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Abstract In this paper, we investigate the thermodynamics
in the frame-work of recently proposed theory called mod-
ified Brans–Dicke gravity (Kofinas et al. in Class Quantum
Gravity 33:15, 2016). For this purpose, we develop the gen-
eralized second law of thermodynamics by assuming usual
entropy as well as its corrected forms (logarithmic and power
law corrected) on the apparent and event horizons. In order to
analyzed the clear view of thermodynamic law, the power law
forms of scalar field and scale factor is being assumed. We
evaluate the results graphically and found that generalized
second law of thermodynamics holds in most of the cases.

1 Introduction

Dark energy is one of the fascinated issue of modern cos-
mology that has encouraged the modification of Einstein
Hilbert action. The modified gravitational part of Einstein
Hilbert action leads to the notion of modified theories of
gravity which modify the dynamic of the universe at large dis-
tances. In another scenario, modified matter part of Einstein
Hilbert action results dynamical models such as cosmolog-
ical constants, quintessence, k-essence, Chaplygin gas and
holographic dark energy (HDE) models [1–9]. Moreover,
several modified theories of gravity are f (R), f (T ) [10–
15], f (R, T ) [16,17], f (G) [18–23], f (T, TG) [24–26],
f (T,T) [27,28] (where R is the curvature scalar, T denotes
the torsion scalar, T is the trace of the energy momentum
tensor and G is the invariant of Gauss–Bonnet defined as
G = R2 − 4RμνRμν + Rμνλσ Rμνλσ ). For clear review of
DE models and modified theories of gravity, see the reference
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[9]. Some authors [29–46] have also discussed various DE
models in different frameworks and found interesting results.

The scalar tensor models of modified gravity have taken
remarkable attention. The reason is that scalar fields for con-
sistent condition appear in different branches of theoretical
physics such as, the low energy limit of the string theory
leads to a scalar degree of freedom. The Brans–Dicke (BD)
theory [47,48] is a prototype of scalar tensor gravity which is
based upon Dirac hypothesis. It relates scalar field (φ) with
dynamical gravitational constant (G = G0

φ
) and involves a

tuneable constant coupling parameter ω. The scalar field is
a fundamental feature of this gravity which is considered as
a dark energy candidate. The parameter ω can adjust results
according to the requirement and in the limit ω → ∞, it
reduces BD theory into general relativity (GR).

The standard BD theory remains unable to probe cos-
mic evolution accurately. In this context, many researchers
have generalized BD theory in different scenario like, self-
interacting potential model, model having time- dependent
coupling parameter (ω) [49–51]. Brans–Dicke cosmological
models with constant deceleration parameter in the form of
particle creation [52]. The Friedman models (with zero curva-
ture) under the effects of time dependent bulk viscosity [53].
Similarly, the modification of BD theory also involve interac-
tion with dark matter, such as the concept of dissipative cold
dark matter in BD gravity [54,55], model representing trans-
fer of energy between BD gravity and dark matter [56,57].
Recently, Kofinas et al. [58] introduced the most generalized
or corrected form of BD gravity by relaxing the standard
conservation law of matter contribution (energy momentum
of matter). He used a new dimensionless parameter ν in the
theory. This new version of BD gravity has explored cos-
mic evolution in accords to observational data by involving
matter-scalar field interaction.

In literature, the relation between gravitation and ther-
modynamics has been discussed extensively. Moreover, by
inspiring the black hole theory, there is a deep connection
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between gravitation and thermodynamics. In GR, Hawking
radiation [59] can be studied by using the proportionality
relation between the surface gravity and temperature, and
also developed the connection between the horizon entropy
and area of thermodynamics. On the other hand, Jacobian in
[60] was studied the Einstein field equations from the Clau-
sis relation. By using this approach, the authors [61,62] have
checked validity of generalized second law of thermodynam-
ics (GSLT). In literature many researchers have been studied
the validity of GSLT in GR as well as modified theory. How-
ever, it should be noted that the definition of entropy would
rather be modified in order to include quantum effects moti-
vated from the loop quantum gravity [63,64]. In this work
we are focused on GSLT with modified BD theory involving
dark matter and the dark energy with a scalar field.

The present paper is organized as follows. In Sect. 2 we
give a brief description of the BD theory and then derive
the late-time cosmic field equation with a perfect fluid. In
Sect. 3, we formulate the Friedman equation of the late-time
cosmological equation in the absence of ν = 0. In Sect. 4 we
analyze the GSLT with entropy corrections. In this section we
check validity of GSLT by using the logarithmic, power-law
corrections at apparent as well as event horizon and obtain
the graphical results. At the end, a discussion of this work is
presented.

2 Modified Brans–Dicke field equations

The action for standard BD theory in terms of Jorden frame
is given by [47,48]

SBD = 1

16π

∫ (
φR − ω

φ
gμνφ,μφ,ν

)√−gd4x

+
∫ √−gLmd

4x, (1)

where Lm represents the matter Lagrangian depending on
scalar field ψ,

√−gd4x denotes four dimensional volume,
ω is the coupling constant which depends on dimensionless
parameter λ( �= 0) as ω = 2−3λ

2λ
, φ shows the scalar field and

R is the Ricci scalar. The corresponding field equations are

Gμ
ν = 8π

φ

(
Tμ

ν + τμ
ν

)
, (2)

Tμ
ν = 2 − 3λ

16πλφ

(
φ;μφ;ν − 1

2
δμ
ν φ;ρφ;ρ

)

+ 1

8π

(
φ;μ;ν − δμ

ν�φ

)
, (3)

�φ = 4πλτ, (4)

τμ
ν;μ = 0. (5)

Here τμ
ν is the energy–momentum tensor for matter and τ

μ
μ

is its trace. The BD theory has proposed in a generalized

simple form by relaxing conservation equations (5) [58]. In
this modified form, the energy momentum tensor of scalar
field is constructed through terms that contain φ itself or two
derivatives of one or two scalar fields. Thus, the generalized
field equations contain modified form of Eqs. (3) and (5)
given as

Tμ
ν = φ

2λ(ν + 8πφ2)2 {2((1 + λ)ν + 4π(2 − 3λ)φ2)φ;μφ;ν

−((1 + 2λ)ν + 4π(2 − 3λ)φ2)δμ
νφ

;ρφ;ρ}
+ φ2

ν + 8πφ2

(
φ;μ;ν − δμ

ν�φ
)

, (6)

τμ
ν;μ = ν

φ(ν + 8πφ2)
τμ

νφ;μ, (7)

while the remaining equations remain same. Here, ν is an
arbitrary function of integration which numerical values as
well as sign can be determined experimentally. For ν = 0 the
above system of equations reduces to the standard BD model
((2)–(5)).

The FRW metric is

ds2 = − dt2 + a(t)2
[

dr2

1 − kr2 + r2(dθ2 + sin2 θdϕ2)

]
,

(8)

where a is the scale factor and k = −1, 0, 1 represent spatial
curvatures. According to the symmetry of scale factor, the
scalar field behaves as a function of time, i.e., φ = φ(t).
For matter distribution, we take energy momentum tensor of
perfect fluid as τ

μ
ν = diag(−ρ, p, p, p) with ρ(t) be its

energy density and p(t) its pressure. Equations (2), (4), (6)
and (7) along with above metric lead to

H2 + k

a2 = 8π

3φ
ρ − 8πφ

ν + 8πφ2 H φ̇

+4π

3λ

ν + 4π(2 − 3λ)φ2

(ν + 8πφ2)2 φ̇2, (9)

2Ḣ + 3H2 + k

a2

= −8π

φ

[
p + φ

2λ

(1 + 2λ)ν + 4π(2 − 3λ)φ2

(ν + 8πφ2)2 φ̇2

+ φ2

ν + 8πφ2 (2H φ̇ + φ̈)

]
, (10)

φ̈ + 3H φ̇ + 4πλ(3p − ρ) = 0, (11)

ρ̇ + 3H(p + ρ) = ν

φ(ν + 8πφ2)
ρφ̇. (12)

For ν = 0, the above define equations reduce to standard BD
model. Integrating Eq. (11), using p = ωρ, we get

ρ = ρ∗
a3(1+ω)

| φ |√| ν + 8πφ2 | , (13)
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where ρ∗ is an integration constant. This obtain relation of
energy density represents a direct coupling of scalar field and
matter density.

In effective scenario, the field Eqs. (9) and (10) can be
rewritten as

H2 + k

a2 = 8π

3
ρeff, (14)

2Ḣ + 3H2 + k

a2 = −8πpeff. (15)

Here the effective energy density and pressure are defined by

ρeff = 1

φ
(ρ + ρde), peff = 1

φ
(p + pde), (16)

ρde = − 3φ2H φ̇

ν + 8πφ2 + φφ̇2

2λ

(
ν + 4π(2 − 3λ)φ2

(ν + 8πφ2)2

)
, (17)

pde = φφ̇2

2λ

(
(1 + 2λ)ν + 4π(2 − 3λ)φ2

(ν + 8πφ2)2

)

+φ2(2H φ̇ + φ̈)

ν + 8πφ2 . (18)

3 Generalized second law of thermodynamics

In this section, we will study the validity of GSLT in the
framework of modified BD theory on the apparent and event
horizons. According to GSLT, the combination of entropy of
horizon and entropy of all matter sources inside horizon does
not decrease with time. Mathematically, it can be expressed
as

Ṡtot = Ṡh + Ṡin ≥ 0, (19)

where Ṡh represents the entropy related to the horizon and
Ṡin is the sum of all entropies inside the horizon. Let us start
from Gibb’s equations which evolutes the entropy of matter
and energy source to the pressure inside the horizon, given
as

TindSin = dEin + pindV, (20)

which leads to

Tin Ṡin = (pin + ρin)4πR2
h(Ṙh − HRh). (21)

Thus the total entropy inside the horizon can be written as

Tin Ṡin = (peff + ρeff)4πR2
h(Ṙh − HRh). (22)

Also, the Hawking entropy relation is defined by

Sh = A

4G
, (23)

where A = 4πR2
h is the area of horizon.

3.1 Apparent horizon

Let us assume FRW universe which comprises of apparent
horizon and is defined as a null space with vanishing expan-
sion. For spatially flat FRW metric, the radius and tempera-
ture are defined as

Rh = rA =
(
H2 + k

a2

)− 1
2

, TA = 1

2πrA

(
1 − ṙA

2HrA

)
.

(24)

Substituting the value of area at apparent horizon in Eq. (23)
and taking the derivative, we get

ṠA = 2πφφ̇r2
A + 2πφ2rAṙA, (25)

which leads to

TA Ṡin = 4π

3
R2
h[3(ρeff + peff)Ṙh + Rh ρ̇]. (26)

By re-arranging above equation, we get

Ṡin = 16π2HR4
h

2HRH − ṙA
((ρeff + peff)(Ṙh − HRh)). (27)

The radius at apparent horizon in the form of ρeff can be
defined as

rA =
(

8π

3
ρeff

)− 1
2

. (28)

Using the derivative of Eq. (28) into Eq. (27), the entropy of
fluid turns out to be

Ṡin = − 16π2HR2
h

2H( 8π
3 ρeff)

− 1
2 + 1

2 ( 8π
3 )− 1

2 (ρeff)
− 3

2 ρ̇eff

×
[
(ρeff + peff)

×
{

1

2

(
8π

3

)
(ρeff)

− 1
2 (ρeff)

− 3
2 ρ̇eff + H

(
8π

3
Hρeff

)− 1
2
}]

.

After simplification, we get

Ṡin = − 16π2H( 8π
3 ρeff)

−2

2H + 1
2 (ρeff)−1ρ̇eff

×
[
(ρeff + peff)

(
1

2
(ρeff)

−1ρ̇eff + H

)]
. (29)

Now we would like to check the validity of the GSLT of the
system which is enclosed by apparent horizon. Hence, the
total entropy turns out to be

ṠAtot = 2πφ̇r2
A + 2πφ2ṙArA − 16π2H( 8π

3 ρeff)
−2

2H + 1
2 (ρeff)−1ρ̇eff

×
[
(ρeff + peff)

(
1

2
(ρeff)

−1ρ̇eff + H

)]
.
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By invoking the values of ρeff and ρ̇eff in above equation, we
get

ṠAtot = 2φφ̇

(
8π

3
ρeff

)−1

+2πφ2

⎡
⎣
(

8π

3
ρeff

)− 1
2

⎛
⎝− 1

2

(
8π

3
ρeff

)− 1
2

(ρeff)
−1ρ̇eff

⎞
⎠
⎤
⎦

−
16π2H

(
8π
3

1
φ (ρ + ρde)

)−2

2H + 1
2

(
1
φ

(ρ + ρde)
)−1

(
− φ̇

φ

2
(ρ + ρde) + 1

φ
(ρ̇ + ˙ρde)

)

×
[{

1

φ
(ρ + ρde + p + pde)

}(
1

2

(
1

φ
(ρ + ρde)

))−1

×
{(

− φ̇

φ2 (ρ + ρde) + 1

φ
(ρ̇ + ρ̇de + H)

)}]
.

The derivatives of Eqs. (16)–(18) become

ρ̇ = −3(1 + ω)a−1−3(1+ω)ρ∗φȧ√
ν + 8πφ2

− 8πa−3(1+ω)ρ∗φ2φ̇

(ν + 8πφ2)
3
2

+a−3(1+ω)ρ∗φ̇√
ν + 8πφ2

, (30)

ρ̇de = 48φ3φ̇2

(ν + 8πφ2)2 + (ν + 4(2 − 3λ)π)φ3φ̇2

2λ(ν + 8πφ2)
− 6Hφφ̇2

ν + 8πφ2

− 3Hφ2φ̈

ν + 8πφ2 , (31)

ṗde = φ

2λ

(1 + 2λ)ν + 4π(2 − 3λ)φ2φ̇2

(ν + 8πφ2)2

+ φ2

ν + 8πφ2 (2H ˙φ + φ̈). (32)

Using Eqs. (30)–(32), GSLT takes the form

ṠAtot = 2πφφ̇

[
8π

3φ

{
ρ∗

a3(1+ω)

φ√
ν + 8πφ2

− 3φ2

ν + 8πφ2 H φ̇ + φφ̇2

2λ
×
(

ν + 4π(2 − 3λ)φ2

(ν + 8πφ2)2

)}]−1

−πφ2
(

8π

3

)−1
[

φ̇2

φ

{
ρ∗

a3(1+ω)

φ√
ν + 8πφ2

− 3φ2

ν + 8πφ2 H φ̇ + φ

2λ

(
ν + 4π(2 − 3λ)φ2

(ν + 8πφ2)2

)}]−2

×
⎡
⎣− φ̇

φ

2
⎧⎨
⎩

3φ2H φ̇

ν + 8πφ2 + ρ

a3(1+ω) φ√
ν+8π2

+ φφ̇2

2λ

ν + 4π(2 − 3λ)φ2

(ν + 8πφ2)2

⎫⎬
⎭+ 1

φ

{
8πa−3(1+ω)ρ∗φ2φ̇

(ν + 8πφ2)
3
2

−3(1 + ω)a−1−3(1+ω)ρ∗φȧ√
ν + 8πφ2

+ (ν + 4π(2 − 3λ)φ3)

2λ(ν + 8πφ2)
φ̇2 + a−3(1+ω)ρ∗φ̇√

ν + 8πφ2
− 6Hφφ̇2

(ν + 8πφ2) − 3Hφ2φ̈

ν+8πφ2

+ 48πφ3φ̇2

(ν + 8πφ2)2

⎫⎬
⎭
⎤
⎦

+ 1

φ

(
−8πa−3(1+ω)ρ∗φ2φ̇

(ν + 8πφ2)
3
2

− 3(1 + ω)a−1−3(1+ω)ρ∗φȧ√
ν + 8πφ2

+ (ν + 4π(2 − 3λ)φ3)

2λ(ν + 8πφ2)
φ̇2 + a−3(1+ω)ρ∗φ̇√

ν + 8πφ2
+ 48πφ3φ̇2

(ν + 8πφ2)2

− 6Hφφ̇2

(ν + 8πφ2) − 3Hφ2φ̈

ν+8πφ2

⎞
⎠
⎞
⎠
[

1

φ

(
ρ∗

a3(1+ω)

φ√
ν + 8πφ2

− 3φ2

ν + 8πφ2 H φ̇

+ φ

2λ

(
ν + 4π(2 − 3λ)φ2

(ν + 8πφ2)2

)
φ̇2 + φ2(2H φ̇ + φ̈)

ν + 8πφ2

)
1

2

[
1

φ

(
ρ∗φ

a3(1+ω)
√

ν + 8πφ2
+ φφ̇2

2λ

(
ν + 4π(2 − 3λ)φ2

(ν + 8πφ2)2

))

− 3φ2H φ̇

ν + 8πφ2

]−1

×
⎡
⎣− φ̇

φ

2
⎧⎨
⎩

ρ

a3(1+ω) φ√
ν+8π2

− 3φ2H φ̇

ν + 8πφ2 +φφ̇2

2λ

ν + 4π(2 − 3λ)φ2

(ν + 8πφ2)2

}
+ 1

φ

×
{
H +

(
−3(1 + ω)a−1−3(1+ω)ρ∗φȧ√

ν + 8πφ2
− 8πa−3(1+ω)ρ∗φ2φ̇

(ν + 8πφ2)
3
2

+ 48πφ3φ̇2

(ν + 8πφ2)2 + a−3(1+ω)ρ∗φ̇√
ν + 8πφ2

+ φ̇2(ν + 4π(2 − 3λ)φ3)

2λ(ν + 8πφ2)

− 6Hφφ̇2

(ν + 8πφ2) − 3Hφ2φ̈

ν+8πφ2

⎞
⎠
⎫⎬
⎭
⎤
⎦−

⎡
⎢⎢⎢⎣− φ̇

φ

2
⎧⎨
⎩

ρ

a3(1+ω) φ√
ν+8π2

− 3φ2H φ̇

ν + 8πφ2 +φφ̇2

2λ

ν + 4π(2 − 3λ)φ2

(ν + 8πφ2)2

⎫⎬
⎭

×
16π2H

{
8π
3φ

(
ρ∗

a3(1+ω)

φ√
ν+8πφ2

− 3φ2

ν+8πφ2 H φ̇ + φ
2λ

(
ν+4π(2−3λ)φ2

(ν+8πφ2)2

)
φ̇2
)}−2

2H + 1
2

{
1
φ
(

ρ∗
a3(1+ω)

φ√
ν+8πφ2

− 3φ2

ν+8πφ2 H φ̇ + φ
2λ

(
ν+4π(2−3λ)φ2

(ν+8πφ2)2

)
φ̇2)

}−1

⎤
⎥⎥⎥⎦ .
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Fig. 1 Plots of ṠAtot versus t for the values λ = 1.5, a0 = 1, n =
4, ω = 0.3, φ0 = 1, ν = 100. The red, green and blue lines correspond
to parameter m = 1, 2, 3, respectively

It would be interesting to study power-law solutions in this
modified gravity that are indicated by various eras of cosmic
evolution. These solutions are very helpful to clarify cosmic
evolution, with the help of different epochs like dark energy,
matter and radiation dominated eras. For this model, scale
factor is φ = φ0tm , a = a0tn , where m, n are constants with
n > 1. In the present scenario, analysis of GSLT depend on
the different cosmological parameters. So, we take different
values of cosmological parameters to discuss GSLT as λ =
1.5, a0 = 1, n = 4, ω = 0.3, φ0 = 1, ν = 100 in Fig. 1.
It is observed from this figure that GSLT holds for m = 1
because ṠAtot ≥ 0, while does not remain valid for m = 2
and m = 3 because ṠAtot > 0.

3.2 Event horizon

In this subsection, we study GSLT at event horizon which
can be written as

Ṡtot = ṠE + Ṡin . (33)

The radius of event horizon is defined as

RE = a(t)
∫ ∞

t

d t̂

at̂
= a(t)

∫ t

a

dá

Há2 , ṘE = HRE − 1.

(34)

In this case, we utilized the following temperature

Tin = bH

2π
= Th, (35)

1 2 3 4 5
0

200

400

600

800

t

S E
to
t

m 3

m 2

m 1

Fig. 2 Plots of ṠEtot versus t for the values λ = 1.5, a0 = 1, n =
4, ω = 0.3, φ0 = 1, ν = 100. The red, green and blue lines correspond
to parameter m = 1, 2, 3, respectively

where b is a constant parameter. The time derivative of
entropy at event horizon can be evaluated as

ṠE = πφ̇R2
E + 2πφ ṘE RE . (36)

Using relations (34) into Eq. (36), we get

ṠE = π(φ̇ + 2Hφ)

(
t

n − 1

)2

− 2πφ

(
t

n − 1

)
. (37)

Similarly, the entropy at inside the horizon in case of event
is

Ṡin = − 6π

bH
(ρeff + peff). (38)

Thus Ṡtot can be obtained (for event horizon) from Eqs. (38),
(37) and (33) as follows

Ṡtot = π(φ̇ + 2Hφ)

(
t

n − 1

)2

− 2πφ

(
t

n − 1

)

− 6π

bH

1

φ

[
ρ∗

a3(1+ω)
× φ√

ν + 8πφ2

− 3φ2

(ν + 8πφ2)
H φ̇ + φ

2λ

ν + 4π(2 − 3λ)φ2

(ν + 8πφ2)2 φ̇2

+ φ

2λ

(1 + 2λ) + 4π(2 − 3λ)φ2

(ν + 8πφ2)2 φ̇2

+ φ2

ν + 8πφ2

(
2H φ̇ + φ̈

)]
.

The plot of Ṡtot versus t at event horizon is shown in
Fig. 2. The values of constant parameters are same as uti-
lized in figure. It can be seen from Fig. 2 that all trajectories
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of Ṡtot are increasing function of time and remain positive.
Hence, GSLT satisfied for the present system enclosed by
event horizon.

4 Entropy corrections with event horizon

In GR, entropy area relation with motivation of quantum
loop gravity leads to the curvature corrections in the Hilbert–
Einstein action [65,66]. In this section, we will discuss two
types of corrections.

4.1 Logarithmic correction

Recently, logarithmic correction has studied for black hole in
quantum gravity due to the fluctuation of thermal equilibrium
[67–69]. Then, Sadjadi and Jamil [70] explored the GSLT for
flat FRW metric with logarithmic correction. The logarithmic
corrected entropy is expressed by the given relation

SLE = A

4G
+ α

ln A

4G
+ β

4G

A
+ γ, (39)

where α, β and γ are dimensionless constants. Taking the
derivative of above equation, we get

ṠLE = 2πRE ṘE

G

(
1 + αG

πR2
E

− βG2

π2R4 E

)
. (40)

By following the same procedure, inserting Eqs. (40), (38)
into (33), we get

Ṡtot = 2π

G

(
t

n − 1

)
{HRE − 1}

[(
1 + αG

πR2
E

− βG2

π2R4 E

)]

− 6π

bH

{
1

φ
(ρ + ρde + pde)

}
. (41)

Its illustrated form leads to

Ṡtot = 2π

G

(
− t

n − 1

){(
t

n

)(
t

n − 1

)
− 1

}

×
⎡
⎢⎣
⎛
⎜⎝1 + αG

π
(

t
n−1

)2 − βG2

π2
(

t
n−1

)4

⎞
⎟⎠
⎤
⎥⎦

− 6π

bH

[
1

φ

(
ρ∗φ

a3(1+ω)
√

ν + 8πφ2

+φφ̇2

2λ

ν + 4π(2 − 3λ)φ2

(ν + 8πφ2)2 − 3φ2H φ̇

(ν + 8πφ2)

+ φ

2λ

(1 + 2λ) + 4π(2 − 3λ)φ2

(ν + 8πφ2)2 φ̇2

+ φ2

ν + 8πφ2 (2H φ̇ + φ̈)

]
.
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Fig. 3 Plots of ṠLEtot versus t for the values λ = 1.5, a0 = 1, n =
4, ω = 0.3, φ0 = 1, ν = 100, α = 3.8, β = 3. The red, green and
blue lines correspond to parameter m = 1, 2, 3, respectively

In order to observe the validity of GSLT for logarithmic
correction at event horizon, we plot it in Fig. 3. We plot Ṡtot
versus t by taking different values of α, β as α = 3.8, β = 3
and using values of other parameters same. This figure shows
that the trajectories of Ṡtot remains positive and exhibits the
increasing behavior at the present as well as initial epoch
while turn negative after some interval of time. Hence, GSLT
holds at initial epoch for all cases of m while does not satisfy
at later epoch.

4.2 Power law correction

Power law correction for event horizon can be defined as
[71,72]

S = A

4G

[
1 − KαA

1− α
2

]
, (42)

where

Kα = α(4π)
α
2 −1

(4 − α)r2−α
c

, (43)

and rc is the crossover scale and α is dimensionless constant.
The second term in (42), as a power-law correction to the
entropy, has been appeared from the scalar field of the wave-
functions between two excitation states. The higher the exci-
tation state is the more significant than the correction term.
The time rate of change of entropy for power-law correction
is given as

ṠPE = 2πRE ṘE

G

[
1 − kα(4π)1− α

2

(
2 − α

2

)
R2−α
E

]
. (44)
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Fig. 4 Plots of ṠPEtot versus t for the values λ = 1.5, a = 1, n =
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Using Eqs. (44), (38) into (33), we obtain

ṠPEtot = 2π

G

(
t

n − 1

){(
t

n

)(
t

n − 1

)
− 1

}

×
[
1 − kα(4π)1 − α

2

(
2 − α

2

)
R2−α
E

]

− 6π

bH

[
1

φ

(
ρ∗

a3(1+ω)

φ√
ν + 8πφ2

+φφ̇2

2λ

(1 + 2λ) + 4π(2 − 3λ)φ2

(ν + 8πφ2)2

− 3φ2

(ν + 8πφ2)
H φ̇ + φ

2λ

ν + 4π(2 − 3λ)φ2

(ν + 8πφ2)2 φ̇2

+φ2(2H φ̇ + φ̈)

ν + 8πφ2

]
.

The total rate of change of entropy for power law correc-
tion at event horizon verses t is shown in Fig. 4. It can be
observed that Ṡtot shows increasing behavior for all values
of m at early, present as well as later epoch. However, GSLT
holds for all cases for t > 3.2.

5 Entropy corrections with apparent horizon

In this section, we investigate the validity of GSLT of the sys-
tem by assuming entropy corrections on the apparent horizon.

5.1 Logarithmic correction

In case of apparent horizon, Eq. (39) implies

ṠA = 2πRA ṘA

G

(
1 + αG

πR2
A

− βG2

π2R4 A

)
. (45)

By replacing the values of RA and ṘA in Eq. (45), we obtain

ṠA = − ( 8π
3 ρeff)

−1(ρeff)
−1(ρeff)

G

×
[

1 + αG

π( 8π
3 ρeff)2

− βG2

π2( 8π
3 ρeff)4

]
, (46)

which leads to

Ṡtot

= − 1

G

[
− π

(
8π

3

)−1{ 1

φ

(
ρ∗

a3(1+ω)

φ√
ν + 8πφ2

− 3φ2H φ̇

ν + 8πφ2 + φφ̇2

2λ

ν + 4π(2 − 3λ)φ2

(ν + 8πφ2)2

)}]−1

−
[

− φ̇

φ

2(
ρ

a3(1+ω) φ√
ν+8π2

− 3φ2H φ̇

ν + 8πφ2

+φφ̇2

2λ

ν + 4π(2 − 3λ)φ2

(ν + 8πφ2)2

)]
× πφ2

(
8π

3

)−1

+ 1

φ
×
(−3(1 + ω)a−1−3(1+ω)ρ∗ φȧ√

ν + 8πφ2
+ 1

φ

−3(1 + ω)a−1−3(1−ω)ρ∗ φȧ√
ν + 8πφ2

− 8πa−3(1+ω)ρ∗φ2

(ν + 8πφ2)

2
3

+ a−3(1+ω)ρ∗φ̇√
ν + 8πφ2

)
×
[

1 + αG

×

⎡
⎢⎢⎢⎣

8π

3φ

(
− 3φ2H φ̇

ν + 8πφ2 + ρ∗φ
a3(1+ω)

√
ν + 8πφ2

+ φφ̇2

2λ

ν + 4π(2 − 3λ)φ2

(ν + 8πφ2)2

)−2

+ βG2

(
1
φ
(

ρ∗
a3(1+ω)

φ√
ν+8πφ2

− 3φ2

ν+8πφ2 H φ̇ + φ
2λ

(
ν+4π(2−3λ)φ2

(ν+8πφ2)2 )φ̇2)

)4

⎤
⎥⎥⎥⎦

−
16π2H

(
8π
3φ

(
ρ∗

a3(1+ω)

φ√
ν+8πφ2

− 3φ2

ν+8πφ2 H φ̇ + φ
2λ

(
ν+4π(2−3λ)φ2

(ν+8πφ2)2 )φ̇2)

)−2

2H + 1
2

(
1
φ
(

ρ∗
a3(1+ω)

φ√
ν+8πφ2

− 3φ2

ν+8πφ2 H φ̇ + φ
2λ

(
ν+4π(2−3λ)φ2

(ν+8πφ2)2 )φ̇2)

)−1

×
⎛
⎝− φ̇

φ

2
⎛
⎝ ρ

a3(1+ω) φ√
ν+8π2

− 3φ2H φ̇

ν + 8πφ2 + φφ̇2

2λ

ν + 4π(2 − 3λ)φ2

(ν + 8πφ2)2

⎞
⎠

+ 1

φ

(−3(1 + ω)a−1−3(1+ω)ρ∗ φȧ√
ν + 8πφ2

− 8πa−3(1+ω)ρ∗φ2φ̇

(ν + 8πφ2)
3
2

+ a−3(1+ω)ρ∗φ̇√
ν + 8πφ2

+ 48πφ3φ̇2

(ν + 8πφ2)2 + (ν + 4π(2 − 3λ)φ3)

2λ(ν + 8πφ2)
φ̇2 − 6Hφφ̇2

(ν + 8πφ2) − 3Hφ2 φ̈

ν+8πφ2

)

)

×
[

1

φ

(
ρ∗

a3(1+ω)

φ√
ν + 8πφ2

− 3φ2H φ̇

ν + 8πφ2 + φφ̇2

2λ

ν + 4π(2 − 3λ)φ2

(ν + 8πφ2)2

+φ2(2H φ̇ + φ̈)

ν + 8πφ2

)
× 1

2

(
1

φ
(

ρ∗φ
a3(1+ω)

√
ν + 8πφ2

+ ν + 4π(2 − 3λ)φ2

(ν + 8πφ2)2

×φφ̇2

2λ
− 3φ2H φ̇

ν + 8πφ2

)−1[
− φ̇

φ

2{
φ

2λ

ν + 4π(2 − 3λ)φ2

(ν + 8πφ2)2 φ̇2 − 3φ2H φ̇

ν + 8πφ2

+ ρ

a3(1+ω) φ√
ν+8π2

}
+ 1

φ

(−3(1 + ω)a−1−3(1+ω)ρ∗ φȧ√
ν + 8πφ2

− 8πa−3(1+ω)ρ∗φ2φ̇

(ν + 8πφ2)
3
2
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+ a−3(1+ω)ρ∗φ̇√
ν + 8πφ2

+ 48πφ3φ̇2

(ν + 8πφ2)2 − 6Hφφ̇2

(ν + 8πφ2) − 3Hφ2 φ̈

ν+8πφ2

)

)
+ H

)]
.

The display of total rate of change of entropy for loga-
rithmic correction on apparent horizon versus cosmic time is
shown in Fig. 5. All constant parameters are same as utilized
in previous plots. It can be observed that Ṡtot shows increas-
ing behavior and remains positive for all cases of m. This
exhibits its validity for the present scenario.

5.2 Power law correction

The rate of change of power law correction at apparent hori-
zon is given by

ṠPEtot

= − 1

G

[
− π

(
8π

3

)−1{ 1

φ

(
ρ∗

a3(1+ω)

φ√
ν + 8πφ2

− 3φ2H φ̇

ν + 8πφ2

+φφ̇2

2λ

ν + 4π(2 − 3λ)φ2

(ν + 8πφ2)2

)}]−1

−
[

− φ̇

φ

2(
ρ

a3(1+ω) φ√
ν+8π2

− 3φ2H φ̇

ν + 8πφ2 + φφ̇2

2λ

ν + 4π(2 − 3λ)φ2

(ν + 8πφ2)2

)]
× πφ2

(
8π

3

)−1

+ 1

φ

×
(−3(1 + ω)a−1−3(1+ω)ρ∗φȧ√

ν + 8πφ2
+ 1

φ

−3(1 + ω)a−1−3(1−ω)ρ∗φȧ√
ν + 8πφ2

− 8πa−3(1+ω)ρ∗φ2

(ν + 8πφ2

) 2
3

+ a−3(1+ω)ρ∗φ̇√
ν + 8πφ2

)

×
[

1 − Kα(4π)1− α
2

(
2 − α

2

)

×
{

8π

3

(
ρ

a3(1+ω) φ√
ν+8π2

− 3φ2H φ̇

ν + 8πφ2

+φφ̇2

2λ

ν + 4π(2 − 3λ)φ2

(ν + 8πφ2)2

)}2−α]

−
16π2H

[
8π
3φ

(
ρ∗

a3(1+ω)

φ√
ν+8πφ2

− 3φ2H φ̇

ν+8πφ2 + φφ̇2

2λ
(

ν+4π(2−3λ)φ2

(ν+8πφ2)2 ))

]−2

2H + 1
2

{
1
φ

(
ρ∗φ

a3(1+ω)
√

ν+8πφ2
− 3φ2H φ̇

ν+8πφ2 + φφ̇2

2λ
ν+4π(2−3λ)φ2

(ν+8πφ2)2

)}−1

×
[

− φ̇

φ

2(
ρ

a3(1+ω) φ√
ν+8π2

− 3φ2H φ̇

ν + 8πφ2

+φφ̇2

2λ

ν + 4π(2 − 3λ)φ2

(ν + 8πφ2)2

)]

+ 1

φ

{−3(1 + ω)a−1−3(1+ω)ρ∗φȧ√
ν + 8πφ2

− 8πa−3(1+ω)ρ∗φ2φ̇

(ν + 8πφ2)
3
2

+a−3(1+ω)ρ∗φ̇√
ν + 8πφ2

+ 48πφ3φ̇2

(ν + 8πφ2)2 + (ν + 4π(2 − 3λ)φ3)

2λ(ν + 8πφ2)
φ̇2

− 6Hφφ̇2

(ν + 8πφ2) − 3Hφ2φ̈

ν+8πφ2

⎞
⎠
⎫⎬
⎭
[

1

φ

(
ρ∗φ

a3(1+ω)
√

ν + 8πφ2

− 3φ2H φ̇

ν + 8πφ2 + φφ̇2

2λ

(
ν + 4π(2 − 3λ)φ2

(ν + 8πφ2)2

)

+φ2(2H φ̇ + φ̈)

ν + 8πφ2

)
× 1

2

{
1

φ

(
ρ∗φ

a3(1+ω)
√

ν + 8πφ2

− 3φ2H φ̇

ν + 8πφ2 + φφ̇2

2λ

ν + 4π(2 − 3λ)φ2

(ν + 8πφ2)2 )

}−1

×
{

− φ̇

φ

2 (
ρφ

a3(1+ω)
√

ν+8π2
− 3φ2H φ̇

ν + 8πφ2 + φ

2λ

× ν + 4π(2 − 3λ)φ2φ̇2

(ν + 8πφ2)2

}

+ 1

φ

(−3(1 + ω)a−1−3(1+ω)ρ∗φȧ√
ν + 8πφ2

+ 48πφ3φ̇2

(ν + 8πφ2)2

− 8πa−3(1+ω)ρ∗φ2φ̇

(ν + 8πφ2)
3
2

+ a−3(1+ω)ρ∗φ̇√
ν + 8πφ2

− 6Hφφ̇2

(ν + 8πφ2) − 3Hφ2φ̈

ν+8πφ2

+ (ν + 4π(2 − 3λ)φ3)

2λ(ν + 8πφ2)
φ̇2
))

+ H

}]
. (47)

The plot of GSLT for the power law correction on the
apparent horizon is shown in Fig. 6. It is observed that the
trajectories of Ṡtot is increasing for all values ofm and remain
positive. Thus GSLT is satisfied for the present scenario on
the apparent horizon.

6 Conclusion

We have investigated the thermodynamics in the frame-work
of recently proposed theory called modified Brans–Dicke
gravity [58]. For this purpose, we have developed the GSLT
by assuming usual entropy as well as its corrected forms (log-
arithmic and power law corrected) on the apparent and event
horizons. In order to analyzed the clear view of thermody-
namic law, we have assumed the power law forms of scalar
field and scale factor is being assumed. We have evaluated the
results graphically and summarized them in the following.
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4, � = 0.3, φ = 1, ν = 100

• In phase one, we have analyzed GSLT on the apparent
as well as event horizon by assuming usual entropy. In
this case, we have observed that GSLT holds for m = 1
because ṠAtot ≥ 0, while does not remain valid form = 2
and m = 3 because ṠAtot > 0 (Fig. 1). The plot of
Ṡtot versus t at event horizon has shown in Fig. 2. It
has been seen from Fig. 2 that all trajectories of Ṡtot are
increasing function of time and remain positive. Hence,
GSLT satisfied for the present system enclosed by event
horizon.

• In second phase, the validity of GSLT on the apparent
as well as event horizon has been analyzed by assuming
logarithmic entropy correction. It has been observed from
Fig. 3 that the trajectories of Ṡtot (on the event horizon)
remains positive and exhibits the increasing behavior at
the present as well as initial epoch while turn negative
after some interval of time. Hence, GSLT holds at initial
epoch for all cases of m while does not satisfy at later
epoch. The display of total rate of change of entropy
for logarithmic correction on the apparent horizon versus
cosmic time is shown in Fig. 5. It can be observed that
Ṡtot shows increasing behavior and remains positive for
all cases of m. This exhibits its validity for the present
scenario.

• In third phase, the validity of GSLT on the event as
well as apparent horizon has been analyzed by assuming
power law entropy correction. The total rate of change of
entropy for power law correction at event horizon verses t
is shown in Fig. 4. It has observed that Ṡtot shows increas-
ing behavior for all values of m at early, present as well
as later epoch. However, GSLT holds for all cases for

t > 3.2. The plot of GSLT for the power law correction
on the apparent horizon is shown in Fig. 6. It has observed
that the trajectories of Ṡtot is increasing for all values of
m and remain positive. Thus GSLT is satisfied for this
scenario on the apparent horizon.
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