = 0.8 〈q̄q〉 ,

〈gsq̄q〉2 = 1.8 × 10−3 GeV6. (30)

123



76 Page 6 of 12 Eur. Phys. J. C (2018) 78 :76

The parameters can be run to any other scales by using the
renormalization group equation, such as [46,47]

m̄c(μ) = m̄c(m̄c)

[
αs(μ)

αs(m̄c)

] 12
25

,

m̄d(μ) = m̄d(2 GeV)

[
αs(μ)

αs(2 GeV)

] 12
27

,

〈q̄q〉 (μ) = 〈q̄q〉 (1 GeV)

[
αs(μ)

αs(1 GeV)

]− 12
27

. (31)

The gluon-condensates
〈
αsG2

〉
and

〈
g3
s f G

3
〉

are scale-
independent, and we ignore the scale-dependence of the
four-quark condensate 〈gsq̄q〉2, whose value is already very
small. Generally, we shall take the renormalization scale as
the Borel parameter, μ = M , which represents the typical
momentum flow of the process.

The D-meson decay constant is taken as the PDG
value [44]: fD = 203.7 ± 4.7 ± 0.6 MeV. For the continuous
threshold sD0 , it is usually taken as the square of D-meson’s
first exciting state. Different from the cases of pion and kaon,
the D-meson’s first exciting state has not been experimentally
confirmed yet. According to the helicity analysis of Refs.
[48,49], Ref. [48] suggests the quantum state of D0(2550)

is J P = 0−, which has the same quantum number as D-
meson, e.g., I (J P ) = 1

2 (0−). On the other hand, with an
sum rules prediction within HQET [50], the authors of Ref.
[51] suggest sD0 = (6.5 ± 0.25) GeV2. Thus in this work,
we approximately take D0(2550) as the first excitation state
of D-meson as suggested by Ref. [48], and the continuous
threshold value is taken as sD0 = 6.5025 GeV2.

4.2 The moments 〈ξn〉D of φ2;D

To fix the Borel window, one usually requires the most uncer-
tain contributions from both the continuum states and the
highest dimensional condensates be a reasonably small value
and the sum rules be insensitive to the Borel parameter M .
The contributions from continuum states and dimension-six
condensates dominate the systematic error of the predicted
moments 〈ξn〉D , so smaller magnitudes of them indicate bet-
ter accuracy of the sum rules. In usual treatment, the contin-
uum contribution is taken to be less than 30% and the con-
tribution from dimension-six condensate is less than 10%.
For the present case, our criteria for the continuum states and
the dimension-six condensates contributions are presented
in Table 1. Table 1 shows better accuracy of

〈
ξ1
〉
D ,
〈
ξ2
〉
D

and
〈
ξ3
〉
D can be achieved than the usual criteria. In order to

obtain the Borel window of
〈
ξ4
〉
D , we soften the continuum

contribution to be 40%, which inversely could lead to lower
accuracy for

〈
ξ4
〉
D . The determined Borel windows and the

corresponding D-meson leading-twist DA moments 〈ξn〉D

Table 1 Criteria for
determining the Borel windows
of the D-meson leading-twist
DA moments 〈ξn〉D

n Continue con-
tribution (%)

Dimension-
six contribu-
tion (%)

1 < 15 < 1

2 < 25 < 10

3 < 20 < 5

4 < 40 < 15

Table 2 The determined Borel windows and the corresponding D-
meson leading-twist DA moments 〈ξn〉D (n = 1, 2, 3, 4). All input
parameters are set to be their central values

n M2 〈ξn〉D
1 [3.247, 7.035] [−0.417,−0.397]
2 [1.862, 2.917] [0.290, 0.303]
3 [3.157, 5.763] [−0.181,−0.175]
4 [2.410, 4.572] [0.151, 0.141]

2 3 4 5 6 7
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

M2(GeV2)

<ξ
n > D

<ξ1>D

<ξ2>D

<ξ3>D

<ξ4>D

Fig. 3 The D-meson leading-twist DA moments 〈ξn〉D (n =
1, 2, 3, 4) versus the Borel parameter M2, where all input parameters
are set to be their central values. The solid, dashed, dash-dotted and
dotted lines are for

〈
ξ1
〉
D ,
〈
ξ2
〉
D ,
〈
ξ3
〉
D and

〈
ξ4
〉
D , respectively

(n = 1, 2, 3, 4) are presented in Table 2, where all input
parameters are taken to be their central values.

Figure 3 shows the stabilities of the D-meson leading-
twist DA moments 〈ξn〉D (n = 1, 2, 3, 4) in the allowable
Borel windows. By taking all uncertainty sources into con-
sideration, we obtain
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Table 3 The impact of various inputs on 〈ξn〉D . The Borel parameter
M is fixed to be its central value. The labels “|up” and “|low” stand for
the upper and lower bounds of the inputs, and the symbols “+” and “−”

represent the positive and negative errors brought by the corresponding
input, respectively

〈
αsG2

〉 |up
〈
αsG2

〉 |low
〈
g3
s f G

3
〉 |up

〈
g3
s f G

3
〉 |low 〈q̄q〉 |up 〈q̄q〉 |low 〈gs q̄σTGq〉 |up 〈gs q̄σTGq〉 |low

〈
ξ1
〉
D − + − + − + + −

〈
ξ2
〉
D + − + − + − − +

〈
ξ3
〉
D − + − + − + + −

〈
ξ4
〉
D + − + − + − − +

m̄c|up m̄c|low m̄d |up m̄d |low mD |up mD |low fD |up fD |low

〈
ξ1
〉
D + + + − − + + −

〈
ξ2
〉
D − + − + + − − +

〈
ξ3
〉
D + − + − − + + −

〈
ξ4
〉
D − + − + + − − +

〈
ξ1
〉

D
|μ=2 GeV = −0.418+0.021

−0.022,

〈
ξ2
〉

D
|μ=2 GeV = 0.289+0.023

−0.022,

〈
ξ3
〉

D
|μ=2 GeV = −0.178 ± 0.010,

〈
ξ4
〉

D
|μ=2 GeV = 0.142+0.013

−0.012,

(32)

where the errors are squared averages of all the mentioned
error sources. By fixing the Borel parameter M to be its cen-
tral value of the determined Borel window, Table 3 shows the
impact of various inputs on 〈ξn〉D , where the labels “|up” and
“|low” stand for the upper and lower bounds of the inputs and
the symbols “+” and “−” represent the positive and nega-
tive errors brought by the corresponding inputs, respectively.
Table 3 shows that if the upper limit of an input parameter
causes a positive error in

〈
ξ1
〉
D , it will lead to a positive error

for
〈
ξ3
〉
D and lead to negative errors for

〈
ξ2
〉
D and

〈
ξ4
〉
D ,

and vice versa; and if the upper limit of an input parameter
leads to a positive error in a moment, its lower bound will
lead to a negative error in this moment, and vice versa. The
only exception is the c-quark current mass m̄c. Fortunately,
the error caused by m̄c is negligible. Thus, it is reasonable to
assume that the four moments 〈ξn〉D (n = 1, 2, 3, 4) can not
be varied independently, all of which follow the same vari-
ation trends as described above. For example, to determine
the uncertainty of the leading-twist DA, if the magnitudes
of
〈
ξ1
〉
D and

〈
ξ3
〉
D take the upper bound, the magnitudes of〈

ξ2
〉
D and

〈
ξ4
〉
D should take the lower bound, and vice versa.

4.3 The improved model for the D-meson leading-twist
DA φ2;D

One can use the DA moments 〈ξn〉D to get the Gegenbauer
moments aD

n . For example, by using the relationship between

〈ξn〉D and aD
n [38], we obtain

aD
1 (2 GeV) = −0.697+0.036

−0.037,

aD
2 (2 GeV) = 0.258+0.068

−0.064,

aD
3 (2 GeV) = 0.009+0.003

−0.002,

aD
4 (2 GeV) = −0.024−0.026

+0.020.

(33)

Substituting the above Gegenbauer moments aD
n into Eq.

(14), together with the constraints (12, 13), we can deter-
mine the input parameters AD , BD

n and βD for the leading-
twist DA φ2;D . The accuracy of φ2;D is dominated by
the accuracy of the Gegenbauer moments anD . Table 4
presents some typical parameters at scale μ = 2 GeV
for typical choices of Gegenbauer moments anD . Similar
to the case of the DA moments 〈ξn〉D , the Gegenbauer
moments aD

n also can not be varied independently in their
own error regions, and the uncertainty of the DA model is
determined by the following two sets of aD

n , namely, (i)
aD

1 (2 GeV) = −0.697+0.036, aD
2 (2 GeV) = 0.258−0.064,

aD
3 (2 GeV) = 0.009+0.003, aD

4 (2 GeV) = −0.024+0.020;
(ii) aD

1 (2 GeV) = −0.697−0.037, aD
2 (2 GeV) = 0.258+0.068,

aD
3 (2 GeV) = 0.009−0.002, aD

4 (2 GeV) = −0.024−0.026.
Table 4 associates the uncertainty of φ2;D with the error of
Gegenbauer moments anD , which facilitates our further dis-
cussion on the impact of φ2;D as an input parameter to the
B → D decay.

Figure 4 shows the D-meson leading-twist DA φ2;D with
typical values of the input parameters exhibited in Table 4.
The solid, the dash-dotted and the dashed lines are for the
parameters exhibited in second, third and forth lines of
Table 4. Figure 5 is a comparison of φ2;D , in which the
solid, the dashed, the dash-dotted, the dotted and the thick
dotted lines are for our present model (11), the Gegenbauer
polynomial-like KLS model [23,24], the LLZ model [25],
the Gaussian-type LM model [30] and the GH model [34],
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Table 4 Typical D-meson leading-twist DA model parameters at scale μ = 2 GeV

aD
1 aD

2 aD
3 aD

4 AD (GeV−1) BD
1 BD

2 BD
3 BD

4 βD (GeV)

−0.697 0.258 0.009 −0.024 1.855 −0.567 0.027 0.165 −0.078 5.776

−0.697+0.036 0.258−0.064 0.009+0.003 −0.024+0.020 1.909 −0.524 −0.030 0.154 −0.049 5.806

−0.697−0.037 0.258+0.068 0.009−0.002 −0.024−0.026 1.800 −0.616 0.092 0.177 −0.113 5.684

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

0

0.5

1

1.5

2

2.5

3

x

φ 2;
D

(x
,2

G
eV

)

Upper limit for aD
1,3 and lower limit for aD

2,4

Central values for aD
n

Lower limit for aD
1,3 and upper limit for aD

2,4

Fig. 4 The curves of the D-meson leading-twist DA φ2;D with the
parameter values exhibited in Table 4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

0

0.5

1

1.5

2

2.5

3

x

φ 2;
D

(x
,2

G
eV

)

Our Model
KLS Model
LLZ Model
LM Model
GH Model

Fig. 5 A comparison of the D-meson leading-twist DA φ2;D . The
solid, dashed, dash-dotted, dotted and the thick dotted line are for our
present model (11), the KLS model [23,24], the LLZ model [25], the
LM model [30], and the GH model [34], respectively

respectively. Our model of φ2;D prefers a narrower behav-
ior in low x-region than other models. It has a peak around

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

0

0.5

1

1.5

2

2.5

3

x

φ 2;
D

(x
,μ

)

μ=2GeV
μ=3GeV
μ=10GeV
μ=100GeV

Fig. 6 The D-meson leading-twist DA model (11) at different scales,
where the solid, the dashed, the dotted and the dash-dotted lines are for
the scales μ = 2, 3, 10, 100 GeV, respectively

x ∼ 0.2, which is consistent with the LM model, but is incon-
sistent with the KLS, the LLZ, and the GH model which have
peaks at a larger x (∼ 0.3 − 0.4).

Figure 6 shows the D-meson leading-twist DA model (11)
at different scales, where the solid, the dashed, the dotted
and the dash-dotted lines are for the scales μ = 2, 3, 10, 100
GeV, respectively. It shows that with the increment of μ, φ2;D
becomes broader and broader and becomes more symmetric,
e.g. the peak moves closer to x = 0.5. When μ → ∞, φ2;D
tends to the well-known asymptotic form, i.e. φ2;D(x, μ →
∞) = 6x(1 − x).

4.4 Numerical results of B → D TFF and its uncertainty
from φ2;D

By using the chiral current correlation function, the LCSR of
f B→D+ up to twist-4 accuracy shall involve only the contribu-
tion from the D-meson leading-twist DA φ2;D [11,12,14]. In
this subsection, we apply our present DA model to calculate
the B → D TFF f B→D+ .

Considering the decay B
0 → D+lν̄l , we take m

B
0 =

5279.63±0.15 MeV and m̄b(m̄b) = 4.18+0.04
−0.03 GeV [44]. For
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Table 5 The parameters a and b for the TFF extrapolation (35). The
lowest, middle and the highest TFFs are adopted for such a determina-
tion

f B→D+ (0) a b

0.711 1.006693 0.163854

0.673 1.055706 0.247634

0.632 1.127308 0.372689

the B-meson decay constant, we take the PDG value, fB =
188 ± 17 ± 18 MeV [44]. For the continuum threshold sB0 ,
we take it to be sB0 = 36±1 GeV2. We take the factorization
scale to be μ � 3 GeV. For the Borel window we take M2 =
(20−30) GeV2. At the maximum recoil point with q2 = 0,
we have

f B→D+ (0) = 0.673+0.018
−0.025|φ2;D

+0.005
−0.009|M2

+0.019
−0.021|sB0

±0.015| fB ± 0.016| fD +0.016
−0.011|mb

= 0.673+0.018
−0.025|φ2;D ± 0.033|Other Inputs (34)

where the error labeled as “Other Inputs” is obtained by
adding up of all the errors other than the one from φ2;D in
quadrature. The DA φ2;D , the Borel parameter M2, contin-
uum threshold sB0 , B(D)-meson decay constant fB(D) and the
b-quark mass mb are main error sources. The errors caused
by m

B
0 and mD+ are not explicitly shown, because they are

less than 10−5 of the total contributions. Our value in Eq.
(34) agrees with the lattice QCD prediction, f B→D+ (0) =
0.664 ± 0.034 [17].

Because the LCSRs for the TFF f B→D+ (q2) are reliable in
low and intermediate regions only, we extrapolate our present
prediction to large q2-region by adopting the following for-
mula [52],

f B→D+ (q2) = f B→D+ (0)

1 − a
(
q2/m2

B

)+ b
(
q2/m2

B

)2 . (35)

We present the fitted parameters a and b in Tabel 5 and the
TFF f B→D+ (q2) in Fig. 7. In Fig. 7, the shaded hand is the
theoretical uncertainty from all the mentioned error sources,
such as φ2;D , sB0 , fB , fD ,mb and etc., which have been added
up in quadrature. Figure 7 shows when q2 ∈ [8, 10] GeV2,
the error caused by φ2;D is rather small, which becomes siz-
able for q2 ∈ [0, 8] GeV2 and 10 GeV2 ≤ q2 ≤ q2

max =
(mB −mD)2. This can be numerically explained by the fact
that the error of φ2;D shall be cancelled for the integral region
u ∈ [�, 1] of the integral in Eq. (1).

Using the transformation formula G(1) = 2
√
mBmD/

(mB+mD)× f B→D+ (q2
max), one can getG(1) = 0.981+0.045

−0.048.
In the literatures, G(1) has been calculated with the lattice
QCD approach, e.g., G(1) = 1.074 ± 0.018 ± 0.016 [53],
G(1) = 1.058 ± 0.016 ± 0.003+0.014

−0.005 [54], G(1) = 1.026 ±
0.017 [55],G(1) = 1.0527±0.0082 [16] andG(1) = 1.035±

0 2 4 6 8 10

0.5

1

1.5

q2(GeV2)

f +B→
 D

(q
2 )

Fig. 7 The extrapolated TFF f B→D+ (q2) versus q2. The solid line is
the central value and the shaded band is the squared average of all the
error sources. The error from the leading-twist DA φ2;D is shown by
the dash-dotted lines

0.040 [17]. Our result is slightly smaller than the values in
Refs. [16,53,54], but is consistent with the values in Refs.
[17,55] within reasonable errors.

Furthermore, one can calculate the branching ratioB(B →
Dlν̄l) with the following two formulas,

d

dq2 �(B → Dlν̄l) = G2
F |Vcb|2

192π3m3
B

λ3/2(q2)| f B→D+ (q2)|2,
(36)

B(B → Dlν̄l) = τB

∫ (mB−mD)2

0
dq2 d�(B → Dlν̄l)

dq2 ,

(37)

where λ(q2) = (m2
B + m2

D − q2)2 − 4m2
Bm

2
D is the

phase-space factor. We take the Fermi constant GF =
1.1663787(6) × 10−5 GeV−2, the B meson lifetime τB =
(1.520 ± 0.004) × 10−12s and the CKM matrix element
|Vcb| = (40.5 ± 1.5) × 10−3 [44]. Then

B(B
0 → D+lν̄l) = (2.133 ± 0.273) × 10−2. (38)

Our B(B
0 → D+lν̄l) in (38) agrees with B(B

0 →
D+lν̄l) = 2.03+0.92

−0.70 by pQCD [9], B(B
0 → D+lν̄l) =

2.13+0.19
−0.18 by HQET [8] and B(B

0 → D+lν̄l) = 2.18±0.12
in PDG [44].

5 Summary

In this paper, we have made a detailed study on the DA
φ2;D with the QCD sum rules under the framework of the
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background field theory and tried to estimate the uncer-
tainty from the improved model distribution amplitude. In
order to get more accuracy information on the DA φ2;D ,
we calculate the first four moments 〈ξn〉D of φ2;D with
QCD sum rules in the framework of BFT. Their values are
obtained as:

〈
ξ1
〉
D = −0.418+0.021

−0.022,
〈
ξ2
〉
D = 0.289+0.023

−0.022,
〈
ξ3
〉
D = −0.178 ± 0.010 and

〈
ξ4
〉
D = 0.142+0.013

−0.012 at scale
μ = 2 GeV. Furthermore, under the same scale the Gegen-
bauer moments of φ2;D are obtained as aD

1 = −0.697+0.036
−0.037,

aD
2 = 0.258+0.068

−0.064, aD
3 = 0.009+0.003

−0.002, aD
4 = −0.024−0.026

+0.020.
Based on those four Gegenbauer moments, the improved
model for the D-meson leading-twist DA φ2;D has been con-
structed. Our model has a narrower form than the models
existed in the literature, whose peak is at about x ∼ 0.2. We
have also analyzed the effect of anD’s uncertainty on the DA
φ2;D , which helps us to discuss the uncertainty that occurs
when the φ2;D is used as an input parameter to the exclusive
processes.

With our model of φ2;D , we calculate the B → D
TFF f B→D+ (q2), and obtain f B→D+ (0) = 0.673+0.038

−0.041 and

f B→D+ (q2
max) = 1.117+0.051

−0.054, we find that the error brought
by φ2;D to f B→D+ (q2) is obvious in the low and intermedi-
ate q2-region. This case shows that it is very necessary to
study and find more accurate form of the meson DA. In the
study of various processes, the error caused by the meson
DA as an input parameter should be taken into account. Fur-

thermore, we obtain the branching ratio B(B
0 → D+lν̄l) =

(2.133 ± 0.273)×10−2, which is consistent with experimen-
tal data and other approaches in the error range.
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AppendixA:The formulas of those terms in the sum rules
(28)

The formulas of those terms in sum rules (28) are

ImIpert(s) = 3

8π(n + 1)(n + 3)

×
{[

2(n + 1)
m2

c

s

(
1 − m2

c

s

)
+ 1

]

×
(

1 − 2m2
c

s

)n+1

+ (−1)n

}

, (A1)

L̂M I〈q̄q〉(−q2) = (−1)n exp

[
− m2

c

M2

]
mq 〈q̄q〉

M4 , (A2)

L̂M I〈G2〉(−q2) =
〈
αsG2

〉

M4

1

12π

[
2n(n − 1)H(n − 2, 1, 1)

+H(n, 0, 0) − m2
c

M2 H(n, 1,−2)

]
,

(A3)

L̂M I〈q̄Gq〉(−q2) = (−1)n exp

[
− m2

c

M2

]
mq 〈gsq̄σTGq〉

M6

×
[
−8n + 1

18
− 2m2

c

9M2

]
, (A4)

L̂M I〈q̄q〉2(−q2) = (−1)n exp

[
− m2

c

M2

] 〈gsq̄q〉2

M6

2(2n + 1)

81
,

(A5)

L̂M I〈G3〉(−q2) =
〈
g3
s f G

3
〉

M6 exp

[
− m2

c

M2

]
1

π2

×
{

− 17

96
F1(n, 5, 3, 2,∞)

+ n

144
F2(n − 1, 5, 3, 1,∞)

− 1

96
F2(n, 4, 3, 1,∞)

+ 1

144
F2(n, 3, 3, 1,∞)

−17

96
G1(n, 5) − 17

32
G2(n, 5)

×
(

1 − 1

3

m2
c

M2

)
+ n

144
G2(n − 1, 5)

− n

96
G3(n, 4) + n

144
G3(n, 3)

+ 1

288

[
204δn0 + 204θ(n − 1)(−1)n

+(−1)n
(

100n − 154 + 51
m2

c

M2

)]

×
[

ln
M2

μ2 + ψ(3)

]
+ (−1)n

288

×
(

17
m2

c

M2 − 4n

)}
+
〈
g3
s f G

3
〉

M6

1

π2

×
{

1

288

[
− 4(n + 1)n(n − 1)

×H(n − 2, 1, 1) + 4(n + 1)H(n, 0, 0)

−2nH(n − 1, 1,−1) − 3H(n, 0,−1)

−51H(n, 1,−2)

]
+ 1

288

m2
c

M2

×
[

− 4n(n − 1)H(n − 2, 1, 0)

−2H(n, 0,−2) + 4H(n, 0,−1)
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−2H(n − 1, 1,−2) − 3H(n, 1,−3)

]

+ 1

240

m4
c

M4H(n, 1,−4)

}
, (A6)

where

F1(n, a, b, lmin, lmax) =
n∑

k=0

(−1)kn!�(k + a)

k!(n − k)!

×
lmax∑

l=lmin

�(l + b)�(n − 1 − k + l)

�(n − 1 + l + a)

×
l∑

i=0

1

i !(l − i)!(l − 1 − i + b)!

×
(

− m2
c

M2

)l−i

, (A7)

F2(n, a, b, lmin, lmax) =
n∑

k=0

(−1)kn!�(k + a)

k!(n − k)!

×
lmax∑

l=lmin

�(l + b)�(n − k + l)

�(n + l + a)

×
l∑

i=0

1

i !(l − i)!(l − 1 − i + b)!

×
(

− m2
c

M2

)l−i

, (A8)

G1(n, a) =
n−2∑

k=0

(−1)kn!�(k + a)�(n − 1 − k)

k!(n − k)!�(n − 1 + a)
, (A9)

G2(n, a) =
n−1∑

k=0

(−1)kn!�(k + a)�(n − k)

k!(n − k)!�(n + a)
, (A10)

G3(n, a) =
n−1∑

k=0

(−1)k(n − 1)!�(k + a)�(n − k)

k!(n − k)!�(n + a)
, (A11)

H(n, a, b) =
∫ 1

0
dx(2x − 1)nxa(1 − x)b

× exp

[
− m2

c

M2(1 − x)

]
. (A12)

In calculation, the following Borel transformation formulas
are adopted,

L̂M
1

(−q2 + m2
c)

k
ln

−q2 + m2
c

μ2

= 1

(k − 1)!
1

M2k e
− m2

c
M2

[
ln

M2

μ2 + ψ(k)

]
(k ≥ 1),

L̂M (−q2 + m2
c)

k ln
−q2 + m2

c

μ2

= (−1)k+1k!M2ke− m2
c

M2 (k ≥ 0),

L̂M
(−q2)l

(−q2 + m2
c)

l+τ

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, τ = 0, l = 0;
∑l−1

i=0
l!

i !(l−i)!(l−i−1)!
(
− m2

c
M2

)l−i
e− m2

c
M2 , τ = 0, l > 0;

∑l
i=0

l!
i !(l−i)!(l+τ−i−1)!

(
− m2

c
M2

)l−i
1

M2τ e
− m2

c
M2 , τ > 0, l ≥ 0.

(A13)
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