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Abstract We identify a class of Randall–Sundrum type
models with a successful first order cosmological phase tran-
sition during which a 5D dual of approximate conformal
symmetry is spontaneously broken. Our focus is on soft-
wall models that naturally realize a light radion/dilaton and
suppressed dynamical contribution to the cosmological con-
stant. We discuss phenomenology of the phase transition after
developing a theoretical and numerical analysis of these mod-
els both at zero and finite temperature. We demonstrate a
model with a TeV-Planck hierarchy and with a successful
cosmological phase transition where the UV value of the
curvature corresponds, via AdS/CFT, to an N of 20, where
5D gravity is expected to be firmly in the perturbative regime.

1 Introduction

Randall–Sundrum (RS) models [1] offer an attractive solu-
tion to the hierarchy problem, and they put the cosmological
constant problem [2] into a new perspective [3,4]. In RS
models, the warping of AdS space geometrically generates
large hierarchies. Interestingly, the effective 4D value of the
cosmological constant is a sum of terms involving the bulk
5D cosmological constant, and two brane tensions associated
with the UV and IR branes. The tiny observed value of the
cosmological constant is obtained by separately tuning the
UV brane tension against the bulk cosmological constant,
and the IR brane tension against the same bulk cosmological
constant.

This “double” fine-tuning in the 5D theory is necessary to
force a flat direction for the location of the branes, for which
the potential would otherwise cause either collapse of the
geometry or a run-away. The Goldberger–Wise stabilization
mechanism offers a solution to this tuning problem, with a
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5D scalar field developing a spatially varying vacuum expec-
tation value in the bulk of the extra dimension, and leading to
a non-trivial potential for the location of the IR brane [5,6],
stabilizing the “radion.” However, this solution relied upon
the mistune in the brane tensions being small to begin with,
so that the bulk scalar field vev did not deform the geome-
try significantly from AdS and that the backreaction of the
scalar field on the geometry remained small. Thus a degree of
tuning remained, as naive dimensional analysis (NDA) from
consideration of graviton loops suggests that the mistune be
parametrically larger, with natural values for a quartic cou-
pling for the radion being λ ∼ O [

(4π)2
]
.

In addition to this naturalness issue, a more phenomeno-
logical and pressing problem plagues these models: The
phase transition during which the vacuum expectation value
for the radion develops is first order, and estimates of bubble
nucleation rates in early-universe cosmology strongly sug-
gested that a RS phase transition would not proceed to com-
pletion due to Hubble expansion out-pacing true-vacuum
bubble creation. In the region of parameter space where
nucleation is fast enough, perturbativity of the 5D gravity
theory is right on or past the threshold of being lost [7–9]. A
study of the phase transition in string theory inspired warped
throat scenarios was shown to improve perturbativity and the
nucleation rate, while lifting the mass of the otherwise light
dilaton/radion [10]. Research including small backreaction
effects more generally showed improvement in the nucle-
ation rate as well [11]. In this work, we address the question
whether a recently studied class of geometries which contain
a light dilaton/radion and suppressed cosmological constant
while deviating very far from AdS in the infrared region of
the geometry achieve a better transition rate while retaining
a perturbative 5D gravity description.

There is strong motivation for considering such models. In
terms of the AdS/CFT correspondence, the double tuning of
RS in the absence of a stabilization mechanism has a natural
interpretation [12–16]. The tuning of the UV brane tension
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against the bulk cosmological constant is viewed as a tuning
of the bare cosmological constant in a non-supersymmetric
CFT very close to zero. This is required as a cosmological
constant term would explicitly break conformal invariance,
yet there is no supersymmetry to enforce this cancellation.
The second tuning of the IR brane tension is interpreted as a
tuning of the scale-invariant quartic associated with an order
parameter for spontaneous breaking of the CFT. The flat
direction for the “radion” degree of freedom in RS appears as
a tuning of this allowed parameter in the CFT to zero. If non-
zero, such a quartic coupling would forbid the generation of a
condensate that spontaneously breaks the CFT [17]. A solu-
tion to this problem appears if one allows a deformation of
the CFT, i.e. by the introduction of a near-marginal operator.
This small scale dependence effectively deforms the scale-
invariant quartic into a more generic potential that may have
non-trivial minima away from the origin. The Goldberger–
Wise stabilization mechanism is a dual to this prescription,
but, as noted above, has tuning issues as well as cosmology
problems.

It had long been thought that this fine-tuning is unavoid-
able, as it reflects a coincidence problem in the 4D CFT dual –
a flat direction in the theory that happens to coincide with a
near-zero in the β functions for the theory [18–21]. How-
ever, it has been shown that if the scalar potential has only
a soft dependence on φ, with the coefficients of the higher
order interaction terms in the GW bulk potential being small,
then the scalar field enters a significant back-reaction regime
before the higher curvature terms come to dominate and per-
turbative control is lost. It has been shown that despite this
large back-reaction, the dual theory is still conformal, and
there is still a light dilaton that realizes scale invariance non-
linearly. These “soft-wall” scenarios are the models that are
of interest in this work. This ansatz for this type of bulk scalar
potential is equivalent, via the AdS/CFT dictionary, to hav-
ing a beta function in the CFT that remains small for a large
range of the coupling. With this type of presumed dynam-
ics, the coupling explores a large range of values during
the running, and the scale-invariant quartic could potentially
find a zero, essentially finding a flat direction dynamically,
and permitting a condensate that spontaneously breaks the
approximate conformal invariance without fine-tuning [22–
24]. Other holographic studies of this scenario show that the
dilaton mass in such models is suppressed relative to the
breaking scale, and the cosmological constant is also para-
metrically suppressed [25–28].

While not addressed directly in this work, a successful
first order RS phase transition at the TeV scale opens up
new approaches for physics beyond the standard model. For
example, baryogenesis in the context of such soft-wall mod-
els with particle content that gives the Standard Model at
low energies is an exciting new avenue to pursue, particu-
larly in the light of other recent work on how to obtain more

early-universe CP violation through cosmological evolution
of Yukawa couplings, as can occur in Randall–Sundrum mod-
els [29,30].

In this work, we explore aspects of the cosmological phase
transition in these soft-wall models. Efforts first are made
focused on a clear exposition of the theory of the dilaton
effective potential at vanishing temperature. We then per-
form numerical calculations of the zero-temperature poten-
tial for various ranges of the free parameters. Next, we study
the theory of the model at finite temperature, and again per-
form detailed numerics of the finite temperature potential.
Finally, we put the above results to work on the problem
of the early-universe conformal phase transition, finding an
enhanced nucleation rate in soft-wall dilaton scenarios, and
a phase transition that completes for much smaller (and thus
perturbative) values of the curvature corresponding to a larger
N dual CFT. Finally, we comment on the potential for the
early-universe conformal phase transition to be observed as
a stochastic gravitational wave background signal due to the
dynamics of bubble collisions.

2 Zero-temperature dilaton effective theory

We consider classical solutions to theories with a real 5D
scalar field minimally coupled to gravity. The action we con-
sider has a bulk contribution given by

Sbulk =
∫

d5x
√
g

[
1

2
(∂Mφ)2 − V (φ) − 1

2κ2 R

]
, (2.1)

where κ−2 ≡ 2M3∗ , with M∗ being the 5D planck scale.1 We
consider metric solutions with flat 4D slices:

ds2 = e−2A(ỹ)ημνdxμdxν − d ỹ2, (2.2)

which can equivalently be expressed in coordinates y =
A(ỹ), which we find particularly convenient for this work:

ds2 = e−2yημνdxμdxν − dy2

G(y)
, (2.3)

where G(y) = [
A′(ỹ(y))

]2.
There are branes at orbifold fixed points taken to reside

at y = y0, and y = y1. The scalar field has brane localized
potentials at these points:

Sbrane = −
∫

d4x
[√

gind(y0)V0(φ(y0))

+√
gind(y1)V1(φ(y1))

]
. (2.4)

1 The 5D theory is taken to be compactified on an S1/Z2 orbifold, with
branes at the fixed points, and the integral in the action is taken to be
over the full circle, including a double copy of the action.
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Utilizing ˙ to represent derivatives with respect to y, the
Einstein and scalar field equations can be written as2

G =
−κ2

6 V (φ)

1 − κ2

12 φ̇2
(2.5)

Ġ

G
= 2κ2

3
φ̇2 (2.6)

φ̈ =
(

4 − 1

2

Ġ

G

)
φ̇ + 1

G

∂V

∂φ
. (2.7)

The Einstein equations can be used to eliminate G in the
scalar field equation of motion:

φ̈ = 4

(
φ̇ − 3

2κ2

∂ log V (φ)

∂φ

) (
1 − κ2

12
φ̇2

)
. (2.8)

The total value of the classical action can be expressed as
a pure boundary term. In particular, after substituting for
the kinetic and potential terms for φ using the Einstein field
equations, and taking into account contributions from singu-
lar terms in the scalar curvature at the orbifold fixed points,
the resulting 4D effective potential is given by [23]

Veff = e−4y0

[
V0(φ(y0)) − 6

κ2

√
G(y0)

]

+ e−4y1

[
V1(φ(y1)) + 6

κ2

√
G(y1)

]
. (2.9)

Since the effective action is a pure boundary term, the 4D
potential depends only on the asymptotic behavior of the
geometry and the scalar field.

In the next two sections we discuss the application of
these equations first to the case of constant bulk potential
V (φ) = − 6k2

κ2 , which is a review of previous results in the
literature placed in the context of the motivation for this work.
This is then extended to more general potentials that corre-
spond to our weak φ dependence ansatz where we perform
a numerical analysis over a broad range of parameter space.
The constant potential case corresponds via AdS/CFT to an
undeformed CFT. In the section on general potentials, we
add a term to the 5D action that corresponds to sourcing a
marginally relevant operator that stabilizes the pure scale-
invariant dilaton quartic coupling typical for conformal field
theories.

2.1 Example: constant bulk potential

The case of constant potential can be solved analytically [31],
and the result for φ is given by

2 These are sometimes solved in the literature using a formalism called
the superpotential method. We present a way to use this method that
has been slightly modified to better fit the soft-wall dilaton analysis in
Appendix A.

φ = φ0 ± 1

4

√
12

κ2 log
[
e4(y−yc)

(
1 +

√
1 + e8(yc−y)

)]
.

(2.10)

The integration constant yc is chosen so as to correspond to
the value of y for which the behavior of φ changes qualita-
tively from φ ≈ constant = φ0 to a behavior that is linear in

y: φ ≈ φ0 ±
(

log 2 +
√

12
κ2 (y − yc)

)
.

We can also evaluate the expression for G(y) exactly. Tak-
ing V = − 6k2

κ2 , and defining f ≡ ke−yc , and μ ≡ ke−y we
have

G = k2

[

1 +
(

f

μ

)8
]

. (2.11)

With the above information we can extract the dilaton
potential. We take the “stiff-wall” limit where we presume
that the boundary potential fixes φ at particular values on the
branes: φ(y0) = φUV and φ(y1) = φIR. We also take the
potentials in this limit to be pure tensions: V0(φUV) = 
0

and V1(φIR) = 
1. Defining μ0 = ke−y0 , μ1 = ke−y1 we
have

Veff =
(μ0

k

)4

⎡

⎣
0 − 6k

κ2

√

1 +
(

f

μ0

)8
⎤

⎦

+
(μ1

k

)4

⎡

⎣
1 + 6k

κ2

√

1 +
(

f

μ1

)8
⎤

⎦ . (2.12)

The scalar boundary conditions determine a combination
of the free parameters μ0, μ1, f , and φ0. We fix μ0 by match-
ing the 4D observed Planck scale, and for the purposes of this
discussion, we will hold f fixed. The UV boundary condi-
tion essentially sets φ0 ≈ φUV, up to terms of order ( f/μ0)

4.
The IR boundary condition fixes the ratio

(
f

μ1

)4

= 1

2
exp

⎡

⎣

√
4κ2

3
(φIR − φUV)

⎤

⎦ , (2.13)

so that μ1 might be replaced by a function of f in the expres-
sion for the effective potential.

Neglecting terms of order ( f/μ0)
8 induced by the explicit

breaking of conformal invariance associated with sourcing
4D gravity at the scale μ0, the effective potential as a function
of f can be written as

Veff ≈ μ4
0

(

0

k4 − 6

κ2k3

)

+ f 4

⎛

⎝2
1

k4 exp

⎡

⎣−
√

4κ2

3
(φIR − φUV)

⎤

⎦ + 6

κ2k3

⎞

⎠.

(2.14)
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Near AdS Region Condensate

y=yc

φ ∼ Constant φ ∝ y

Fig. 1 This cartoon shows the evolution of the field φ. It begins in a
region where φ is nearly constant, and the geometry is nearly AdS. At a
critical value of the coordinate, y = yc which is close in proper distance
to a curvature singularity, φ then begins linear evolution, as shown and
the curvature quickly grows large. The gap of the theory is set by the
position of this “soft wall”

The first term in this expression is the contribution to the bare
cosmological constant. This is expected to be either tuned to
zero by choosing 
0 = 6k

κ2 , or made vanishing by the intro-
duction of additional UV symmetries such as supersymmetry.
The second is the contribution to the cosmological constant
via the spontaneous breaking of conformal symmetry, or in
other words, the dilaton quartic. As before, the quartic is a
sum of two terms, one from the IR brane tension and the
other from the bulk cosmological constant. The former is
suppressed by the hierarchy in φ, such that, for very large
separation between φUV and φIR, a very large negative value
of 
1 is required to cancel the positive contribution from the
bulk geometry.3

Note that we expect higher curvature operators that are
expected to be induced by quantum corrections to give con-
tributions to the dilaton potential, but the form is still be
that of a scale-invariant quartic plus derivative terms unless
a non-trivial scalar potential is included.

The interpretation of this result is that even when the IR
brane does not play a major role, there is the notion of a break-
ing scale of conformal symmetry given by f ≡ ke−yc . This
scale corresponds in 5D to a position in the extra dimension
at which the leading behavior of the curvature, or equiva-
lently the scalar field evolution, makes a transition from one
type of behavior to another. In Fig. 1,

We show schematically the behavior of the scalar field
evolution along the y coordinate. The behavior begins with
slow evolution where the geometry is nearly AdS and then
transitions to linear behavior where the curvature becomes
large. Without an IR brane, a singularity at finite proper dis-

3 As the final value of the total vacuum energy is non-zero in this
procedure, our assumption of a static solution is only an approximation,
and a non-trivial cosmology would typically be produced [32,33]. We
neglect this effect here, assuming that the bare term is adjusted so that
the final vacuum energy is vanishing.

tance from the UV brane terminates the geometry. We term
this region in y where φ is linear the “condensate” region. The
effective potential for f is precisely what is expected for an
approximately conformal theory with explicit breaking man-
ifest in the form of a bare CC, and from the introduction of the
Planck brane itself, making the position of this turnover of
the 5D behavior of the scalar-gravity background a candidate
for the dilaton.

Note that this “soft-wall dilaton” is unstable, just as in the
original RS I model. Unless 
1 is large and negative quar-
tic coupling is large and positive, driving f to zero in the
absence of a stabilization mechanism. This means that the
effective potential is minimized when the conformal symme-
try is unbroken. Alternatively 
1 can be tuned to make the
quartic vanish, and give the dilaton a flat direction. Further,
the ansatz of flat 4D metric slices is only valid in the case that
the total cosmological constant vanishes, or when all terms
in the effective potential are arranged so as to exactly cancel
each other. The tuning of the bare CC, and the tuning of the
dilaton quartic are precisely the two tunings that are required
in two-brane RS models.

That there is a lack of stability of the constant potential
case with soft-wall breaking of conformal symmetry comes
as little surprise. Typical conformal theories without super-
symmetry do not support spontaneous conformal breaking
due to the presence of the scale-invariant quartic (in other
words, the lack of scalar flat directions).4 A deformation of
the CFT, or in other words a departure from conformality, is
required to stabilize a VEV against the scale-invariant quar-
tic. In the next two sections, we demonstrate how deforma-
tions of the CFT (introduced in the AdS dual by considering
a non-trivial bulk scalar potential) can stabilize the soft-wall
dilaton.

2.2 Non-constant bulk potentials

To stabilize the dilaton, we consider adding a deformation
to the bulk scalar potential. For example, a mass term for φ

could be added:

V (φ) = −6k2

κ2

(
1 − κ2

3
εφ2

)
. (2.15)

Note that ε is defined to be dimensionless. The non-zero
mass term for φ corresponds via AdS/CFT to a non-trivial
quantum scaling dimension for the CFT operator that maps
to φ via the duality [34,35]. If φ takes a non-trivial value
on the boundary of AdS, then this operator is sourced in

4 In superconformal theories, while there are potentially vacua that
spontaneously break conformality, they are degenerate along supersym-
metric flat directions, and there is no unique vacuum for the theory. This
is also the case of the original un-stabilized RS model, where tuning
of the brane tensions is necessary to create a static geometry, but then
there is no dynamical selection of the inter-brane separation.
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the dual (approximate) CFT, contributing as a small explicit
violation of conformal invariance. In the constant poten-
tial limit, this operator is precisely marginal, and does not
deform the CFT. When ε is negative, which is the ansatz
we will take in our work, the scalar field is tachyonic, and
tends to grow with increasing y. This is dual to sourcing
a near-marginal relevant deformation of the CFT. This is
somewhat similar to what occurs in QCD or technicolor-
like theories, although in that case conformal invariance is
badly broken in the infrared when the coupling becomes
strong. We make the assumption that the φ-dependent terms
in the potential remain small in the region of large φ, or
in the approximate CFT dual, that the β-functions remain
small even when the coupling becomes large. Condensation
is triggered not by strong coupling, as happens in QCD, but
rather by a coincidence of the coupling constant having a
value associated with a near-zero in the effective dilaton quar-
tic. The slow running of the coupling over a large range of
coupling values allows the theory to explore the landscape
of quartics until a near-zero is found and the theory con-
denses.

In the region of large back-reaction, the equations of
motion do not admit analytic solutions to the equations of
motion when ε is non-zero. The equations can be solved
approximately using the method of boundary layer match-
ing; however, this approximation begins to break down when
φ is large, but its behavior is not yet governed by the IR con-
densate asymptotics. Due to these difficulties, we resort to
numerical solutions to the equations of motion to study the
behavior of this system.

We presume throughout the rest of this work that the brane
localized potentials enforce the stiff-wall limit, and the branes
are thus localized at positions where the scalar field φ is equal
to φ0 and φ1 in the UV and IR, respectively. We do not expect
any aspects of the analysis to change much if this condition
is relaxed.

The UV brane tension is fine-tuned to enforce the condi-
tion that the cosmological constant vanish in the limit when
the conformal breaking scale goes to zero. This is a tuning
of the bare cosmological constant – the remaining cosmo-
logical constant at non-zero values of f is due purely to the
conformal symmetry breaking condensate. It is this remain-
ing dynamical contribution which is suppressed by the small
value of ε.

The value of f depends on initial conditions for the deriva-
tive of φ, with the behavior of φ in the UV encoding the infor-
mation regarding the scale of symmetry breaking. The brane
potentials select the value of φ at the position of the branes,
but this derivative of φ is not fixed. Varying this derivative is
equivalent to varying over the value of the breaking scale, f .

For a given IR brane tension, there is a given value for f at
the minimum of the effective potential that we derived above
equivalently, minimization of the action fixes the derivative

of φ at the position of the UV brane. The value for f in terms
of the geometry is

f −1 =
∫ y1

y0

ey√
G

dy. (2.16)

We have verified numerically that the masses of resonances
obtaining their mass from conformal symmetry breaking
(e.g. masses of gauge boson KK modes) track almost exactly
linearly with the above definition for f , even in cases where
the backreaction is very large. This definition agrees in the
limit of vanishing backreaction with the usual definition,
f ≈ ke−y1 , but differs substantially from it in the regions
of interest in this study.

We discuss results in terms of the dimensionless quantity
N , where N is expressed in terms of the 5D curvature and
Planck scale:

N 2 = 8π2

κ2k3 . (2.17)

For perturbativity of the 5D gravity model, N must be taken
to be somewhat large. Note that the effective 4D Planck scale,
M2

Pl = N2

16π2 k
2, should be held fixed, so that a particular value

of N corresponds to a given value of k. It is also convenient
to work in terms of a rescaled G: G = k2G̃. Finally, we also
rescale both of the brane tensions: 
0,1 = 6 k

κ2 
̃0,1.
With these rescaled parameters and functions, and with the

expression for f in Eq. (2.16), we can express the effective
dilaton potential in terms of dimensionless quantities as

Vdilaton = 192π2

N 2 M4
Pl

×
{[


̃0 −
√
G̃0

]
+ e−4y1

[

̃1 +

√
G̃1

]}
,

(2.18)

and we can write

f = 4πMPl

N

[∫ y1

y0

ey√
G̃

dy

]−1

. (2.19)

For numerical evolution of the scalar equation of motion in a
manner that is independent of N , we define a dimensionless
scalar field φ̃ = κφ, in which case the scalar equation of
motion is

¨̃φ = 4

(
˙̃φ − 3

2

∂ log V (φ̃)

∂φ̃

) (
1 − 1

12
˙̃φ2

)
. (2.20)

For initial and final values of the scalar field φ0 and φ1, we
employ a rescaling that is common in the literature: φ2

0,1 =
k3v2

0,1 =
(

4πMPl
N

)3
v2

0,1, where v0,1 are the dimensionless

values of the field on the branes, set in the stiff-wall limit.
We report results as a function of v0,1, N , ε, and 
̃1.

In Fig. 2 properties of the zero-temperature dilaton poten-
tial are displayed for various values of the bulk mass term, ε,
and for various values of the IR brane tension. The hierarchy

123



78 Page 6 of 20 Eur. Phys. J. C (2018) 78 :78

Fig. 2 These are plots of f vs. 
̃1 for different values of N (the rows correspond to N = 6, 9, and 12), different values of v1 (left plots are v1 = 1,
right are v1 = 10), and on each plot, various values of ε correspond to the various curves. The color shading corresponds to values of |Vmin|

f 4

between the 4D effective Planck scale and the dilaton vev,
f , are shown. In addition, color shading indicates the value
of the dilaton potential at the minimum (effectively the con-
tribution to the cosmological constant from the dilaton vev).
We show in two columns the dependence on the IR brane
value of the bulk scalar field. On the left are plots that cor-

respond to small back-reaction, which is the usual hard-wall
RS model where v1 = 1. On the right, we display results for
the soft-wall model where v1 = 10, and backreaction in the
IR region is large.

The values of 
̃1 that accomplish breaking of conformal
symmetry are much larger than in the hard-wall model for
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small values of N . One might ask whether this is consistent
with estimates arrived at using the tools of naive dimensional
analysis. One must be careful in applying these tools in the
soft wall: Low mass graviton KK-modes do not penetrate
the soft wall to reach the IR brane, whereas higher mass KK
modes have more significant overlap with the IR brane. This
means that the local cutoff associated with violation of uni-
tarity in KK-graviton scattering is much higher as the self
coupling of the gravitons is very small in this region. It is
not clear that the values for small N are completely reason-
able, but we are most interested anyway in larger values of
N , corresponding to perturbative 5D gravity models. As N
increases, the values of 
̃1 rapidly approach much smaller
values that are easily consistent with NDA expectations.

3 Finite temperature

The phase structure of near-conformal 4D theories is of inter-
est both as a theoretical question and one of phenomenology.
If naturalness of the electroweak symmetry breaking sector
is due to strong near-conformal dynamics, it is important to
study the cosmology of such theories. Studies of the RS1
phase transition indicate that it is strongly first order, with a
critical temperature suppressed in comparison with the value
of the condensate. This is due to the presence of a near flat
direction at the minimum of the dilaton potential. It is this
which allows for the light dilaton, and also for a suppres-
sion in the contribution of condensates to the effective IR
value of the cosmological constant. At finite temperature,
such non-compact flat directions are lifted, sending the dila-
ton field value to the origin, thus evaporating the conden-
sate.

In order to study the theory at finite temperature, the class
of geometries we study is opened up to include the possibility
of a horizon (or “black brane”) at some point y = yh in the
5D coordinate [36–38]. In AdS space, the Hawking radiation
from such a black hole allows the black hole to reach equi-
librium with the thermal bath. The action associated with the
classical solution corresponds to the thermodynamical free
energy of the system. The geometry we study has the metric
function

ds2 = e−2y
[
h(y)dt2 + dx2

]
+ 1

h(y)

dy2

G(y)
. (3.1)

The presence of a horizon is associated with a zero in the
horizon function h(y) at position yh . As we are considering
a thermal partition function, we work in Euclidean metric
signature, with the time coordinate compactified on a circle:
t ∈ [0, 1/T ).

The equations of motion for the metric functions h and G,
and for the scalar field φ are given by,

ḧ

ḣ
= 4 − 1

2

Ġ

G
(3.2)

Ġ

G
= 2κ2

3
φ̇2

G = −
κ2

6
V (φ)
h

1 − 1
4
ḣ
h − κ2

12 φ̇2
(3.3)

φ̈ = 4

(
φ̇ − 3

2κ2

∂ log V

∂φ

) (
1 − 1

4

ḣ

h
− κ2

12
φ̇2

)
. (3.4)

The effective potential is still given by a pure boundary term,
although the singular terms due to orbifold boundary condi-
tions at a putative black hole horizon require special treat-
ment, as we discuss later in this section.

The bulk contribution to the effective potential arises from
using the equations of motion to express the bulk action as a
total 5-derivative:

Vbulk = − 2

κ2

∫
dy∂5

[
e−4y

√
Gh

]

= 2

κ2

[
e−4y0h(y0)

√
G(y0) − e−4y1h(y1)

√
G(y1)h(y1)

]
.

(3.5)

The curvature tensor has singularities at the orbifold fixed
points that give additional contributions to the effective
action. Integrating the action over these singularities at the
UV and IR branes gives the following contribution to the
effective potential:

Vsing = − 1

κ2

[
e−4y0

√
G(y0)

(
8h(y0) − ḣ(y0)

)

− e−4y1
√
G(y1)

(
8h(y1) − ḣ(y1)

)]
. (3.6)

Note that the equation of motion for h enforces an exact
cancellation between the two ḣ terms.

In summary, adding together the contributions to the
potential when there is no black hole horizon, including
the two-brane localized potentials which each contribute√
gind(yi )Vi , are:

Vdilaton = e−4y0

[√
h(y0)V0(φ(y0)) − 6

κ2 h(y0)
√
G(y0)

]

+ e−4y1

[√
h(y1)V1(φ(y1)) + 6

κ2 h(y1)
√
G(y1)

]
.

(3.7)

Our goal is to replace the IR brane at y1 with a black hole
horizon at yh , such that h(yh) = 0 [15]; however, due to the
structure of the manifold near the horizon, one cannot simply
take h(yh) = 0 in the above equation. The reason for this is
that the manifold near the horizon is typically singular, with a
cone feature appearing in a given t − y slice of the geometry,
as shown in Fig. 3.
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Fig. 3 This figure displays the conical singularity appearing in the t-
y slice of the geometry. A spherical cap of small radius, r is put to
regularize the singularity

In order to study such a horizon for generic bulk scalar
potential, we presume that the horizon function has a zero
for some finite y = yh . We further presume that h(y) is
analytic, such that it has a Taylor expansion in the vicinity of
the horizon. In this case, we have ḣ

h ≈ 1
y−yh

, with the sign
determined by the fact that h is positive in the physical region
y < yh , and that it is passing through zero.

This behavior of the horizon function determines a bound-
ary condition for φ that arises from taking the near-horizon
limit of the scalar field equation of motion:

φ̇
∣
∣
yh

= 3

2κ2

∂ log V

∂φ

∣∣
∣∣
yh

. (3.8)

This boundary condition enforces regularity of the solution
for φ at the horizon – without this condition, φ diverges in
the approach to the horizon [39]. It is interesting to note that
this boundary condition also keeps the value of φ̇ somewhat
small in comparison with the 5D Planck scale, ensuring that
gravitational back-reaction never becomes very large when
the potential is only a slowly changing function of φ. As
a result, the finite temperature analysis remains under con-
trol in the gravity sector, with higher order curvature terms
not playing an important role. Due to the evolving potential,
however, there can be large changes in previous studies, as
we will soon demonstrate.

To compute the effective potential when the IR is screened
by a black hole horizon, we need to pay closer attention to
the treatment of singular terms at the orbifold fixed points at
y = y0 and y = yh . The scalar curvature is singular in both
places. In the UV, the singular terms can be treated as before,
yielding a contribution to the effective potential that is given
by

V BH
UV = − 1

κ2 e−4y0
√
G(y0)

[
8h(y0) − ḣ(y0)

]
. (3.9)

The IR contribution is calculated via a proper regularization
of the 2D conical singularity. There is a conically singu-
lar geometry near the black hole horizon corresponding to a
system that is out-of-equilibrium. Quantum effects will gen-
erally cause the singularity to emit radiation until it reaches

equilibrium with the surrounding thermal bath, at the mini-
mum of the free energy of the thermodynamical system.

If a theory admits solutions to the h function which vanish
at some finite value of yh , then we can study such systems in
the near-horizon limit. Considering the near-horizon limit of
the metric, where h ≈ ḣ(yh)(y − yh), we have (displaying
only the dt and dy components of the metric):

ds2 ≈ e−2yh ḣ(yh)(y − yh)dt
2

+ dy2

ḣ(yh)(y − yh)G(yh)
. (3.10)

We now go to “good” coordinates, (y−yh) = ỹ2

4 ḣ(yh)G(yh),
t = θ

2πT where the metric is manifestly that of a cone:

ds2 = e−2yh ḣ2(yh)G(yh)
ỹ2

4(2πT )2 dθ2 + d ỹ2. (3.11)

The opening angle of the cone is given by

sin α = − e−yh ḣ(yh)
√
G(yh)

4πT
, (3.12)

with the overall minus sign ensuring positivity of the angle
since ḣ is negative at the horizon. By capping the cone with
a sphere of radius r , which has constant curvature 2/r2, the
contribution to the action is rendered finite and r independent,
allowing a sensible r → 0 limit:

�SIR =
∫

d3x
4π

κ2 (1 − sin α) e−3yh

=
∫

d3x

[
4π

κ2 e−3yh + 1

T κ2 e−4yh ḣ(yh)
√
G(yh)

]
.

(3.13)

Note that a factor of two has been included as the integral
is over the entire S1 space in the S1/Z2 orbifold, leading to
a double copy of the spherical cap, one on each side of the
orbifold fixed point. The singular IR contribution to the 4D
effective potential energy is then given by

V IR
sing = −

[
1

κ2 e−4yh ḣ(yh)
√
G(yh) + 4π

κ2 e−3yh T

]
. (3.14)

The first term cancels exactly the corresponding UV term,
and we can write the complete effective potential in the pres-
ence of the black hole horizon as

F = e−4y0

[√
h(y0)V0(φ(y0)) − 6

κ2 h(y0)
√
G(y0)

]

−4πT

κ2 e−3yh . (3.15)

This expression for the free energy, F = U − T S separates
into an energetic component U that is completely localized
on the UV brane and an entropic component −T S arising
from the Bekenstein–Hawking entropy of the black hole.
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The value of yh that minimizes the free energy as a func-
tion of the horizon location is obtained by inverting the fol-
lowing relation:

T = − κ2

12π

dU

dyh
e3yh . (3.16)

The right hand side of this equation for arbitrary yh is inter-
preted as the temperature of the black hole. The value of the
free energy at the minimum is

Vmin = U + 1

3

dU

dyh
. (3.17)

Up to terms that violate conformal invariance due to the
introduction of the Planck brane or the Goldberger–Wise
potential, the equilibrium temperature that minimizes the
effective potential as a function of yh is associated with the
value of yh that removes the conical singularity. We can use
the h equation of motion to express this equilibrium temper-
ature in terms of the near AdS–Schwarzchild UV behavior
of h and G: ḣ(y0) ≈ − 4e4(y0−ỹh) and G(y0) ≈ k2. Note
that ỹh is the position where the horizon would be if there
were no deformation of the geometry due to the varying φ

field. In the absence of scalar backreaction, ỹh = yh . From
the equations of motion one finds that the presence of the
back-reaction delays the onset of the horizon, establishing
the inequality ỹh ≤ yh .

Teq = Th = k

π
e−yhe4(yh−ỹh). (3.18)

As the position of the horizon, yh , is greater than ỹh , the equi-
librium temperature is larger than it would be in the absence
of scalar backreaction. This is potentially problematic, as
this would mean that the temperature is not necessarily a
monotonic function of the position of the horizon. The tem-
perature would in fact grow when the backreaction becomes
sizable, causing a deviation between yh and ỹh . We see that
the temperature grows with increasing yh when dyh

d ỹh
> 4/3.

Note however, that the entropy S = 4π
κ2 e−3yh is monotoni-

cally decreasing with increasing yh . These high temperature
solutions with low entropy are disfavored relative to those of
equal temperature but small yh and thus larger entropy.

3.1 Constant bulk potential at finite temperature

In the case of V (φ) = − 6k2

κ2 , with no dependence on φ, the
scalar field equation of motion has a significantly simplified
relationship to h:

d

dy
log φ̇ = d

dy
log

ḣ

h
. (3.19)

This scalar field equation of motion is integrable, and we find
that the solution is given by

φ = φ0 + Cl log h, (3.20)

where Cl is an integration constant. We note that this equa-
tion immediately excludes the case of constant bulk potential
as a candidate for a spontaneously broken CFT at finite tem-
perature, or where h = 0 for some finite y in a non-trivial
scalar field configuration. Clearly, if h is vanishing, but Cl

is finite then φ must be divergent at the position of the hori-
zon, and the horizon boundary condition Eq. (3.8) cannot be
satisfied.

The equations can be satisfied for one particular value:
Cl = 0, which corresponds to φ = constant. Solving the
Einstein equations for this case yields h = 1 − e4(yh−y)

and G(y) = k2, corresponding to the AdS–Schwarzchild
geometry. This configuration is dual to an unbroken exact
CFT at finite temperature.

3.2 Generic potential at finite temperature

We now calculate the results for the free energy when a
non-trivial bulk potential is considered. Using the poten-
tial explored in the zero-temperature analysis, Eq. (2.15),
we numerically solve the coupled scalar and Einstein equa-
tions for a range of temperature and the free parameters of
the model. At high temperatures the theory is in a quasi-
AdS–Schwarzchild geometry, with a free energy given by
Eq. (3.15), while at low temperatures, the theory transitions
to the zero-temperature geometry studied in Sect. 2.

Geometries that minimize the free energy can be found
for a large range of temperatures for each configuration of
parameters. The analysis reveals that there are striking dif-
ferences between the free energy as a function of the tem-
perature when one includes or does not include the effects
of backreaction. In Fig. 4, we show the results of the numer-
ical analysis in terms of the value of the free energy at the
minimum, having extremized over the position of the black
hole horizon. The curve corresponding to ε = 0 gives the
free energy for the AdS–Schwarzchild solution, or equiva-
lently, the free energy where backreaction is neglected. The
remaining curves have non-trivial scalar field profiles due to
non-vanishing values of the bulk scalar mass term, and affect
the free energy. Backreaction effects generally increase the
value of the free energy at the minimum for a given temper-
ature, meaning that it will be easier to make the transition:
the critical temperature when the value of the free energy
is equal to the minimum of the zero-temperature effective
dilaton potential is higher.

4 Phase transitions

The phase transition connecting the finite temperature app-
roximate CFT to the zero-temperature soft-wall description
dual to spontaneously broken near-conformal symmetry is
first order, and thus proceeds via bubble nucleation [8,40,
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Fig. 4 In this figure, we show the minimum of the free energy func-
tion rescaled by the fourth power of the temperature. The temperature
is set by the inverse compactification radius of the time coordinate. On
the right hand side, for comparison, we give the minimum of the free

energy divided by the result obtained while neglecting back-reaction,
with very large deviations clear at lower values of the temperature, where
φ is becoming large. Results are presented in terms of the temperature
divided by the 4D effective Planck scale

41].5 In the early universe, bubble nucleation competes with
Hubble expansion, with the phase transition proceeding to
completion only if bubble creation outpaces Hubble dilution
[42,43].

This requirement can be phrased as the necessity of having
one or more bubbles in one unit of Hubble 4-volume. If there
is a rate of bubble nucleation per unit volume given by �/V ,
then model parameters that satisfy

�

V
� H4 (4.1)

at some time period in the early universe will correspond to
a successful phase transition. In the hot conformal phase, the
universe is radiation dominated, and we have

H2 = 8πGρ

3
∼ π3GN 2T 4

3
. (4.2)

The decay rate is proportional to �/V ∝ e−SE , where SE is
the euclidean action associated with the fields evolving from
their initial to their final values at nucleation. The coefficient
of proportionality is difficult to calculate in general, involving
an “obdurate” functional determinant, but dimensional anal-
ysis says that this factor should be of order f 4. Similarly,
the nucleation temperature is not expected to be drastically

5 This is unchanged in the case of the soft-wall scenarios under consid-
eration as the finite temperature analysis never reaches a point where
gravitational effects are very significant, and there is always a poten-
tial barrier between the finite temperature phase and the conformally
broken phase. This can be found in detail in Appendix B, where an
approximation to the solution for φ̇ is given in Eq. (B.5), where the
ε suppressed potential keeps the value of φ̇ small. Since we can trust
the finite temperature potential at large enough N , and tunneling can
proceed quickly enough, the cosmological phase transition will thus be
first order.

different from f , and later analysis in this section confirms
this, with results shown in Fig. 7. Putting this together, the
criterion for bubble nucleation is roughly

SE � 4 log

(
MPl

f

)
. (4.3)

Many terms have been left out that are subdominant for large
MPl/ f hierarchies. The large gap between f and MPl along
with the exponential sensitivity to SE justifies using simple
dimensional analysis on the coefficient of the rate.

The Euclidean action is associated with the path in field
space from the initial state far away from the bubble to the
final state associated with its interior. At finite temperature,
the geometry is compactified along the time direction, with
compactification radius given by the inverse temperature:
t ∈ (0, 1/T ]. Two types of bubbles are possible – those
with O(3) symmetry whose radius is large in comparison
with 1/T , and those with small radius, where bubbles exhibit
invariance under the full O(4). The one with lower action is
the one that will determine the decay rate.

At low temperatures, or at the interior of a bubble in the
cooling universe, there exists a warped extra dimensional
solution with time compactified and no black hole horizon.
At high temperatures, or far away from the bubble, a near-
AdS–Schwarzchild solution (AdS-S) with horizon is seen,
as discussed in the previous section. To determine the rate at
which the phase transition proceeds, one requires the action
associated with moving from one phase to the other.

Comparison of the minimum total free energy for each
geometry identifies the preferred vacuum at various tem-
peratures, and the structure of the potential that interpolates
between the AdS-S minimum and the conformal breaking
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minimum specifies the dynamics that interpolates between
the two phases. Our analysis parallels earlier work on con-
formal phase transitions [7,8], but with emphasis on the par-
ticulars of the soft-wall light dilaton construction.

4.1 Nucleation of soft-wall bubbles

The dynamics of the phase transition interpolate between the
black hole solution and the zero-temperature soft-wall dila-
ton geometry. We assume that Hubble expansion adiabati-
cally cools the finite temperature solution, with the black hole
horizon position tracking the minimum of the free energy.
Eventually, when the temperature is such that the criteria
for tunneling are satisfied, bubbles in the black hole horizon
form, with the interior of the bubbles containing the brane
that cuts off the zero-temperature geometry in the infrared
region.

The criteria for tunneling are two-fold. First, the transi-
tion must be energetically favorable, with the minimum of
the black hole solution free energy being greater than the
minimum of the zero-temperature effective dilaton potential.
This defines the critical temperature, Tc. However, the rate of
nucleation may not yet be high enough to overcome Hubble
dilution, which is the second criterion. It is only when the
bubble action reaches the critical value in Eq. (4.3) that bub-
bles begin to nucleate. The temperature associated with the
critical action crossing is the nucleation temperature, Tn , but
the action is minimum not for f at the bottom of the effective
potential, but rather for smaller values of f . We denote the
value of f inside a bubble as the nucleation scale, fn . After
the phase transition is completed, the dilaton will oscillate
and decay down to the true minimum.

The full action interpolating between the black hole and
stabilized dilaton solutions is not accessible in this calcu-
lation without a UV completion, as the black hole solution
at large yh and the zero-temperature small f regions both
involve trans-planckian excursions of the bulk curvature and
scalar field, and also it is not clear how to properly normalize
fluctuations in the position of the black hole horizon. How-
ever, one can estimate the bubble action in several hypothesis
scenarios that depend on the size of the bubble radius rela-
tive to the inverse temperature, and the maximum size of
the gradient of the fields as one moves from the interior to
the exterior of a bubble. We presume that the contribution to
the bubble action from evolution on the black hole side of
the transition is small, and the finite temperature calculation
serves only to give the proper nucleation temperature. The
size of the bubble determines whether the bubble has O(3) or
O(4) symmetry in the Euclidean action, and the steepness of
the bubble wall determines whether a thick [44] or thin [45–
47] wall approximation is a better estimate for the minimum
action.

Thick walls typically dominate when the latent heat asso-
ciated with the phase transition is comparable to the barrier
height separating the minima. While the barrier height can-
not be calculated due to loss of control of the theory in the
small Th , small f regions, it appears in numerical simulation
that the trend is to maintain a shallow potential. We have also
checked the action for thin wall bubbles, and indeed the thick
wall solutions have values of the action that are typically of
order 1/10 that of thin wall bubbles. Estimation of O(4) and
O(3) thick wall bubble actions show that for some regions
of parameter space, O(3) bubbles have smaller action, and
dominate the phase transition, and in other regions, it is the
O(4) symmetric bubbles that have smaller action.

The Euclidean action associated with a bubble during a
finite temperature phase transition is calculated on a geom-
etry where the time coordinate is compactified on a circle
of radius 1/T . Small bubbles with R < 1/T exhibit O(4)

symmetry, and the action above reduces to a radial integral
along which f varies from its nucleation value out to zero at
the boundary of the bubble:

SO(4)
E = S4 = 2π2

∫
r3

[N
2

(∇ f )2 + V ( f, T )

]
dr. (4.4)

For the larger O(3) symmetric bubbles which wrap the time
direction, one obtains

SO(3)
E = S3/T = 4π

T

∫
r2

[N
2

(∇ f )2 + V ( f, T )

]
dr.

(4.5)

N is a normalization factor associated with canonically nor-
malizing the fluctuations of the soft-wall dilaton.

The bubble action can be approximated by [44]

S3 = 4πR2
[
N f 2

�R2 �R + R

3
V̄

]

S4 = 2π2R3
[
N f 2

�R2 �R + R

4
V̄

]
, (4.6)

where �R is the region where f is changing significantly,
and V̄ is the volume averaged value of the potential inside the
bubble. For the case of the dilaton potential, which is typically
shallow for small values of ε, the thick wall action is smaller
than the thin wall, and so the phase transition is driven by
thick wall bubbles with f varying throughout. Thus, we can
take �R to be the same as R, and minimize the bubble action
over R. This yields

S3/T (min) = 4π

3

N 3/2 f 3
√

2|V̄ |
S4(min) = π2 N 2 f 4

2|V̄ | . (4.7)
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Fig. 5 Each panel includes plots of the values for the O(3) and O(4)

symmetric bubble actions as a function of the dimensionless IR brane
tension 
̃1. The critical value for the action as a function of f/MPl is

shown. Plots on the left side correspond to v1 = 1, while plots on the
right correspond to v1 = 10. All plots take ε = − 0.1
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Fig. 6 In this figure, we show the value of the O(3) (red) and O(4) (blue) bubble actions for various values of the bulk scalar mass parameter, ε.
Again, a comparison is made with a smaller value of v1 = 1 (plots on the left side) vs. larger values v1 = 10 (plots on the right side)
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Fig. 7 These plot shows the nucleation properties for the soft wall with
v1 = 10, and various values of N . Both the temperature at which nucle-
ation occurs and the value of fnuc tunneled to are displayed, along with

the corresponding values of f at the minimum of the zero-temperature
potential in units of the physical 4D Planck scale

The normalization factor N we take to be N = 3N 2/2π2.
This is likely larger than the actual normalization, which is
affected by backreaction, and thus we expect our values of
the action to be conservatively large. For the average value of
the potential, we use the difference between the finite tem-
perature potential minimum and the value of the soft-wall
potential at the nucleation value of the dilaton, fn :

|V̄ | ≈ Fmin(T ) − Vdilaton( f ). (4.8)

The properties of the finite temperature near-conformal
phase transition can be calculated as a function of the input
parameters in the 5D model. In Fig. 5,we display in each panel
the value of the minimum bubble action (both for O(3) and
O(4) bubbles) as a function of the dimensionless IR brane
tension 
̃1. Each point on the 
̃1 axis has an associated value

of f at the minimum of the zero-temperature potential, and
a value of the potential itself at the minimum. On additional
horizontal axes on the top of each plot, we display the hierar-
chy between f and the 4D Planck scale as well as |Vmin|/ f 4

for reference. In the figure, we show both “hard-” and soft-
wall values of φ1, with the hard-wall calculation displaying
excellent agreement with analytical calculations in the litera-
ture [8]. As N increases, the bubble action increases, making
it more difficult for the phase transition to complete for a
fixed ratio of f/MPlanck.

We note that the phase transition completes over a much
wider range of parameter space, which is a strong success
of the soft-wall models. In the hard-wall description, smaller
values of N are typically necessary, and perturbativity of the
5D gravity theory is not guaranteed.
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Fig. 8 In this figure, we display the values of the O(3) and O(4) bub-
ble actions for the special case of N = 20. For this large value of N , the
phase transition is on the boundary of completing, and so the nucleation

temperature, Tn and the value of the nucleation condensate fn are very
suppressed in relation to the value of f at the minimum of the potential

In Fig. 6, we show the values for the bubble action as a
function of the bulk scalar mass, ε. Values of 
̃1 are chosen
so as to center the plots with ε = 0.1 corresponding to a ratio
f/MPlanck of order the TeV–Planck hierarchy.

In Fig. 7, for the soft-wall scenario where v1 = 10,
we display the values of the temperature at which nucle-
ation begins to occur for each scenario, as well as the value
of fn that the system initially tunnels to. Both O(3) and
O(4) bubbles are shown. Of note is the behavior of the
nucleation temperature and nucleation value of the con-
densate. Relative to the value of f at the minimum, both
of these quantities become small as the value of N is
increased.

Finally, in Fig. 8, we display the bubble action and nucle-
ation properties for the largest value of N found for which
a hierarchy of TeV-Planck will complete for ε = −0.1. For
this large value of N the values of Tn/ f and fn/ f are quite
small, 10−4 and 10−3 respectively.

5 Gravitational waves

During a first order phase transition that proceeds by bubble
nucleation, gravitational waves are sourced both by the col-
lisions of the bubbles themselves, which break the spherical
symmetry of the solutions discussed above, and also by tur-
bulence in the finite temperature plasma as the bubbles move
through it.

The stochastic spectrum is determined primarily by only
coarse features of the phase transition. The latent heat dif-
ference determines a parameter α, which is the ratio of the

latent heat compared with the energy density in the finite
temperature false vacuum phase:

α = VT=0( fn)

VT (T = Tn)
− 1. (5.1)

Secondly, there is a parameter which describes the rate of
variation of the bubble nucleation rate. This parameter, β, can
be derived in terms of the variation of the bubble action with
respect to temperature at the bubble nucleation temperature:

β

H∗ = T ∗ dS

dT

∣∣∣∣
T ∗

. (5.2)

In Fig. 9, we display values of α and β for a range of
different values of N , both for thick and thin wall bubbles,
as a function of f . The two types of sources of gravitational
waves generate spectra with different values of the frequency
at the peak of the signal, and different power laws for the fall-
off on the tails of the signal. The results of [48] are used for
the purpose of calculating the characteristics of the signal. In
Fig. 10, we display the expected density spectrum of gravita-
tional waves generated from the phase transition. The signal
strength increases quickly with N , and as the nucleation tem-
perature decreases with increasing N for fixed f , the higher
values of N have a peak at lower frequency. Smaller values
of N For N = 6 and N = 9 may be visible at LISA. For
N = 20, the frequency looks too small to be detectable at
LISA; however, proposed pulsar timing array experiments
may probe this region with sufficient sensitivity.

Of course, the type of transition we discuss is not restricted
to be at the TeV scale, although we would not be solving the
electroweak hierarchy in this case. The scale f could instead
be associated with other higher energy scales such as the
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Fig. 9 These plots display the parameters α and β for a range of N as a function of the hierarchy between f and MPlanck at the minimum of the
zero-temperature potential after the cosmological phase transition completes. Both O(3) and O(4) bubbles are shown
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EPTA IPTA

LISA

Fig. 10 This is the expected signal strength, expressed in terms of the
gravitational wave contribution to the energy spectrum as a function of
frequency. The parameters used in the plots are: ε = 0.1, v0 = 0.1,
v1 = 10, and f = 1 TeV and the three different colors correspond to
N = 6 (red), 9 (blue), 12 (green), and 20 (orange). In this plot the signal
data calculated in this work is overlaid on sensitivity curves derived from
[49], and available at http://rhcole.com/apps/GWplotter/ for BBO and
the EPTA and IPTA. The sensitivity curve for LISA [50] was generated
from the C1 curve provided in [51]

GUT scale, or perhaps a Peccei–Quinn scale. In this case,
the signal peak would be at higher frequency.

6 Conclusions

This work explored solutions to 5D Einstein-Scalar theories
with the goal of studying the cosmological phase transition
of models with naturally large hierarchies of scale that are
induced by geometric warping. In particular, we have exam-
ined scenarios where gravitational backreaction is large, yet
the theory remains approximately conformally invariant. A
numerical analysis of the finite- and zero-temperature poten-
tials was performed in order to calculate the properties of the
phase transition.

In early constructions of the Randall–Sundrum model, sta-
bilized by a Goldberger–Wise mechanism with small grav-
itational backreaction, small values of N were required to
accomplish a successful cosmological phase transition. Per-
turbativity of 5D gravity in these models with such small
values of N is in doubt. In this work it was demonstrated
that in the soft-wall construction where gravitational back-
reaction is taken into account, the bubble nucleation rate is
faster for a given N , and that far larger values of N can be
accommodated in the sense that there is a successful early-
universe first order phase transition. For the parameters we
have considered, N = 20 is near the threshold beyond which
bubbles will not nucleate.

The gravitational wave signals associated with a first order
transition near the weak scale, generated by collisions and
turbulance in the plasma, are potentially strong enough to be

visible at next generation gravitational wave observatories
such as LISA (and perhaps eLISA for larger N ) if the nucle-
ation temperature corresponds to a peak in the spectrum not
far from the targeted frequency range of these experiments.
As the nucleation temperature can be far from the value of
the condensate, f , the peak in the spectrum can vary signif-
icantly while holding the condensate value fixed, with this
separation growing with increasing N .
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Appendix A: Superpotential method

Much of the literature on the Goldberger–Wise stabilization
mechanism employs a formalism referred to as the superpo-
tential method [52,53]. In these other works, the superpo-
tential method guarantees a solution that satisfies the bulk
and boundary conditions. In this appendix, we present an
approach to the equations of motion that is based on this
familiar framework, but with some improvements to the for-
malism that are particular to the soft-wall light dilaton. The
content of this discussion is only a formalism, and does not
contribute any new physics, but may be useful for the reader
familiar with it.

In the superpotential method, a function W (φ), the super-
potential, that solves the first order equation

V (φ) = 1

8

(
∂W

∂φ

)2

− κ2

6
W 2 (A.1)

can be used to generate solutions for φ according to the fol-
lowing relationship:

φ̇ = 3

κ2

1

W

∂W

∂φ
. (A.2)

In order for this to be consistent with the boundary conditions
on the branes, this relationship depends on the brane localized
potentials having a particular form:

∂W

∂φ

∣∣∣∣
y0,y1

= ∓∂V0,1

∂φ
(φ0,1) (A.3)
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The superpotential W is related in a simple way to G:

√
G = κ2

6
W (φ), (A.4)

which is consistent with the ansatz of flat 4D slices if the
boundary potential further obeys

∂W

∂φ

∣∣∣∣
y0,y1

= ± V0,1(φ0,1). (A.5)

A superpotential that solves Eq. (A.1) can be re-expressed
in terms of a new function σ(φ) as:

W (φ) =
√

6

κ2

√−V (φ) cosh

⎡

⎣

√
4κ2

3
(φ − σ(φ))

⎤

⎦ , (A.6)

and if we then have

∂W

∂φ
= √

8
√−V (φ) sinh

⎡

⎣

√
4κ2

3
(φ − σ(φ))

⎤

⎦ , (A.7)

then the superpotential equation is solved. Consistency of
these two equations then gives an equation of motion for
σ(φ):

∂σ

∂φ
= 1

4

∂ log V (φ)

∂φ

√
3

κ2 coth

⎡

⎣

√
4κ2

3
(φ − σ)

⎤

⎦ . (A.8)

The solution for σ is a trivial constant σ = φ0, if the bulk
potential is constant, and for a small deformation, σ evolves
slowly as a function of φ. At this point, the reason for the form
chosen for Eqs. (A.6) and (A.7) should be more clear: this
parametrization in terms of the σ function better encapsulates
the explicit breaking of conformal invariance in the 4D dual
through non-trivial dependence of the bulk potential on φ.

In terms of the superpotential, the dilaton effective poten-
tial has the following form:

Vdil = e−4y0 [V0(φ0) − W (φ0)]

+ e−4y1 [V1(φ1) + W (φ1)] , (A.9)

where we can use the relation between φ and W to extract
the hierarchy associated with the brane separation:

y1 − y0 = κ2

3

∫ φ1

φ0

W
(

∂W
∂φ

)

dφ =
√

κ2

12

∫ φ1

φ0

coth

⎡

⎣

√
4κ2

3
(φ − σ(φ))

⎤

⎦ dφ.

(A.10)

The value of the condensate is then given by

f −1 = 2
∫ φ1

φ0

exp [y(φ)]

∂W/∂φ
dφ, (A.11)

where y(φ) is given by the integral equation above.

Appendix B: Approximate analytic results

While a full numerical analysis was needed to draw accu-
rate conclusions regarding the phase structure of the mod-
els under consideration, there are analytical expressions that
give insight into the results. In this appendix, we present these
approximate analytic solutions and visually compare them to
full numerical results, and, for comparison, to solutions used
in the literature for models that have only small backreaction.

To begin, we observe that, for the case of a constant bulk
potential, the equation of motion for φ̃ reduces to

¨̃φ = 4 ˙̃φ
(

1 − 1

12
˙̃φ2

)
. (B.1)

It can be shown that starting in the UV and moving to the
IR, this equation has asymptotic behavior where φ̇ ≈ 0 in
the UV, and φ̇ ≈ √

12 in the IR.
For the case of a non-trivial bulk potential the equation of

motion is

¨̃φ = 4

(
˙̃φ − 3

2

∂ log V (φ̃)

∂φ̃

) (
1 − κ2

12
˙̃φ2

)
. (B.2)

For a bulk potential which depends only mildly on φ̃ and
is polynomial in φ̃, the potential term is always suppressed.
For the case of a quadratic potential, V (φ̃) = 
(1 + ε

3 φ̃2),
when the backreaction and the value of φ are both small, the
second derivative term goes like ε2, and can be ignored in
a leading approximation. When φ is large, the term is again
suppressed as the term goes like 1/φ̃ in this limit, and ¨̃φ is
again especially small. The equation is then relatively simple

in cases where the potential term is small: ˙̃φ− 3
2

∂ log V (φ̃)

∂φ̃
≈ 0.

For the case of the quadratic potential, we have ˙̃φ −
εφ̃

1+ ε
3 φ̃2 ≈ 0 which has an exact solution:

φ̃(y)UV =
√√√√3

ε
PL

[
εφ̃2

UV

3
exp

(
ε(6(y − y0) + φ̃2

UV)
)
]

,

(B.3)

where we have imposed the boundary condition φ̃(y0)UV ≡
φ̃UV and PL is the product log function. This UV solution can
be contrasted with the lowest order UV solution by expanding
the UV fixed point equation as ˙̃φ − εφ̃ = 0 and then solving
to obtain

φ̃(y)UV = φ̃UV exp(εy). (B.4)

One could also obtain this solution from expanding the
correct leading-order result to lowest order in εφ̃2

UV. We will
refer to this as the lowest order UV solution for φ̃, which is the
solution for the Golberger–Wise field in the UV commonly
found in the literature. While this solution is sufficient for the
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Fig. 11 Plots for φ̃ and its derivative. Green is the lowest order UV
solution, φ̃0eεy , red is the analytic UV solution we are presenting, and
blue are various full numerical results for the solution parameterized by
�φ̃′

I R ≡ √
12 − φ̃′(yI R). The agreement in the deep UV is good for all

cases, as expected, but the lowest order UV solution disagrees severely.
Our approximate UV solution outlined above continues to track the
unstable UV fixed point up until the IR condensate region develops

T 0 numerical
T=0 numerical (yc @ )

Improved UV

0 50 100 150
0

2

4

6

8

10

y

˜

v0 = 10–1, = –10–1, N=3

Fig. 12 A comparison between the φ solution in the presence of a
horizon and then with no horizon (numerical and analytical). Since
the boundary condition for φ at the horizon is the equation of motion
itself to leading order, a horizon can be placed at any point along this
trajectory which nominally effects φ numerically, and only at next-to-
leading-order analytically

hard-wall scenario as φ̃ is always O(1), it is insufficient for
a UV region that allows moderately larger values of φ̃ since
in that case εφ̃2

UV is not a small dimensionless quantity, and
starts to dominate over the UV value of the 5D cosmological
constant term. A comparison between the lowest order solu-
tion and our UV solution, along with some exact numerical
results are displayed in Fig. 11.

We further note that the solution for the scalar field in
the finite temperature scenario where there is a black hole
horizon also allows an approximate analytic solution. The
near-horizon limit of the φ̃ equation of motion produces the
boundary condition

˙̃φ|yh = 3

2

∂ log V (φ̃)

∂φ̃

∣∣∣∣
yh

(B.5)

but this is the same relation employed as an approxima-
tion in the UV region of the zero-temperature solution. This
means that in order to accommodate a horizon, φ̃ never moves
far from the approximate analytic solution studied above. A
comparison between φ̃ in the presence of a horizon function
and with no horizon function are plotted in Fig. 12.
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