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Abstract In this paper, we study Einstein gravity either
minimally or non-minimally coupled to a vector field which
breaks the gauge symmetry explicitly in general dimen-
sions. We first consider a minimal theory which is sim-
ply the Einstein-Proca theory extended with a quartic self-
interaction term for the vector field. We obtain its general
static maximally symmetric black hole solution and study
the thermodynamics using Wald formalism. The aspects of
the solution are much like a Reissner-Nordstrøm black hole
in spite of that a global charge cannot be defined for the vec-
tor. For non-minimal theories, we obtain a lot of exact black
hole solutions, depending on the parameters of the theories.
In particular, many of the solutions are general static and
have maximal symmetry. However, there are some subtleties
and ambiguities in the derivation of the first laws because the
existence of an algebraic degree of freedom of the vector in
general invalids the Wald entropy formula. The thermody-
namics of these solutions deserves further studies.
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1 Introduction

In recent years, the vector-tensor theories (or generalized
Einstein-Proca theories) have attracted a lot of attentions
in the literatures [1–19]. In these theories, there exist some
interesting solutions, which are relevant for astrophysics and
cosmology, such as the stealth Schwarzschild black hole.
The existence of such solutions breaks the uniqueness theo-
rem of spherically symmetric solutions in General Relativ-
ity and provides new candidates for astrophysical tests. The
cosmological implications of these theories were also stud-
ied in a series of literatures [1–4,8–10]. On the other hand,
there exists a no-go theorem which excludes the existence of
Einstein-Proca black holes in asymptotically flat space-times
[20,21]. However, the theorem is easily evaded. By numer-
ical analysis, it was established in [22] that when Einstein
gravity minimally coupled to an even number of real Proca
fields, there exist asymptotically flat, stationary, axisymmet-
ric black holes with Proca hair. It was analytically shown in
[11–19] that the no-go theorem can be avoided in the pres-
ence of non-minimal couplings between the curvature and
the vector fields.

Yet, there are still some holes left in the literatures which
motive our current work. The first is in vector-tensor theo-
ries the vector field is as physical as the field strength since
the gauge symmetry is explicitly breaking owing to either a
nonzero bare mass or non-minimal couplings. A direct con-
sequence of this is one can introduce a non-trivial radial com-
ponent for the vector field Ar when solving black hole solu-
tions in the dual theories [12,14,16]. However, the power of
this has not been considered very well. In this paper, we will
show that in many cases how one can obtain the most general
static maximally symmetric solutions with a nonzero Ar in
general dimensions. The most simple example we study is
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a minimal theory which generalizes the free massive Proca
theory with a quartic self-interaction term. We also obtain
such general static solutions for non-minimal theories with
coupling terms of the form Rμν AμAν and Gμν AμAν , where
Rμν ,Gμν are the Ricci tensor and Einstein tensor of the met-
ric respectively. In the four dimension, the later case has been
well studied in [16].

Our second motivation is while people have obtained a
series of exact black holes with vector hairs, their thermody-
namics was even not studied except for a few papers [11,13].
Here we will adopt the Wald formalism to derive the first law
of thermodynamics systematically for all the solutions we
obtain. Moreover, we find some subtleties and ambiguities
when deriving the first laws for the solutions with a nonzero
Ar . The underlying reason is Ar is a purely algebraic degree
of freedom which does not introduce corresponding vector
charges in the solutions. However, to govern the validity of
Wald entropy formula, one should impose proper boundary
conditions on the horizon for both At and Ar , which in gen-
eral results to a degenerate solution characterized by only one
parameter, in contrast to the general two-parameter family
solutions. Of course, this does not make sense in the deriva-
tion of the first law. Thus, one has to relax the horizon con-
dition for Ar but conversely this in general invalids the Wald
entropy formula. For more discussions, we refer the readers
to Sects. 2 and 4.

The paper is organized as follows. In Sect. 2, we study a
certain type vector-tensor theories. We analyze the structure
of the general static maximally symmetric solutions. We also
briefly review the Wald formalism, derive explicit formulas
for our gravity model and discuss the subtleties in the deriva-
tion of the first law. In Sect. 3, we study the minimally coupled
theory by introducing a quartic self-interaction term for the
vector. We obtain the general static solution with Ar �= 0 and
study various properties of the solutions. From Sects. 4–6,
we study non-minimally coupled vector-tensor theories and
obtain a lot of exact black hole solutions depending on the
parameters of the theories. We also derive the first law using
Wald formalism. We conclude in Sect. 7.

2 The vector-tensor theories

2.1 Structure of general static solutions

In this paper, we consider Einstein gravity either minimally
or non-minimally coupled to a vector field together with a
potential V (it should not be confused with the vector field
A). The Lagrangian density is given by,

L = R − 1

4
F2 − βA2R + γ Rμν A

μAν − V (ψ), (1)

where F = d A and ψ ≡ AμAμ. Note that the effective
gravitational coupling constant is inversely proportional to,

κeff = 1 − βA2. (2)

To avoid ghost-like graviton modes, we require κeff being
positive definite throughout this paper. In addition, the γ

coupling term can be written more explicitly as,

Rμν A
μAν = Aμ

(∇μ∇ν − ∇ν∇μ

)
Aν . (3)

This is a special case discussed in [5], where a general con-
struction of vector-tensor theories preserving parity has been
well studied.

The covariant equations of motions are,

Gμν = T (min)
μν + βYμν + γ Zμν, ∇μF

μν

= 2Aν

(
βR + dV

dψ

)
− 2γ Rμν Aμ, (4)

where Gμν = Rμν − 1
2 Rgμν is the Einstein tensor and,

T (min)
μν = 1

2

(
F2
μν − 1

4
gμνF

2
)

+
(
dV

dψ
AμAν − 1

2
gμνV (ψ)

)
,

Yμν = A2Gμν + (
gμν� − ∇μ∇ν

)
A2 + RAμAν,

Zμν = −2Aσ Rσ(μAν) + ∇σ ∇(μ

(
Aν)A

σ
)

− 1
2 �

(
AμAν

) + 1
2

(
Rαβ A

α Aβ − ∇α∇β

(
Aα Aβ

))
.

(5)

For later convenience, we denote the Einstein and the vec-
tor equations of motions in (4) by Eμν = 0 and Pμ = 0
respectively.

In particular, we are interested in a vector potential of the
type,

V = 2	0 + 1

2
m2A2 + γ4A

4, (6)

where γ4 is a coupling constant characterizing the self-
interaction of the vector field. Hence, the general the-
ories are characterized by five independent parameters
(β, γ,	0,m2, γ4). For γ = 0, the theories with such a poten-
tial were first studied in [13] whilst the γ4 = 0 case has been
studied in [11,12,14,16] for certain coupling constants but
most of them are limited to the four dimension. Instead, in
this paper we will investigate the theories for general cou-
pling constants and solve the static maximally symmetric
solutions in general dimensions.

The most simple solutions of the theories (1) are given by,

Gμν = −	0gμν, A = 0, (7)

It follows that depending on the sign of the bare cosmo-
logical constant, the maximally symmetric vacuum is AdS
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(	0 < 0), Minkowski (	0 = 0) or dS (	0 > 0) space-times,
respectively. Linearizing the equations of motions around the
vacuum, we find that the linear fluctuations of the equations
are described by a massless graviton and a Proca which has
an effective mass,

m2
eff = m2 + 4	0

n−2

(
nβ − γ

)
, (8)

where n denotes the space-time dimensions. Notice that
owing to the existence of the non-minimal couplings, an
effective Proca mass can be generated in the vacuum even
if the bare mass vanishes. Likewise, even if the bare mass
is nonzero, the U(1) gauge symmetry of the vector can be
restored at the linear level when the parameters are such that
m2

eff = 0. This is true for any Ricci-flat metric, including
Schwarzschild and Kerr black holes.

The most general ansatz for static maximally symmetric
solutions is,

ds2 = −h dt2+dr2

f
+r2d
2

n−2,k, A = Atdt+Ardr,

(9)

where h, f, At , Ar are all functions of r and d
2
n−2,k

is the metric of the codimension-2 space with spher-
ical/hyperbolic/toric symmetries, corresponding to k =
1,−1, 0, respectively. It is easy to see that the vector equation
Pr is purely algebraic for Ar . We find,

Ar
(
γ4 A2

r + · · · ) = 0, (10)

where the dotted term is composed of the functions h, f, At

and their derivatives with respect to r (this term exactly van-
ishes for Einstein-Proca theory and hence the solutions with a
nonzero Ar do not exist in this case.). It is clear that the above
equation has isolated roots Ar = 0 and Ar �= 0, correspond-
ing to different branch solutions. Consequently, in general
the solutions with Ar �= 0 do not have a smooth limit to send
Ar → 0 and reduce to the solutions with Ar = 0. This is
also true even if γ4 = 0, in which case Ar in general can
not be solved algebraically.1 Nonetheless, the ansatz (9) is
most general for both Ar = 0 and Ar �= 0 solutions. We will
study either of the two cases or both of them, depending on
whether we can solve exact black hole solutions.

In the near horizon region, the metric functions and the
vector fields can be expanded as Taylor series of the form,

h = (r − r0) + h2(r − r0)
2 + h3(r − r0)

3 + · · · ,

f = f1(r − r0) + f2(r − r0)
2 + f3(r − r0)

3 + · · · ,

1 In fact, the Einstein equation Err is also an algebraic equation for Ar
when β = γ /2. Thus, in this case, Ar can still be solved algebraically
even if γ4 = 0.

At = a0 + a1(r − r0) + a2(r − r0)
2 + a3(r − r0)

3 + · · · ,

Ar = b0
(r−r0)σ

(
1 + b1(r − r0) + b2(r − r0)

2 + b3(r − r0)
3 + · · ·

)
,

(11)

where r0 denotes the horizon radii and we have set h1 = 1
owing to the scaling symmetry of the time coordinate. It
should be emphasized that unlike the Ar = 0 case, for the
solutions with a non-vanishing Ar the finite norm condition
of the vector is insufficient to govern At vanishes on the
horizon. We find that σ = 1 when a0 �= 0 and σ = 1/2
when a0 = 0. Both cases are allowed by the equations of
motions. Substituting the expansions into the equations of
motions, we find that for the minimal theory β = 0 = γ

and a certain non-minimal theory with β = γ /2, there are
either three independent parameters (r0, a0, a1) when a0 �= 0
or two parameters (r0, a1) when a0 = 0 on the horizon. In
these two cases the coefficient fi , bi are completely fixed
because the metric function f and the vector field Ar are
solved algebraically from the equations Pr , Err . For generic
case, the near horizon solutions are characterized by four
independent parameters: (r0, f1, a0, b1) when a0 �= 0 and
(r0, f1, a1, b0) when a0 = 0. For all these cases, the rest of
the coefficients can be solved in terms of functions of the
two, three or four independent parameters.

However, in spite of that a nonzero a0 is compatible with
the equations of motions, it leads to a divergent local dif-
feomorphism invariant of the vector Aā = Eμ

ā Aμ on the
horizon, where Eμ

ā is the inverse vielbein. This is something
that we do not appreciate2 and we will not discuss this case
further in the remaining of this paper.

The general structure of the asymptotic solutions at infin-
ity heavily depends on the five parameters of the theories as
well as the asymptotical structure of the space-times. Here
we shall not analyze them in a case-by-case basis since most
of the solutions that we obtain contain all the independent
integration constants. Nevertheless, it is deserved to show
some universal aspects of the general asymptotic solutions.
We find,

h = · · · + g2r2 + keff − 2μ

rn−3 + · · · , At = · · · + q1 − q2

rn−3 + · · · ,

(12)

where the effective cosmological constant is parameterized
by 	eff = − 1

2 (n − 1)(n − 2)g2, keff is a function of
(k, μ, q1, q2) and in general keff �= k (we call it the effec-
tive curvature of the codimension-2 space). It is clear that the
asymptotic solutions are characterized by three independent
integration constants μ, q1, q2 which are associated with the
black hole mass and the vector charges respectively. How-
ever, only two of the three parameters are truly independent

2 One of the disasters of a divergent Aā is it leads to a divergent Wald
formula δH on the horizon.
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since the boundary conditions on the horizon provide an alge-
braic constraint for the three parameters. For example, we
may take the parametric relation by saying q1 = q1(μ, q2).
Then the full solutions are characterized by two indepen-
dent parameters μ, q2, which are analogous to the case of a
Reissner-Nordstrøm (RN) black hole.

2.2 Wald formalism and thermodynamics

In this paper, we will adopt the Wald formalism to derive the
first law of thermodynamics for all the solutions we obtain.
The Wald formalism provides a systematic procedure for the
derivation of first law of thermodynamics for the solutions
of a generic gravity theory. It was first developed by Wald
in [23,24]. Variation of the action with respect to the metric
and the matter fields, one finds,

δ
(√−gL

)
= √−g

(
Eφδφ + ∇μ J

μ
)
, (13)

where φ collectively denotes the dynamical fields and Eφ =
0 are the equations of motions. For our gravity model, the
current Jμ receives contributions from both the gravity and
the vector. We find,

Jμ = Jμ

(G) + Jμ

(A), Jμ

(G) = Gμνρσ ∇νδgρσ ,

Jμ

(A) = −Fμν δAν + β Gμνρσ
(∇ν A

2 − A2∇ν

)
δgρσ + γ Jμ

(γ ),

(14)

where Gμνρσ is the Wheeler-Dewitt metric, defined by,

Gμνρσ = 1

2
(gμρgνσ + gμσ gνρ) − gμνgρσ , (15)

and the current associated with the γ coupling term is,

Jμ

(γ ) =
(
gμλAρ Aσ ∇σ δgλρ − ∇λ

(
Aρ Aμ

)
δgλρ

)

+1

2

(
∇μ

(
AλAρ

)
δgλρ − AλAρ∇νδgλρ

)

+1

2
gλρ

(
∇σ

(
AμAσ

)
δgλρ − AμAσ ∇σ δgλρ

)
. (16)

Note that we have put the current associated with the non-
minimally coupled terms into the vector sector. For a given
current Jμ, one can define a current 1-form and its Hodge
dual as,

J(1) = Jμdx
μ, �(n−1) = ∗J(1). (17)

When the variation is generated by an infinitesimal diffeo-
morphism ξμ = δxμ, one can define an associated Noether
current (n − 1)-form as,

J(n−1) = �(n−1) − iξ · ∗L, (18)

where iξ · denotes the contraction of ξ with the first index of
the n-form ∗L it acted upon. It was shown in [23,24] that
the Noether current J(n−1) is closed once the equations of
motions are satisfied, namely,

d J(n−1) = e.o.m, (19)

where e.o.m denotes the terms proportional to the equations
of motions. Thus one can further define a charge (n−2)-form
as,

J(n−1) = dQ(n−2). (20)

It was shown in [23,24] that when ξ is a Killing vector, the
variation of the Hamiltonian with respect to the integration
constants of a specific solution is given by,

δH = 1

16π

[
δ

∫

C
J(n−1) −

∫

C
d(iξ · �(n−2))

]

= 1

16π

∫

�n−2

[
δQ(n−2) − iξ · �(n−2)

]
. (21)

where C is a Cauchy surface, �n−2 is its two boundaries, one
on the horizon and the other at infinity. For our vector-tensor
theories, it is straightforward to derive the various quantities
in the Wald formalism though the calculations are a little
lengthy. For pure gravity, we have [24],

J (G)
(n−1) = −2εμc1...cn−1∇ν

(
∇[μξν]),

Q(G)
(n−2) = −εμνc1...cn−2 ∇μξν,

iξ · �
(G)
(n−1) = εμνc1...cn−2ξ

ν
(
Gμλρσ ∇λδgρσ

)
. (22)

For the vector sector, we obtain,

J (A)
(n−1) = 2εμc1 ···cn−1 ∇ν

[
− 1

2 F
μν Aσ ξσ

+ β
(
A2∇[μξν] + 2ξ [μ∇ν]A2

)

+ γ
(
ξσ ∇[μ(

Aν]Aσ
) − ξ [μ∇σ

(
Aν]Aσ

) − Aσ A[μ∇σ ξν])
]
,

Q(A)
(n−2) = εμνc1···cn−2

[
− 1

2 F
μν Aσ ξσ

+ β
(
A2∇μξν + 2ξμ∇ν A2

)

+ γ
(
ξσ ∇μ

(
Aν Aσ

) − ξμ∇σ

(
Aν Aσ

) − Aσ Aμ∇σ ξν
)]

,

iξ · �
(A)
(n−1) = εμνc1···cn−2 ξ

ν
(

− Fμν δAν

+ β Gμνρσ
(∇ν A

2 − A2∇ν

)
δgρσ + γ Jμ

(γ )

)
. (23)

Notice that the Wald formalism does not explicitly depend
on the non-derivative terms of the Lagrangian density. The
various quantities have been given in [13] for γ = 0 and in
[25–30] for β = 0 = γ .
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Now we evaluate δH for the general static solutions with
maximal symmetry (9). Let ξ = ∂/∂t , we obtain,

δH = δH (G) + δH (A)

δH (G) = ωn−2

16π
rn−2

√
h

f

(
−n − 2

r

)
δ f, (24)

and,

δH (A) = δH (A)
(min) + δH (β)

(non) + δH (γ )

(non),

δH (A)
(min) = −ωn−2

16π
rn−2

√
h

f

(
f

h
AtδA

′
t

+ 1

2
At A

′
t

(
δ f

h
− f δh

h2

) )
,

δH (β)

(non) = β ωn−2

16π
rn−2

√
f

h

(
6h′

h
AtδAt − 4δ(At A

′
t )

+ A2
t �1 + h f A2

r �2

)
,

δH (γ )

(non) = −γ ωn−2

16π
rn−2

√
f

h

(
3h′

h
AtδAt − 2δ(At A

′
t )

+ A2
t �1 + h f A2

r �2

)
. (25)

where ωn−2 is the volume factor of the (n − 2) dimensional
space and,

�1 = 2δh′

h
+

(
4A′

t

At
− 5h′

h

)
δh

h
−

(
2A′

t

At
− h′

h
+ n − 2

r

)
δ f

f
,

�2 = 4δA′
r

Ar
+

(
2A′

r

Ar
− h′

h
+ 2 f ′

f

)
2δAr

Ar
+ 2δ f ′

f

+
(

6A′
r

Ar
− h′

h
+ f ′

f
+ n − 2

r

)
δ f

f
,

�1 = δh′

h
+

(
2A′

t

At
− 5h′

2h

)
δh

h
−

(
A′
t

At
− h′

2h

)
δ f

f
,

�2 = 2δA′
r

Ar
+

(
2A′

r

Ar
− h′

h
+ 2 f ′

f
+ 2(n − 2)

r

)
δAr

Ar
+ δ f ′

f

+
(

3A′
r

Ar
− h′

2h
+ f ′

2 f
+ 2(n − 2)

r

)
δ f

f
. (26)

It was shown in [23,24] that evaluating δH on the horizon
yields,

δH+ = T δS, (27)

where the temperature and Wald entropy are given by,

T = κ

2π
, S = −1

8

∫

+

√
h dn−2x εabεcd

∂L

∂Rabcd
. (28)

Here κ is the surface gravity on the horizon. Throughout this
paper, the Wald entropy is always denoted by S, without any

subscript. For our metric ansatz, we have,

T = 1

4π

√
h′(r0) f ′(r0),

S = 1
4A

[
1 + (β + 1

2γ )
(
A2
t (r0)

h(r0)
− A2

r (r0) f (r0)
)]

, (29)

where A = ωn−2r
n−2
0 is the area of the horizon. Evaluating

δH at both infinity and on the event horizon yields,

δH∞ = δH+. (30)

Thus the first law of thermodynamics is simply,

δH∞ = T δS. (31)

This is the standard derivation of the first law when the Wald
entropy formula holds. However, the situation in our case is
even more subtle because counterintuitively, the finite norm
condition of the vector is not sufficient to govern the validity
of the Wald entropy formula (29). The reason is δH+ may
be non-integrable for general near horizon solutions. As was
discussed in [31], to govern the validity of Wald entropy for-
mula one should require the local diffeomorphism invariant
Aā of the vector vanishes on the horizon.3 However, for our
vector-tensor theories such a condition in general turns out
to be too strong to be imposed because Ar is an algebraic
degree of freedom which does not have corresponding vec-
tor charges. So we have to relax the condition for Ar̄ (r0)

and simply demand a vanishing At̄ (r0). This has fixed the
parametric relation between the parameters (μ, q1, q2) of
the asymptotic solutions but it does not necessarily lead to
a vanishing Ar̄ (r0). Consequently, δH+ in general becomes
non-integrable. We find,

δH+ = 1
4T

[(
1 − (β − γ )�

)
δA − (β − 1

2γ )A δ�
]

= T
[
δS + 1

4γ
(
A δ� + 3

2�δA
)]

. (32)

where � ≡ A2
r̄ (r0) is a dimensionless quantity. The exis-

tence of the non-integrable one-form on the r.h.s of the equa-
tion invalids the Wald entropy formula as well as a refin-
ing entropy defined as δH+ ≡ T δSre. Nonetheless, formally
one can still write down a “first law” using the Wald equa-
tion despite that its physical meaning is unclear. Notice that
when γ = 0, one will not encounter the trouble any longer

3 The Wald entropy is closely related to the Noether charge as:
1

16π

∫
r=r0

Q(n−2) = T S. So the variation of Hamiltonian on the horizon
is,

δH+ = T δS +
(
SδT − 1

16π

∫

r=r0

iξ · �(n−1)

)
.

Here the cancellation of the second term on the r.h.s of this equation
requires Aā vanishes.
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because of δH+ = T δS. Furthermore, when β = 1
2γ , δH+

is integrable as well,4 given by,

δH+ = 1
4T

(
1 + 1

2γ�
)
δA ≡ T̃ d S̃, (33)

where the improved temperature and entropy are defined by,

T̃ ≡ (
1 + 1

2γ�
)
T, S̃ ≡ (

1 − γ�
)−1

S = 1
4A. (34)

Here comes an intriguing question that how the improved
temperature T̃ is interpreted in the thermodynamical content.
We leave this as a future direction for research. For generic
case, as will be shown later, the above non-integrable one-
form may vanish for a certain coupling constant γ .

3 Minimal theory

In this section, we study a minimally coupled theory describ-
ed by,

L = R − 2	0 − 1

4
F2 − 1

2
m2A2 − γ4A

4, (35)

which generalizes the Einstein–Proca theory with a quartic
self-interaction term for the vector field. Despite the sim-
ple form of the theory, there are some new interesting and
important features in the theory. For instance, although for
	0 �= 0 the maximally symmetric vacuum of the theory is
(A)dS space-times, it also allows a simple solution which is
Minkowski space-times supported by a constant vector,

ds2 = −dt2 + dr2+r2d
2
n−2, A = q1dt +

√

q2
1 − m2

4γ4
dr,

(36)

provided the parametric relation,

	0 = m4

32γ4
. (37)

Note that this relation leads to a perfect squared vector poten-
tial V = −γ4

(
A2 + m2

4γ4

)2 and the parameters in the solution
(36) are such that V = 0. Reality of the solution naturally
requires q2

1 ≥ m2

4γ4
, where the “=” case corresponds to a van-

ishing Ar , which was first studied in [13]. It is worth empha-
sizing that the above solution (36) is not a vacuum solution

4 For β = γ /2, the non-minimal coupling term becomes Gμν AμAν .
In this case, the solutions with Aμ = ∂μφ are connected to those of
Horndeski gravity. However, the dynamics of the two theories are sig-
nificantly different. It was shown in [31] that in Horndeski gravity δH+
is always integrable but δH+ = T δ S̄ �= T δS. This is very different
from our results.

because the vector breaks the gauge symmetries explicitly.
When the bare cosmological constant deviates from the crit-
ical value (37), an effective cosmological constant emerges,

	eff = 	0 − m4

32γ4
, (38)

in the corresponding solutions because the potential now
becomes,

V = 2	eff − γ4

(
A2 + m2

4γ4

)2
. (39)

A second new and probably more important feature of the
theory (35) is that we can exactly solve its general static max-
imally symmetric black hole solution with Ar �= 0. This is
quite surprising since up to now any exact black hole solution
has not been found in Einstein–Proca theory. To keep gener-
ality, let’s discuss how to analytically solve the equations of
motions for general parameters.

First, the equations Pr and Err are purely algebraic for
Ar and f so we can solve the two functions in terms of h, At

and their derivatives,

f = 4γ4A2
t − m2h

4γ4hA2
r

,

A2
r =

2
(

4γ4A2
t −m2h

)(
r2A

′2
t +2(n−2)rh′+2(n−2)(n−3)h

)

(
(m4−32γ4	0)r2+16(n−2)(n−3)γ4k

)
h2

. (40)

The remaining independent equations are Ett and P t , which
are second order non-linear ordinary differential equations
(ODE) of At and h. They are in general very difficult to
integrate. Fortunately, we find that the two equations become
integrable if we parameterize the two functions as,

h = − 2μ

rn−3 + 1

4rn−3

∫
dr H(r),

At =
∫

dr r− (n−2)
2

√
F(r) − n−2

2 H(r), (41)

where μ is an integration constant. Strikingly, the equation
Ett simplifies to a single linear first order ODE for F ,

0 =
(
(m4 − 32γ4	0)r

2 + 16(n − 2)(n − 3)γ4k
)
F ′

− (n−2)
r

(
(m4 − 32γ4	0)r

2 + 16(n − 3)(n − 4)γ4k
)
F,

(42)

which can be immediately solved by,

F = C

8γ4

(
(m4 − 32γ4	0)r

2 + 16(n − 2)(n − 3)γ4k
)
rn−4,

(43)
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where C �= 0 is a new integration constant. Substituting (43)
into Pr , we find it also reduces to a linear first order ODE,

0 = H ′ + n − 2

r
H − C

2γ4

(
(m4 − 32γ4	0)r

2 + 16(n − 3)2γ4k
)
rn−5,

(44)

which is easy to integrate. We get,

H =
(
m4 − 32γ4	0

)
C

4(n − 2)γ4
rn−2

+ 4(n − 3)Ck rn−4 − 2(n − 3)2q2
2

(n − 2)rn−2 , (45)

where q2 is an integration constant associated with the
Coulomb-like charge of the vector, as will be shown later.
Plugging Eqs. (43) and (45) into (41), we obtain,

h = C
(
g2r2 + k

)− 2μ

rn−3 + (n − 3)q2
2

2(n − 2)r2n−6 , At = q1 − q2

rn−3 , (46)

where the effective cosmological constant (38) is parame-
terized by 	eff = − 1

2 (n − 1)(n − 2)g2 and q1,2 are the
two vector charges which are analog of the chemical poten-
tial/charge density of Reissner–Nordstrøm (RN) black hole.
Now it is clear that C is a non-physical parameter which is
associated with the scaling symmetry of the time coordinate.
Without loss of generality, we setC = 1. Finally, substituting
(46) into (40), we find,

f = h, A2
r = A2

t

f 2 − m2

4γ4 f
. (47)

This completes our derivation. To conclude, we obtain,

ds2 = − f dt2 + dr2

f
+ r2d
2

n−2,k , Ar =
√

A2
t
f 2 − m2

4γ4 f ,

At = q1 − q2

rn−3 , f = g2r2 + k − 2μ

rn−3 + (n − 3)q2
2

2(n − 2)r2n−6 .

(48)

Now we are ready to give some comments on the solution.
First, as is clear from the derivation, the above solution is
the most general static solution with maximal symmetries in
the presence of a non-vanishing Ar . It contains all the three
integration constants μ, q1, q2 which are associated with the
black hole mass and the vector charges respectively. Second,
formally without Ar the solution is simply the RN black hole!
In fact, this is easily understood because under the special

ansatz h = f, Ar =
√

A2
t
f 2 − m2

4γ4 f , the norm of the vector is a

constant A2 = − m2

4γ4
such that V = 2	eff and the stress ten-

sor of the vector reduces to that of a Maxwell: T A
μν = TMax

μν .
In this sense, we may call the solution a stealth Reissner–
Nordstrøm black hole (but one should remember the gauge
symmetry is breaking).

Moreover, evaluating δH at infinity yields,

δH∞ = δM − (n − 3) ωn−2

16π
q1δq2, (49)

where the black hole mass M is defined by,5

M = (n − 2) ωn−2

8π
μ. (50)

The Wald equation (31) implies the first law is,

dM = TdS + (n − 3) ωn−2

16π
q1dq2, (51)

where the temperature and entropy are given by,

T = 1

4πr0

(
(n − 1)g2r2

0 + (n − 3)k − (n−3)2q2
2

2(n−2)r2n−6
0

)
, S = 1

4A.

(52)

In addition, the Smarr relation is,

M = n − 2

n − 3
T S + (n − 3) ωn−2

16π
q1q2 − 2

n − 3
V P, (53)

where the thermodynamic pressure P and volume V are
defined by,

P = −	eff

8π
, V = ωn−2

n − 1
rn−1

0 . (54)

All these global properties and the relations are exactly the
same as the RN black hole in spite of that in general a
global charge cannot be defined for the vector field due to
the absence of a Gauss’s law. By plugging the mass, temper-
ature and entropy into the first law (51), we ensure that the
first law is valid if and only if At̄ vanishes on the horizon.
This is consistent with our previous argument. The result has
nothing to do with Ar̄ because the Wald formula Eqs. (24–26)
do not explicitly depend on Ar for a minimal theory.

In particular, it is interesting to note that the third terms
associated with the vector field on the r.h.s of Eqs. (51) and
(53) look much like the electrostatic potential and electric
charge of a RN black hole. Formally, we can introduce,

�p ≡ q1, Qp ≡ (n − 3)ωn−2

16π
q2, (55)

5 In this paper, without specification, we always define the mass using
the usual fall-off mode 1/rn−3 associated with the condensate of the
massless gravitons. It is the standard ADM/AMD mass of the asymp-
totically flat/AdS solutions for the minimal theory. However, for non-
minimal theory the situation is not so simple. Nonetheless, we continue
using the concept for all these theories.

123



65 Page 8 of 17 Eur. Phys. J. C (2018) 78 :65

as the counterparts of the thermodynamic conjugate (�e, Qe)

of a RN black hole. In the latter case, the non-integrable term
�edQe associated to the Maxwell field in the first law is well
understood as the working term of the electrostatic force.
Thus, in this case the black hole mass is well defined via the
first law by using the Wald entropy. Here comes an intrigu-
ing question: for our vector field whether the term �pdQp

appearing in the first law Eq. (51) can be interpreted as the
work of the force associated to the vector field as well. We
find surprisingly, the answer is yes! The reason is for our
solution the vector field enjoys a detailed balance condition
A2 = −m2/(4γ4) such that its self-interaction terms on the
r.h.s of the equation of motion Eq. (4) are exactly cancelled.
Thus, in this sense the vector charge Qp is globally con-
served and the mass in addition to the ADM definition is
well defined via the first law by making use of the Wald
entropy. In addition, we also find that the absence of a naked
curvature singularity at the origin leads to an upper bound
for the vector charge,

Qp/M ≤
√

n−3
2(n−2)

, (56)

where the bound is saturated for an extremal solution which
is asymptotically flat.

Third, in general the limit Ar → 0 is not allowed except
for the asymptotically flat solution

ds2 = − f dt2 + dr2

f
+ r2d
2

n−2, Ar =
√

A2
t
f 2 − m2

4γ4 f ,

At = q1 − q2

rn−3 , f = 1 − 2μ

rn−3 + (n − 3)q2
2

2(n − 2)r2n−6 .

(57)

Note that the limit Ar → 0 gives rise to an extremal solution
[13] because of f ∼ A2

t .
Finally, the reality of Ar at any position of the space-times

strongly constraints the parameters of the solution (here we
do not clearly distinguish the integration constants of the
solution and the coupling constants of the theory). We find,

m2g2

γ4
≤ 0, q2

1 ≥ m2

4γ4
k, q1q2 ≤ m2

4γ4
μ, m2

4γ4
≤ 2(n−2)

n−3 .

(58)

Note that the limit of a free vector field γ4 → 0 is not well
defined for our solutions.

4 Non-minimal theory: case I

From now on, we turn to study the generalized Einstein-Proca
theories with non-minimally coupled terms. In this section,
we study a simple theory which has a single γ term, namely,

L = R − 1

4
F2 + γ Rμν A

μAν, (59)

whilst the theory with a single β term was studied in [13].
It turns out that for this simple theory, we can find different
kinds of stealth black hole solutions which satisfy Gμν =
0 = Tμν , depending on the non-minimal coupling constant.

4.1 Stealth black hole: γ = 1

The first case we consider is when γ = 1, we always have
Tμν = 0 for the special ansatz h = f, At ∝ f, Ar = 0.
Therefore, we easily find a stealth Schwarzschild black hole
solution,

ds2 = − f dt2 + dr2

f
+ r2d
2

n−2,

A = q1 f dt, f = 1 − 2μ

rn−3 , (60)

where q1, μ are two independent integration constants asso-
ciated with the vector charge and the black hole mass. The
solution can be trivially generalized to including a cosmo-
logical constant, additional matter fields (such as a Maxwell
field) or higher curvature terms (such as the Love-Lock
terms) in the Lagrangian density.

However, the solution is not most general since it contains
one less integration constant. To derive its first law of ther-
modynamics, we shall first analyze the structure of general
asymptotic solutions and derive the corresponding first law.
We find,

At = q1 − q2

rn−3 + · · · ,

h = 1 − 2μ

rn−3 − (n − 3)q2
2

2(n − 2)r2n−6 + · · · ,

f = 1 − 2μ

rn−3 − 3(n − 3)q2
2

2(n − 2)r2n−6 + · · · (61)

It is easy to see that in general h �= f and the mass of
the black hole does not receive contributions from the back-
reaction of the vector. Substituting the asymptotic solutions
into the Wald formula, we obtain,

δH∞ = δM + (n − 3) ωn−2

16π

(
q1δq2 + 2q2δq1

)

− (n − 3) ωn−2

8π

(
q2

1δμ + 3
2μδ(q2

1 )
)

, (62)

where the mass is defined by (50). It follows that the first law
reads,

dM = TdS − (n − 3) ωn−2

16π

(
q1dq2 + 2q2dq1

)

+ (n − 3) ωn−2

8π

(
q2

1dμ + 3
2μ d(q2

1 )
)

. (63)
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It is interesting to note that there are two new pairs of ther-
modynamic conjugates: (q1, q2) and (μ, q2

1 ). This is very
different from the Einstein-Proca black hole [25] which only
has the first pair of conjugates. For the special solution (60),
we have q2 = 2μq1 and,

T = n − 3

4πr0
, S = 1

4A. (64)

It is straightforward to verify the first law (63) is indeed sat-
isfied. In addition, define a new energy function as,

E ≡ M + (n − 3)ωn−2

16π
q1

(
q2 − 2μq1

)
, (65)

the first law can be cast into the form of,

dE = TdS − (n − 3)ωn−2

16π

(
q2 − 2μq1

)
dq1. (66)

So we may take E as a function of E = E(S, q1). Note
that the coupling constant γ is dimensionless so the above
equation contains all the dimensionful quantities in the theory
and the solution. It follows that using the scaling dimensional
arguments,

E → λn−3E, S → λn−2S, q1 → q1, (67)

we can derive a Smarr relation,

E = n − 2

n − 3
T S. (68)

Written back in terms of the original mass function, we find,

M = n − 2

n − 3
T S − (n − 3)ωn−2

16π
q1

(
q2 − 2μq1

)
. (69)

This can be easily verified although the solution (60) is degen-
erate.

4.2 Stealth black hole: generic case

4.2.1 The solution and thermodynamics

Interestingly, for generic γ �= 0, we can also obtain a stealth
Schwarzschild black hole solution which has a nonzero Ar .
First, the vector equation Pr reads,

0 = Ar

(
h′′
h − h′2

h2 +
(
h′
h + 2(n−2)

r

)
f ′
f

)
, (70)

while the Einstein equation Err is no longer algebraic for
Ar or the metric functions. To proceed, we choose a spe-
cial ansatz h = f . Then the vector equations dramatically
simplify to,

y′′ + n−2
r y = 0, y = f or y = At , (71)

which can be immediately solved as,

h = f = 1 − 2μ

rn−3 , At = q1 − q2

rn−3 . (72)

The remaining equations are Ett , Err , both of which are ODE
of Ar . Here, one may worry about the two equations are
inconsistent with each other. Fortunately, we are able to find
an unique solution for Ar which satisfies both equations,

A2
r = r3−n

2(n−1)γμ f 2

[
2(n − 3)(1 − γ )μ q2

2 r
3−n

+
(

2(n − 2)γ − (n − 3)
)
q2

2 + 4(n − 1)γ μq1(μq1 − q2)

]
.

(73)

This completes our derivation. In spite of that we do not
expect to find the most general solutions of the theory at the
very start, the solution we get contains all the three inde-
pendent integration constants μ, q1,2. This gives us strong
confidence that the above solution is the general static spher-
ically symmetric black hole solution with a nonzero Ar . To
govern the reality of Ar at any position of the space-times,
the coupling constant is bounded,

0 < γ ≤ 1. (74)

For γ = 1, we always have A2
r ≥ 0 so the parameters

μ, q1, q2 are free in this case. For γ = (n−3)
2(n−2)

, the condition
leads to μq1(μq1 − q2) ≥ 0. For generic case, the constant
terms in the square bracket of (73) should be nonnegative.

For later convenience, we list the above solution as fol-
lows,

ds2 = − f dt2 + dr2

f
+ r2d
2

n−2,

At = q1 − q2

rn−3 , f = 1 − 2μ

rn−3 ,

A2
r = r3−n

2(n−1)γμ f 2

[
2(n − 3)(1 − γ )μ q2

2 r
3−n

+
(

2(n − 2)γ − (n − 3)
)
q2

2 + 4(n − 1)γ μq1(μq1 − q2)

]
.

(75)

Evaluating δH at infinity yields,

δH∞ = δM̃ + (n − 2)γωn−2

8π

(
q2δq1 +

(
1 − n−3

2(n−2)γ

)
q1δq2

)

− (n − 2)γωn−2

8π

(
q2

1 δμ + 3n−7
2(n−2)

μ δ
(
q2

1

))
, (76)

where the refining mass M̃ is defined by,

M̃ = M −
(

2(n−2)γ−(n−3)
)
ωn−2

32(n−1)π

q2
2

μ
. (77)

123



65 Page 10 of 17 Eur. Phys. J. C (2018) 78 :65

Then the Wald equation suggests the first law is,

d M̃ = TdS − (n − 2)γωn−2

8π

(
q2dq1 + (

1 − n−3
2(n−2)γ

)
q1dq2

)

+ (n − 2)γωn−2

8π

(
q2

1dμ + 3n−7
2(n−2)

μ d
(
q2

1

))
. (78)

For our solution (75), the temperature and Wald entropy are
given by,

T = n − 3

4πr0
, S = 1

4A
(

1 + 1
2γ q2

1 −
(

2(n−2)γ−(n−3)
)
q2

2

2(n−1)r2n−6
0

)
.

(79)

However, by plugging these results into the first law (78),
we find that it picks out a special coupling γ = 1 when
we impose the boundary condition that Aā vanishes on the
horizon. In fact, relaxing the horizon condition for Ar̄ , we
find in general δH+ becomes non-integrable,

δH+ = T δS + (n − 3)(γ − 1)ωn−2

16(n − 1)π

×
(

2(n − 3) μ δ
(
q2

1

) + 3(n − 2) q2
1δμ

)
. (80)

Thus, the Wald entropy formula is invalid for a generic cou-
pling owing to existence of the non-integrable one form on
the r.h.s of (80). These results are consistent with our discus-
sions in Sect. 2.2. Nonetheless, combining (76) and (80) and
using the Wald equation one can formally write down a first
law for the solution (75),

d M̃ = TdS − (n − 2)γωn−2

8π

(
q2dq1 +

(
1 − n−3

2(n−2)γ

)
q1dq2

)

+ ωn−2

16(n − 1)π

[
(n − 2)

(
(5n − 11)γ − 3(n − 3)

)
q2

1dμ

+
(
(5n2 − 22n + 25)γ − 2(n − 3)2

)
μ d

(
q2

1

)
]
. (81)

This is a correct mathematic equation though its physical
meaning is not so clear. Define a Legendre transformed
energy function,

E = M̃ + (n − 2)γωn−2

8π
q1q2

− (n − 2)ωn−2

16(n − 1)π

(
(5n − 11)γ − 3(n − 3)

)
μ q2

1 , (82)

the above first law simplified to,

dE = TdS + (n − 3)ωn−2

16π
q1dq2

+ (n − 3)(n − γ )ωn−2

16(n − 1)π
μ d

(
q2

1

)
. (83)

In addition, we also find a Smarr-like relation,

E = n − 2

n − 3
T S + (n − 3)ωn−2

16π
q1q2, (84)

which is a natural result of the scaling dimensional argu-
ments.

4.2.2 Euclidean action

Since the non-integrability of δH+ invalids the Wald entropy
formula, we shall explore whether there exists an alternative
approach to define the black hole entropy. It was first pro-
posed in [32] that thermodynamic quantities for black holes
can be calculated by means of quantum statistical relation:

F = IregT = M̂ − T Ŝ, (85)

where F is the free energy, Ireg is the regularized Euclidean
action of black hole solutions and M̂, Ŝ are black hole mass
and entropy, respectively (they should not be confused with
the mass and entropy defined from Wald formalism.). The
regularized Euclidean action can be defined by subtracting
the action of a background solution with μ = 0 from the
action of the black hole,

Ireg ≡ IE [gμν, Aμ] − IE
[
g(0)
μν , A(0)

μ

]
. (86)

However, for our solution (75) the limit μ → 0 is singular for
a generic coupling γ . Instead, we derive a proper background
solution by taking double scaling limit: μ → 0, q2 → 0 with
q2

2/μ → const. The resulting expression for free energy is
very simple,

F = − (n − 3)ωn−2 q2
2

32πr0
, (87)

In usual cases (such as a Schwarzschild black hole), one can
derive both the mass M̂ and entropy Ŝ independently as

Ŝ = −∂F

∂T
, M̂ = F + T Ŝ, (88)

by making use of Eq. (85) and the first law d M̂ = Td Ŝ. How-
ever, for our solution, the first law (81) is non-integrable. So
we have to fix one of the two functions at first and derive the
other one. We may take M̂ = M or M̂ = M̃ . In both cases,
we find the resulting entropy Ŝ disagrees with the standard
Wald entropy. Furthermore, if we instead require Ŝ = S,
the mass M̂ will again disagree with M and M̃ . As a mat-
ter of fact, the mass suffers from another shortcoming that it
can not be connected to M or M̃ via a Lengendre transfor-
mation. This conflicts with the first law of thermodynamics.
Hence, it is problematic whether M̂ has a correct thermody-
namic meaning. These mismatches between Wald formalism
and Euclidean method imply that the thermodynamics of our
solution deserves further investigations.
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5 Non-minimal theory: case II

Now let’s consider the general non-minimally coupled theory
described by

L = R − 1

4
F2 − βA2R + γ Rμν A

μAν . (89)

The maximally symmetric vacuum is Minkowski space-
times. However, the Lorentz symmetry of the vacuum can
break down because a constant vector is admitted as well,
namely

ds2 = −dt2 + dr2 + r2d
2
n−2, A = q1dt. (90)

Depending on the coupling constants, we find that there exist
significantly different classes of asymptotically flat black
hole solutions.

5.1 Unconventional black hole

The first class solution we find has an unconventional fall-off
at asymptotic infinity. It reads,

ds2 = − f dt2 + dr2

f
+ r2d
2

n−2,

A =
√

2(n−1)
(n−3)(1−γ )

f dt, f = 1 − μ

r
n−3

2

. (91)

provided the parametric relation,

2(n − 1)β + (n − 3)(γ − 1) = 0. (92)

Here μ is an integration constant which should not be con-
fused with the usual fall-off mode 1/rn−3. This type solution
was first found in [11] for β = γ /2 and in [13] for γ = 0.
Note that the reality of the vector requires γ < 1 and the
limit γ → 1 or equivalently β → 0 is singular. In fact, the
solution does not exist in the theory (59) which has a single

γ term. As was shown in [13], the unusual fall-off 1/r
n−3

2

in the metric functions corresponds to the longitudinal gravi-
ton mode, which is excited by the back-reaction effect of a
background vector.

Since the solution has only one integration constant, we
shall first analyze the general asymptotic solutions of the the-
ory for generic coupling constants before deriving the first
law. Linearing the equations of motions around the back-
ground (90), we find,

At = q1− q2

rσ
+· · · , h = 1− μ

rσ
+· · · , f = 1− μ̃

rσ
+· · · ,

(93)

where σ > 0 is an under-determined constant. The conven-
tional solution has σ = n − 3 and,

μ̃ = 4βq1q2 + (1 − βq2
1 )μ

1 + βq2
1

. (94)

Thus, the general solution is characterized by three inde-
pendent parameters (μ, q1, q2), as expected. However, the
unconventional solution with σ �= n−3 also exists provided

μ̃ =
(
q2 + (2β − γ )μq1

)
σ

2(n − 2)βq1
, q2 = (2β − γ )(1 + 3βq2

1 )μq1(
4(2β − γ ) + 1

)
βq2

1 − 1
,

(95)

and the vector charge q1 has been fixed as a function of
(n, β, γ ) (the details is irrelevant in our discussion). Hence,
one may worry about the existence of this type solutions
since it needs a delicate fine tuning of the boundary condi-
tions on the horizon.6 It is interesting that we do find such
a solution when σ = (n − 3)/2 [one can check that in this
case μ̃ = μ and the linearized solution (93) is just the exact
solution (91)].

To understand the solution (91) better, we develop its full
large-r expansions. We find,7

At =
√

2(n−1)
(n−3)(1−γ )

(
1 − μ

r (n−3)/2
− m

rn−3 + ã3

r3(n−3)/2
+ · · ·

)
,

h = 1 − μ

r (n−3)/2
− m

rn−3 + h̃3

r3(n−3)/2
+ · · · ,

f = 1 − μ

r (n−3)/2
− 2m

rn−3 + f̃3
r3(n−3)/2

+ · · · , (96)

where m is a new parameter associated with the conden-
sate of the transverse gravitons. The higher order coeffi-
cients ãi , h̃i , f̃i can be solved in terms of functions of the
two parameters (μ,m). Substituting (96) into the Wald for-
mula, we obtain

δH∞ = (n − 2)ωn−2

16π
μ δμ. (97)

Surprisingly, it does not receive any contributions from the
transverse graviton mode! This is very different from the
conventional black holes. We define the mass as δMuc ≡
δH∞, giving rise to

Muc = (n − 2)ωn−2

32π
μ2. (98)

6 Perhaps, this type solutions is unstable because unlike conventional
solutions, they in general do not have a convergent ADM mass.
7 It was established in [11] that for a special case γ = n−3

2(n−2)
, the

large-r expansions are different from the Eq. (96). However, this does
not change our conclusion.
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For our solution (91), the temperature and entropy are given
by

T = n − 3

8πr0
, S = 1

4A. (99)

It follows that the first law and Smarr relation are given by

dMuc = TdS, Muc = n − 2

n − 3
T S. (100)

To end this section, we point out that in the weak field limit
the unconventional solution (91) predicts a stronger gravita-
tional force than the Schwarzschild black hole. For exam-
ple, in the four dimension it has 1/r3/2-law rather than the
well-known 1/r2-law. More interestingly, since the general
asymptotic solution (96) has the usual fall-off mode 1/rn−3

as well, one can turn on or turn off the unconventional mode
freely. This gives rise to new possibilities and candidates how
the Newtonian inverse-squared law can be modified in galax-
ies and may be tested by observational data in astrophysics
in the future.

5.2 Stealth black hole and beyond

Following the derivation in Sect. 4.2, we find that there exists
an exact stealth Schwarzschild black hole at the critical cou-
pling γ = n−3

2(n−2)
whilst β remains free. The solution reads

ds2 = − f dt2 + dr2

f
+ r2d
2

n−2, Ar =
√

A2
t
f 2 − q2

1
f ,

At = q1 − q2

rn−3 , f = 1 − 2μ

rn−3 . (101)

We demandq1(μq1−q2) ≥ 0 to govern the reality of Ar . For-
mally, the solution is simply the one (75) when γ = n−3

2(n−2)
.

Likewise, its first law can be studied along the discussions in
Sect. 4.2.

Surprisingly, if we fix the vector charge q1 = 1/
√

γ − β,
a new fall-off mode emerges in the metric function without
altering anything else in the above solution. We find

f (r) = 1 − 2μ

rn−3 + λ

r ξ
, ξ = 2(n−2)β

2β−γ
, (102)

where λ is a new independent integration constant. The cou-
pling constant γ is still equal to n−3

2(n−2)
and β < γ, β �= γ /2.

For β = 0, ξ = 0 and for β = − 1
2 (n − 3)γ, ξ = n − 3. In

both cases, the new mode is trivial and can be dropped in the
metric function. When γ /2 < β < γ or β < − 1

2 (n − 3)γ ,
we find ξ > (n − 3), the λ mode falls off faster than 1/rn−3

whilst for − 1
2 (n−3)γ < β < 0, we have 0 < ξ < n−3, the

new mode falls off slower than the conventional one. More-
over, when 0 < β < γ/2, we have ξ < 0, implying that
the solution is no longer asymptotically flat, although the

maximally symmetric vacuum of the theory is Minkowski
space-times. In particular, when β = γ /n, we have ξ = −2,
the solution becomes asymptotically (A)dS and the cosmo-
logical constant emerges as an integration constant, which
is totally independent of the parameters in the Lagrangian
density. It may be the first time to observe this phenomena
in Einstein gravity except for conformal gravity.

Finally, it should be emphasized that the existence of such
a new mode is peculiar for the theory we consider because
the presence of both non-minimal couplings is essential to
govern the existence of this type solution.

6 Non-minimal theory: case III

Now we study a certain non-minimally coupled theory which
has β = γ /2 and also includes a bare cosmological constant
and a bare mass term

L = R − 2	0 − 1

4
F2 − 1

2
m2A2 + γGμν A

μAν . (103)

The theory has been extensively studied in [11,12,14,16] but
most of them are limited to the four dimension.

6.1 Without Proca mass

First, let’s consider a simpler case m2 = 0. From the discus-
sions in above section, it is immediately to see that when the
bare cosmological constant also vanishes, the asymptotically
flat solutions (91) and (101) are still valid with the coupling
constant γ = (n−3)

2(n−2)
in both cases.

For the same coupling constant, the solution (101) can
be generalized to non-asymptotically flat space-times when
	0 �= 0. We obtain,8

ds2 = −hdt2 + σ 2dr2

h
+ r2d
2

n−2,

Ar = σ√
h

√
A2
t
h − q2

1σ + 4	p(n−2)

n−3 r2,

At = q0r
2 + q1 − q2

rn−3 , σ = 	pr
2 + 1,

h = g4r
4 + g2r

2 + 1 − 2μ

rn−3 , (104)

where various parameters are specified by

q0 = (n − 3)	pq1

n − 1
, g4 = (n − 3)	2

p

n + 1
, g2 = 2(n − 3)	p

n − 1
.

(105)

8 We do not find planar black holes in this case: m2 = 0,	0 �= 0. The
reason is explained in next section.
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Here 	p is related to the bare cosmological constant

	p = 4	0

(n−3)

(
(n−3)q2

1 −4(n−2)

) . (106)

The solution in the n = 4 dimension was first obtained in
[12]. In the limit 	0 → 0, the solution reduces to (101).
Note that at asymptotic infinity, the solution (104) does
not approach neither asymptotically (A)dS nor Minkowski
space-times. We find

ds2|r→∞ → − (n−3)	2
p

n+1 r4dt2 + n+1
n−3dr

2 + r2d
2
n−2,

(107)

which is a z = 2 Lifshitz space-times with conical singu-
larities at infinity. As emphasized earlier, the reality of Ar

constrains the parameters space. We demand

	0 = 0, q1(μq1 − q2) ≥ 0, (108)

or

	0 < 0, q2
1 ≤ 4(n−2)(n2−1)

(n−3)(n2+1)
, 2q1q2

≤ min
{
μq2

1 ,
(n−1)μ
n−3

(
q2

1 − 4(n−2)
n−3

)}
. (109)

6.2 With Proca mass

With a nonzero Proca mass, it is of great difficult to solve
exact black hole solutions in the theory (103). Interestingly,
in [14] the author found some exact solutions for certain cou-
pling constants. Furthermore, in [16] the authors developed
a nice procedure to derive the general solution in the four
dimension. Here we follow the discussions in [16] and gen-
eralize the method to general dimensions.

6.2.1 Derivation of the solutions

A neat observation in [16] is that the equations Pr and Err

are purely algebraic for the metric function f and the vector
field Ar . Hence, they can be solved in terms of other functions
and their derivatives immediately

f (r) = m2r2 + (n − 2)(n − 3)γ k

(n − 2)γ
(
rh′ + (n − 3)h

)h(r),

A2
r = − r2

2

(
m2r2+(n−2)(n−3)γ k

)2

{
2(n − 2)(m2 + 2γ	0)r

(
h′
h + n−3

r

)

+
(
m2r2 + (n − 2)(n − 3)γ k

)(
A

′2
t
h + 2(n−2)γ

r

( A2
t
h

)′)}
.

(110)

The two equations (110) encode some universal information
about the general solution. For example, requiring the met-
ric functions behaves standard at asymptotically AdS space-
times, namely at leading order h = f = g2r2 + · · · at
infinity, we find the effective cosmological constant should
be proportional to the Proca mass squared

	eff = −m2

2γ
, (111)

where the effective cosmological constant is parameterized
by 	eff = − 1

2 (n − 1)(n − 2)g2. On the other hand, the
non-negativity of A2

r strongly constrains the parameters in
the theory as well as those in the solution. For instance, at
asymptotic infinity, A2

r behaves as (at leading order)

A2
r = − (n − 1)(n − 2)(m2 + 2γ	0)

m4r2 + O(1/r4), (112)

which implies that 	0 should not be bigger than 	eff , namely

	0 � −m2

2γ
= 	eff . (113)

These results are universal for the general solution.
To proceed our derivation, we parameterize the metric

function h and the vector field At as

h = − 2μ

rn−3 + 1

rn−3

∫
dr

(
m2r2 + (n − 2)(n − 3)γ k

)
H−2(r),

At = 1

rn−3

∫
dr F(r). (114)

It turns out that the remaining two independent equations
P t , Ett are integrable for H, F at the critical coupling con-
stant γ = (n−3)

2(n−2)
. First, the vector equation P t simplifies to

(
HF

)′ − n−4
2r H F = 0, (115)

which can be solved immediately as

F = C1r
n−4

2 H−1, (116)

where C1 is an integration constant. Its physically mean-
ing will be explained later. Then the Einstein equation Ett

reduces to a linear first order ODE of H which is easy to
integrate (we do not list it in the following due to its lengthy
expressions). We obtain

H =
C2

(
2m2r2 + k(n − 3)2

)
r− n−4

2

2
(
(n − 2)m2 − (n − 3)	0

)
r2 + 2(n − 2)(n − 3)2k − C2

1

,

(117)

where C2 is a new integration constant. Substituting (116)
and (117) into (114), we can derive h, At and then solve
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f, Ar through the Eq. (110). This completes our derivation.
The results depend on the topological parameter k as well as
the space-time dimension n. In the following, we will discuss
the solutions in a case-by-case basis. Before this, we point
out the above two integration constants C1,C2 are related to
the vector charge q1 and the effective cosmological constant,
respectively. We find

C1 = (n − 3)m q1

g
√
n − 1

, C2 = (n − 2)m2 − (n − 3)	0

mg
√
n − 1

.

(118)

Something else is we will not list the explicit expressions
for f and Ar since they are lengthy and we have too many
solutions in the following. The readers in need can easily find
them through the Eq. (110).

6.2.2 Planar black holes

For simplicity, let us consider planar black hole solutions at
first. For n �= 5 dimensions, we obtain

At = q1 − q2

rn−3 − (n−3)3m2q3
1

2(n−1)(n−5)g2
(

(n−2)m2−(n−3)	0

)
r2

,

h = g2r2 − (n − 3)m2q2
1

(n − 2)m2 − (n − 3)	0
− 2μ

rn−3

+ (n−3)4m4q4
1

4(n−1)(n−5)g2
(

(n−2)m2−(n−3)	0

)2

r2

, (119)

The event horizon is determined by the largest real root of
h(r0) = 0 and its effective curvature is nonzero, given by

keff = − (n − 3)m2q2
1

(n − 2)m2 − (n − 3)	0
= − (n − 3)q2

1	eff

(n − 2)(	eff + 	0)
.

(120)

The black hole mass M is given by Eq. (50). Notice that the
solution (119) is singular in the n → 5 limit. As a matter of
fact, a logarithmic term emerges in the original fall-off mode
1/r2. We find

At = q1 − q2

r2 − m2q3
1 log r

(3m2 − 2	0)g2r2 ,

h = g2r2 − 2m2q2
1

3m2 − 2	0
− 2μ

r2 + m4q2
1 log r

(3m2 − 2	0)2g2r2 .

(121)

For above solutions, there is an another singular limit 	0 →
−	eff = (n−2)m2

n−3 . However, in this case we do not find any
physically interesting solutions. Notice that the above solu-
tions do not have a regular limit for a vanishing Proca mass

m2 → 0. Thus, one cannot find planar black holes when
m2 = 0.

Evaluating the Wald formula for above solutions in general
n ≥ 4 dimensions, we obtain

δH∞ = δM̃ − (n − 3)ωn−2

16π
q2dq1, (122)

where M̃ is defined by

M̃ = (n−2)ωn−2
16π

(
1 + 	0

	eff

)
μ. (123)

As discussed earlier, when β = 1
2γ , δH+ is given by

Eqs. (33–34). Then the Wald equation implies the first law is

d M̃ = T̃ d S̃ − (n − 3)ωn−2

16π
q2dq1. (124)

For our solutions, the temperature T and the quantity � are
given by

T = − 	eff r0
2(n−2)π

(
1 + (n−3)2q2

1
4(	0+	eff )r2

0

)
,

� = γ −1
(

− 1 + 	0
	eff

+ (n−3)2q2
1

4	eff r2
0

)
. (125)

It is easy to verify that the above first law is indeed sat-
isfied. An open question is the physical interpretation of
the improved temperature T̃ in the thermodynamics. This
is interesting and deserves further investigations in the near
future. We also compute the regularized Euclidean action9

for our solution by subtracting the action of a background
solution with μ = 0 and deduce the entropy (or mass). How-
ever, the results still suffer from the shortcomings that were
found in Sect. 4.2.2.

6.2.3 Spherical black holes

For spherically symmetric solutions, we obtain

At = − q2

rn−3 − m2q1

(n − 3)(n − 1)2g2
(
(n − 2)m2 − (n − 3)	0

)

×
{
(n − 1)(n − 3)

(
m2q2

1 − 2(n − 1)(n − 2)g2
)

− 2r2

×
(
m4q2

1 − (n − 1)g2
(
(n − 1)m2 + (n − 3)	0

))

(
1 − F

(
1,− n−1

2 ,− n−3
2 ,− (n−3)2

2m2r2

))}
,

h = − 2μ

rn−3 + g2r2F
(

1,− n−1
2 ,− n−3

2 ,− (n−3)2

2m2r2

)

9 For AdS solutions, one can also compute a renormalized Euclidean
action using holographic renormalization. The result is slightly different
from the above regularized Euclidean action, up to an additive constant.
This is because there are some ambiguities in how to choose the back-
ground solution that should be subtracted from. Nonetheless, this little
difference does not change our conclusions.
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−
(n−3)

(
m2q2

1 −2(n−1)(n−2)g2
)

(n−2)m2−(n−3)	0

×
{
F

(
1,− n−3

2 ,− n−5
2 ,− (n−3)2

2m2r2

)

−
(n−3)3

(
m2q2

1 −2(n−1)(n−2)g2
)

4(n−1)(n−5)

(
(n−2)m2−(n−3)	0

)
g2r2

F
(

1,− n−5
2 ,− n−7

2 ,− (n−3)2

2m2r2

)}
, (126)

which looks quite complicated. At asymptotic infinity, the
two functions behave as

At = q1 − q2

rn−3 +
( ã2

r2 + ã4

r4 + · · ·
)
,

h = g2r2 − 2μ

rn−3 +
(
h̃0 + h̃2

r2 + h̃4

r4 + · · ·
)
, (127)

where the dotted terms in brackets are infinite series of
1/r2 and all the coefficients ãi , h̃i are lengthy expressions
of n,	0,m2, q1. To be concrete, we give some lower lying
examples

ã2 =
(n−3)3q1

(
(n−1)

(
(n−2)m2+(n−3)	0

)
g2−m4q2

1

)

2(n−1)(n−5)

(
(n−2)m2−(n−3)	0

)
m2g2

,

h̃0 =
(n−3)

(
(n−1)

(
3(n−2)m2+(n−3)	0

)
g2−2m4q2

1

)

2

(
(n−2)m2−(n−3)	0

)
m2

,

h̃2 =
(n−3)4

(
(n−1)

(
(n−2)m2+(n−3)	0

)
g2−m4q2

1

)2

4(n−1)(n−5)

(
(n−2)m2−(n−3)	0

)2

m4g2

, (128)

where h̃0 is the effective curvature of the horizon which in
general is not equal to unity.

For even dimensions, the black hole mass is given by
Eq. (50) whist for odd dimensions n = 2 j + 3, j =
1, 2, 3, . . .

M = (n − 2)ωn−2

8π

(
μ − 1

2h2 j
)
, (129)

which receives contributions from the vector field as well.
However, in the n = 5 and n = 7 dimensions, the solution

(126) becomes singular. As a matter of fact, for the n = 5
dimension we find

At = q1 − q2

r2 +
q1

(
4g2

(
3m2+2	0

)
−m4q2

1

)

2m2g2
(

3m2−2	0

)
log

(
m2r2 + 2

)

r2 ,

h = g2r2 + 4g2
(

9m2+2	0

)
−2m4q2

1

m2
(

3m2−2	0

) − 2μ

r2

+
(

4g2
(

3m2+2	0

)
−m4q2

1

)2

2m4g2
(

3m2−2	0

)2

log
(
m2r2 + 2

)

r2 . (130)

The black hole mass is given by (129) with

h2 =
(

4g2
(

3m2+2	0

)
−m4q2

1

)2

2m4g2
(

3m2−2	0

)2 log
(
m2). (131)

In the n = 7 dimension, we find

At = q1 +
8q1

(
6g2

(
5m2+4	0

)
−m4q2

1

)

3m2g2
(

5m2−4	0

)
r2

− q2

r4

−
64q1

(
6g2

(
5m2+4	0

)
−m4q2

1

)

3m4g2
(

5m2−4	0

)
log

(
m2r2 + 8

)

r4 ,

h = g2r2 + 12g2
(

15m2+4	0

)
−4m4q2

1

m2
(

5m2−4	0

) +
16

(
6g2

(
5m2+4	0

)
−m4q2

1

)2

3m4g2
(

5m2−4	0

)2
r2

−2μ

r4 −
128

(
6g2

(
5m2+4	0

)
−m4q2

1

)2

3m6g2
(

5m2−4	0

)2

log
(
m2r2 + 8

)

r4 . (132)

The black hole mass is still given by (129) with

h4 = −
256

(
6g2

(
5m2+4	0

)
−m4q2

1

)2

6m6g2
(

5m2−4	0

)2 log
(
m2). (133)

Notice that for all these solutions the limit m2 → 0 is sin-
gular. Thus, one cannot recover the solution (104) by simply
sending m2 → 0 from these solutions. Instead, one should
follow the derivation in Sect. 6.2.1 (there the integration con-
stantsC1,2 in (118) become singular in the limitm2 → 0 and
should be chosen properly again) and then re-derive the solu-
tion (104).

Finally, for all the solutions above, the first law is still
given by Eq. (124) with M̃ defined by Eq. (123), even for
odd dimensional solutions whilst the temperature T and �

are given by

T = − 	eff r0
2(n−2)π

(
1 + (n−3)2q2

1 −4(n−2)(n−3)

4(	0+	eff )r2
0

)
,

� = (n−3)2q2
1 −4(	eff−	0)r2

0

2γ
(

2	eff r2
0 −(n−2)(n−3)

) . (134)

This is expected since the Wald formula given in Eqs. (24–26)
do not explicitly depend on the topology of the space-times.

7 Conclusions

In this paper, we study generalized Einstein-Proca theories
in general dimensions by introducing either a quartic self-
interaction term for the vector or non-minimally coupled
terms between the curvature and the vector. In general, the
gauge symmetry of the vector is explicitly breaking but can
be restored at the linear level around any Ricci-flat metric,
depending on the parameters of the theories.
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We find that there are two distinct class solutions, both
of which are general static and have maximal symmetry,
depending on whether Ar vanishes. In particular, the solu-
tions with a nonzero Ar have some attractive features that
we do not find for the solutions with a vanishing Ar . The
first is in many cases (for example the minimal theory which
is simply the Einstein-Proca theory extended with a quartic
self-interaction term for the vector field) we can analytically
solve all the equations of motions and exactly obtain the gen-
eral static maximally symmetric black hole solutions. This is
quite surprising since it is known that the Einstein equations
are highly non-linear and one has not found any analytical
solutions in the standard Einstein-Proca theory. The under-
lying reason is the equations P t , Ett are purely algebraic for
the metric function f and the vector component Ar , which
can be immediately solved in terms of functions of h, At and
their derivatives. It turns out that under certain parametriza-
tions of h, At , the remaining independent equations P t , Ett

are greatly simplified to first order ODEs, which are easy to
integrate.

Second, the reality of Ar provides strong constraints on the
parameters of the solutions as well as those in the Lagrangian
density. Third, we adopt the Wald formalism to derive the
first law of thermodynamics for all of the solutions. How-
ever, the situation is subtle for the solutions with a nonzero
Ar because to govern the validity of Wald entropy formula,
we need impose proper boundary conditions that the local
diffeomorphism invariant of the vector Aā vanishes on the
horizon, which unfortunately turns out to be too strong for
this type solutions. The reason is Ar does not have corre-
sponding vector charges since it is a purely algebraic degree
of freedom. Thus, we have to relax the horizon condition for
Ar̄ but this conversely results to a non-integrable δH+ which
invalids the Wald entropy formula. The thermodynamics of
such solutions deserves further studies.

Finally, we also obtain some exact black hole solutions
with vanishing Ar . In particular, one of the solutions has
an unconventional fall-off mode, which is interpreted as the
longitudinal gravitons excited by the vector field. In the weak
field limit, the solution has a stronger gravitational force than
the usual Newton’s 1/r2-law. This is particularly interesting
in astrophysics since it provides new candidates to modify
the Newton’s inverse-squared law.
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