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Abstract We propose a model which is a simple exten-
sion of the KSVZ invisible axion model with an inert dou-
blet scalar. Peccei–Quinn symmetry forbids tree-level neu-
trino mass generation and its remnant Z2 symmetry guaran-
tees dark matter stability. The neutrino masses are generated
by one-loop effects as a result of the breaking of Peccei–
Quinn symmetry through a nonrenormalizable interaction.
Although the low energy effective model coincides with an
original scotogenic model which contains right-handed neu-
trinos with large masses, it is free from the strong CP prob-
lem.

1 Introduction

The standard model (SM) has been confirmed by the discov-
ery of the Higgs scalar [1,2]. However, it is now considered
to be extended to explain several experimental and obser-
vational data such as neutrino masses and mixings [3–10],
and dark matter (DM) [11,12]. Strong CP problem is also
one of such problems suggested by an experimental bound
of the electric dipole moment of a neutron [13,14]. Invisi-
ble axion models are known to give a simple and interesting
solution to it [15–18]. The KSVZ model, which is one of
such realizations, is an extension of the SM by a complex
singlet scalar and a pair of colored fermions. It has a global
U (1) symmetry, which is violated only by the QCD anomaly
and plays a role of Peccei–Quinn (PQ) symmetry [19,20]. If
the spontaneous breaking of this U (1)PQ symmetry occurs,
a pseudo Nambu–Goldstone boson associated to this break-
ing called axion appears to solve the strong CP problem
[21,22]. If the axion decay constant fa is large enough such
as 109 GeV < fa < 1012 GeV due to a vacuum expec-
tation value (VEV) of the singlet scalar, the axion mass is
very small and its coupling is extremely weak so as not to
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cause any contradiction with experiments and astrophysical
observations [23–25].

On the other hand, theU (1)PQ breaking is known to cause
N degenerate minima for the axion potential due to the QCD
anomaly depending on both the field contents and the PQ
charge assignment for them. As a result, the model is gener-
ally annoyed by the dangerous production of topologically
stable domain walls [26]. It can be escapable only for N = 1
unless one consider the domain wall free universe brought
about by inflation. If a certain subgroup of U (1)PQ remains
as a discrete symmetry broken only by the QCD anomaly in
a model with N = 1, it could present an interesting scenario
in relation to the DM physics at the low energy regions.1

In this paper, we consider such a possibility in an exten-
sion of the KSVZ model, in which an inert doublet scalar
and three right-handed neutrinos are added. The low energy
effective model obtained from it after the breakdown of the
U (1)PQ symmetry is reduced to the original scotogenic neu-
trino mass model with an effective Z2 symmetry [30]. This Z2

symmetry could guarantee the stability of a lightest neutral
component of the inert doublet scalar to give a DM candidate.
The neutrino masses are generated through a one-loop effect
as a result of the U (1)PQ breaking. The relevant diagram is
caused by both right-handed neutrinos and a nonrenormal-
izable interaction between the inert doublet scalar and the
ordinary Higgs doublet. The model might be recognized as a
well motivated simple framework at high energy regions for
the original scotogenic model.

The remaining parts are organized as follows. In the next
section, we introduce a model by fixing charge assignment
of U (1)PQ to the field contents. We discuss basic features of
the model such as remnant effective symmetry, scalar mass
spectrum, vacuum stability and so on. In Sect. 3, phenomeno-
logical features such as neutrino mass generation, leptoge-
nesis and DM abundance in this model are discussed. The

1 The similar idea has been discussed in several articles, recently [27–
29]. However, the present model is different from them.
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consistency of the scenario is also studied from a viewpoint
of the vacuum stability and a cut-off scale of the model. We
summarize the paper in Sect. 4.

2 An extension of the KSVZ model

The KSVZ model is constructed by introducing a sin-
glet complex scalar S and a vector-like colored fermions
(DL , DR) to the SM [15,16]. We assume DL ,R as triplets
of the color SU (3). Although they are SU (2)L singlets,
they could have a suitable weak hypercharge Y , in general.
This point is crucial for phenomenological consistency of the
model as discussed below. The model has a global U (1)PQ

symmetry and its charge is assigned to S and DL ,R , but it is
not assigned to the SM contents. We assume the existence
of a gauge invariant Yukawa coupling yDSD̄L DR so that the
PQ mechanism could work to solve the strong CP problem.
This requires that the PQ charge X of these new ingredi-
ents should satisfy XS = XDL − XDR . On the other hand,
this symmetry should be chiral to have the QCD anomaly and
XDL �= XDR is satisfied. Thus, thisU (1)PQ is spontaneously
broken through the VEV of S.

The U (1)PQ transformation DL ,R → ei XDL ,R αDL ,R for
the colored fermions DL ,R shifts the QCD θ parameter
through the anomaly as [13,14,26]

θQCD → θQCD − 1

2
(XDR − XDL )α. (1)

Since θQCD has a period 2π , the model is invariant for
α = 2πk

N where N ≡ 1
2 |XDR − XDL | is an integer and

k = 0, 1, . . . , N − 1. This means that the model could have
a discrete symmetry ZN after taking account of the QCD
anomaly.2 If we assign the U (1)PQ charge S as XS = 2, the
model has N = 1 and no degenerate minima in the axion
potential. Thus, the model has no domain wall problem as is
well known.3 Here, we note that an effective Z2 symmetry
could remain after the symmetry breaking due to 〈S〉 �= 0
although it is violated by the QCD anomaly. Since the SM
contents are supposed to have no PQ charge, it could play
an important role in the leptonic sector of the model to guar-
antee the stability of the lightest Z2 odd field in that sector,
which could be DM.

If both DL and DR cannot couple with quarks, which
occurs in case Y (DL ,R) = 0 for example, they are stable
and then its relic abundance has to be smaller than the DM

2 The axion decay constant fa is related with the PQ symmetry breaking
scale 〈S〉 as N fa = 〈S〉 by using this N .
3 Although the model has domain walls bounded by the string caused
from the spontaneous U (1)PQ breaking, it is not topologically stable
and then it can shrink and decay. As a result, no cosmological difficulty
appears [31].

Table 1 The hypercharge Y and the U (1)PQ charge X of new fields in
the model. The SM contents are assumed to have no PQ charge

DL DR S η Ni

Y − 1
3 − 1

3 0 − 1
2 0

X 2 0 2 1 −1

Z2 + + + − −
Parity for the effective symmetry Z2 which remains after the U (1)PQ
breaking is also listed

abundance [32]. Even if its relic abundance satisfies such a
condition, the existence of the fractionally charged D hadrons
is generally forbidden by the present bound obtained from
the search of fractionally charged states. On the other hand, if
we assign Y = − 1

3 or 2
3 to DL ,R , all the D hadrons can have

integer charge. In that case, the D relic abundance will restrict
the D mass into a narrow range such as mD

>∼ 1 TeV [32].
Moreover, they are allowed to couple with quarks through a
renormalizable Yukawa interaction as long as their PQ charge
is zero. For example, using the left handed quark doublet
qL and the Higgs doublet φ or φ̃(≡ iτ2φ

∗), the coupling
φ̃q̄L DR is allowed for DR with X = 0 and Y = − 1

3 and
also φq̄L DR for DR with X = 0 and Y = 2

3 . In these cases,
DR decays to the SM fields through these couplings. DL

can also decay via the mass mixing with DR induced by the
coupling yDSD̄L DR through 〈S〉 �= 0. As a result, the mass
mD has no constraint other than the bound obtained through
the accelerator experiments. Anyway, in the model where
the PQ charge is assigned as discussed above, the strong CP
problem could be solved without inducing any cosmological
and astrophysical difficulty, as long as the symmetry breaking
scale satisfies 109 GeV < 〈S〉 < 1012 GeV.

Now, we consider a modification of this model by intro-
ducing an inert doublet scalar η and three right-handed neu-
trinos Ni . The PQ charge assignment of the fields contained
in the model is shown in Table 1. Invariant terms under the
assumed symmetry for the Yukawa couplings and the scalar
potential of the relevant fields are summarized as

−Ly = yDSD̄L DR + hDq̄L φ̃DR + yi S N̄
c
i Ni

+ hαi �̄αηNi + h.c.,

V = m2
S S

†S + κ1(S
†S)2 + κ2(S

†S)(φ†φ) + κ3(S
†S)(η†η)

+m2
ηη

†η + m2
φφ†φ + λ1(φ

†φ)2 + λ2(η
†η)2

+ λ3(φ
†φ)(η†η) + λ4(φ

†η)(η†φ)

+ λ5

2

[
S

M∗
(η†φ)2 + h.c.

]
, (2)

where λ5 is taken to be real and M∗ is a cut-off scale of
the model. The quark generation index is abbreviated in the
Yukawa coupling hD . We find that V given in Eq. (2) is the
most general scalar potential up to the dimension 5.
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After the symmetry breaking due to 〈S〉 �= 0, DL ,R , Ni and
S are found to get masses such as mD = yD〈S〉, Mi = yi 〈S〉
and M2

S = 4κ1〈S〉2, respectively. Since DL ,R can decay to the
SM fields through the second term in Ly as discussed above,
there is no thermal relic of DL ,R in the present Universe. The
effective model at the scale below MS could be obtained by
integrating out S [33]. This can be done by using the equation
of motion for S. As its result, we obtain the corresponding
effective model whose scalar potential of the light scalars can
be written as

Veff = m̃2
φ(φ†φ) + m̃2

η(η
†η) + λ̃1(φ

†φ)2 + λ̃2(η
†η)2

+ λ̃3(φ
†φ)(η†η) + λ4(φ

†η)(η†φ)

+ λ̃5

2

[
(φ†η)2 + h.c.

]
, (3)

where we use the shifted parameters which are defined as

λ̃1 = λ1 − κ2
2

4κ1
, λ̃2 = λ2 − κ2

3

4κ1
,

λ̃3 = λ3 − κ2κ3

2κ1
, λ̃5 = λ5

〈S〉
M∗

,

m̃2
φ = m2

φ + κ2〈S〉2, m̃2
η = m2

η + κ3〈S〉2. (4)

We note that the model contains the neutrino Yukawa cou-
plings between heavy right-handed neutrinos and the inert
doublet scalar as shown in the above Ly .

Vacuum stability condition for the scalar potential Veff in
Eq. (3) is known to be given as [34–36]

λ̃1 > 0, λ̃2 > 0, λ̃3 > −2
√

λ̃1λ̃2,

λ̃3 + λ4 − |λ̃5| > −2
√

λ̃1λ̃2, (5)

and these should be satisfied at the energy regionμ < MS . On
the other hand, at MS < μ < M∗, both the same conditions
for λ1,2,3 as Eq. (5) except for the last one and new conditions

κ1 > 0, κ2 > −2
√

λ1κ1, κ3 > −2
√

λ2κ1, (6)

should be satisfied. The couplings in both regions should be
connected through Eq. (4). We can examine whether these
conditions could be satisfied or not by using one-loop renor-
malization group equations (RGEs). This is the subject stud-
ied later.

This effective model obtained after the spontaneous break-
ing of U (1)PQ is just the original scotogenic model [30].4

This model connects the neutrino mass generation with the
DM existence. It has been extensively studied from various
phenomenological view points [37–52]. In the present case,

4 In the case of Y (DL ,R) �= 0, U (1)PQ and then its subgroup Z2
could be broken by the electroweak anomaly also. However, since this
breaking does not induce the decay of the lightest Z2 odd field, this Z2
can be considered to be a good symmetry in the effective model.

the right-handed neutrinos do not have their masses in a TeV
region but they are considered to be much heavier. The cou-
pling λ̃5 which is crucial for the one-loop neutrino mass gen-
eration is derived from a nonrenormalizable term as a result
of the PQ symmetry breaking. The model contains the inert
doublet scalar η which has odd parity of the remnant effective
Z2. It has charged components η± and two neutral compo-
nents ηR,I . Their mass eigenvalues can be expressed as

M2
η± = m̃2

η+λ̃3〈φ〉2, M2
ηR,I

= m̃2
η+

(
λ̃3 + λ4 ± λ̃5

)
〈φ〉2.

(7)

We suppose m̃η = O(1) TeV although it requires fine tuning
because of |〈S〉| 	 |〈φ〉|. As a result of the effective Z2

symmetry, the lightest one among the components of η is
stable to be a DM candidate if it is neutral. If it is supposed
to be ηR , we find that this requires λ4 < 0 and λ̃5 < 0 as
long as |λ̃5| 
 |λ4| is satisfied. On the other hand, since
m̃2

η 	 〈φ〉2 is satisfied in Eq. (7), the mass eigenvalues of
the components η are found to be degenerate enough so that
the coannihilation processes among them are expected to be
effective. This observation suggests that the abundance of ηR

could be suitably suppressed and then it could be a good DM
candidate as the ordinary inert doublet model [53–56]. The
charged states with the mass of O(1) TeV are also expected
to be detected in the accelerator experiments.

3 Phenomenological features

3.1 Neutrino mass, leptogenesis and DM relic abundance

In this model, neutrino masses are forbidden at tree-level.
However, since both the right-handed neutrino masses and
the mass difference between ηR and ηI are induced after the
U (1)PQ breaking, the small neutrino masses can be gener-
ated radiatively through one-loop diagrams in the same way
as the original scotogenic model. Since M2

ηR,I
	 |M2

ηR
−

M2
ηI

| is satisfied, the neutrino mass formula can be approxi-
mately written as

Mαβ =
∑
i

hαi hβi�i , �i � λ̃5〈φ〉2

8π2Mi
ln

M2
i

M̄2
η

, (8)

where M̄2
η = m̃2

η +
(
λ̃3 + λ4

)
〈φ〉2. In order to take account

of the constraints from the neutrino oscillation data in the
analysis, we may fix the flavor structure of neutrino Yukawa
couplings hαi at the one which induces the tri-bimaximal
mixing [42,43]5

5 Although a certain modification is required to reproduce the observed
mixing in the lepton sector, this simplified example could give a rather
good approximation for the present purpose as found from [45,46].
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hej = 0, hμj = hτ j ≡ h j ( j = 1, 2);
he3 = hμ3 = −hτ3 ≡ h3, (9)

where the charged lepton mass matrix is assumed to be diag-
onal. In that case, the mass eigenvalues are estimated as

m1 = 0, m2 = 3|h3|2�3,

m3 = 2
[
|h1|4�2

1 + |h2|4�2
2

+ 2|h1|2|h2|2�1�2 cos 2(θ1 − θ2)
]1/2

, (10)

where θ j = arg(h j ).
As is known generally and found also from this mass for-

mula, neutrino masses could be determined only by two
right-handed neutrinos. It means that the mass and neu-
trino Yukawa couplings of a remaining right-handed neutrino
could be free from the neutrino oscillation data as long as its
contribution to the neutrino mass is negligible. In Eq. (10),
such a situation can be realized for |h1|2�1 
 |h2|2�2.
This is good for the thermal leptogenesis [57] since a suffi-
ciently small neutrino Yukawa coupling h1 makes the out-
of-equilibrium decay of the right-handed neutrino N1 possi-
ble.6 We find that the squared mass differences required by
the neutrino oscillation data could be explained if we fix the
parameters relevant to the neutrino masses, for example, as

M1 = 108 GeV, M2 = 4 × 108 GeV,

M3 = 109GeV,

|h1| = 10−4.5, |h2| � 7.2 × 10−4λ̃−0.5
5 ,

|h3| � 3.1 × 10−4λ̃−0.5
5 , (11)

for m̃η = 1 TeV. Using these values, we can estimate
the expected baryon number asymmetry through the out-of-
equilibrium decay of the thermal N1 by solving the Boltz-
mann equation as done in [45,46]. The numerical analysis
shows that the required baryon number asymmetry could be
generated for M1

>∼ 108 GeV, which is somewhat smaller
than the Davidson–Ibarra bound [61] in the ordinary thermal
leptogenesis. In case of the parameter set given in (11), we
findYB

(≡ nB
s

) = 4.0×10−10 if we assume λ̃5 = 2.5×10−3

and a maximal CP phase in the CP violation parameter ε.
In Fig. 1, we plot YB as a function of λ̃5. Its feature can
be easily understood by taking account of Eq. (11). If λ̃5

takes larger values, the neutrino Yukawa couplings become
smaller to make the CP violation ε in the N1 decay smaller
but also the washout of the generated lepton number asym-
metry smaller. On the other hand, if λ̃5 takes smaller val-
ues, the neutrino Yukawa couplings become larger to induce

6 If we consider the TeV scale right-handed neutrinos, leptogenesis
requires fine degeneracy among the right-handed neutrinos for the res-
onance [58–60]. We need not consider such a possibility in the present
case.

10-13
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10-11

10-10
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10-4 10-3 10-2 10-1

Y B

λ~5

Fig. 1 Baryon number asymmetry YB generated through the out-of-
equilibrium decay of N1. YB is plotted as a function of λ̃5 for the param-
eter set shown in Eq. (11), which can explain the neutrino mass differ-
ences required by the neutrino oscillation data. Horizontal dotted lines
show the required value for YB

the reverse effects. This makes the required baryon number
asymmetry be generated only for the λ̃5 in the limited regions
as found in this figure.

The relic abundance of ηR is tuned to the observed value
if the couplings λ̃3 and λ4 take suitable values. In fact, since
m̃η is assumed to be of O(1) TeV in this scenario, the mass
of each component of η could be degenerate enough for wide
range values of λ̃3 and λ4 as remarked at Eq. (7). This makes
the coannihilation among them effective enough to reduce the
ηR abundance [45,46]. We search the region of λ̃3 and λ4,
which realizes the required DM abundance as the ηR relic
abundance by taking the values of m̃η and λ̃5 as the ones
given below Eq. (11). They are suitable for the explanation
of the neutrino oscillation data and the cosmological baryon
number asymmetry. In the estimation of the DM relic abun-
dance, we follow the procedure given in [62,63] where the
coannihilation effects are taken into account.

We present a brief review of the procedure adopted here.
The ηR relic abundance is estimated as

�h2 � 1.07 × 109 GeV−1

J (xF )g1/2∗ mpl

, (12)

where g∗ is the relativistic degrees of freedom. The freeze-

out temperature TF (≡ MηR
xF

) of ηR and J (xF ) are defined
as

xF = ln
0.038mplgeff MηR 〈σeffv〉

(g∗xF )1/2 ,

J (xF ) =
∫ ∞

xF

〈σeffv〉
x2 dx . (13)
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In these formulas, the effective annihilation cross section
〈σeffv〉 and the effective degrees of freedom geff are expressed
as7

〈σeffv〉 = 1

g2
eff

4∑
i, j=1

〈σi jv〉n
eq
i

neq
1

neq
j

neq
1

, geff =
4∑

i=1

neq
i

neq
1

, (14)

where 〈σi jv〉 is the thermally averaged (co)annihilation cross
section and neq

i is the thermal equilibrium number density
of ηi . If the former is expanded by the thermally averaged
relative velocity 〈v2〉 as 〈σi jv〉 = ai j + bi j 〈v2〉, it could be
approximated only by ai j since 〈v2〉 
 1 is satisfied for
the cold DM. Final states of the relevant (co)annihilation are
composed only of the SM contents. The corresponding aeff

can be approximately calculated as [45,46,56]

aeff = (1 + 2c4
w)g4

128πc4
wM2

η1

(N11 + N22 + 2N34)

+ s2
wg

4

32πc2
wM2

η1

(N13 + N14 + N23 + N24)

+ 1

64πM2
η1

[(
λ̃2+ + λ̃2− + 2λ̃2

3

)
(N11 + N22)

+(λ̃+ − λ̃−)2(N33 + N44 + N12)

+
{
(λ̃+ − λ̃3)

2 + (λ̃− − λ̃3)
2
}

×(N13 + N14 + N23 + N24)

+
{
(λ̃+ + λ̃−)2 + 4λ̃2

3

}
N34

]
, (15)

where λ̃± = λ̃3 + λ4 ± λ̃5 and Ni j is defined by using Mηi

given in Eq. (7) as

Ni j ≡ 1

g2
eff

neq
i

neq
1

neq
j

neq
1

= 1

g2
eff

(
Mηi Mη j

M2
η1

)3/2

exp

[
−Mηi + Mη j − 2Mη1

T

]
.

(16)

We use this procedure to find the points in the (λ̃3, λ4)

plane, where the required DM abundance �DMh2 = 0.12 is
realized by ηR . In Fig. 2, we plot such points by a red solid
line for m̃η = 1 TeV and λ̃5 = 2.5 × 10−3 which are used
in the previous part. In this figure, we take account of the
condition λ4 < 0 which has been already discussed in rela-
tion to Eq. (7). Moreover, if we use the Higgs mass formula
m2

h0 = 4λ̃1〈φ〉2, we find λ̃1 � 0.13 for mh0 = 125 GeV
and then the last condition in Eq. (5) can be also plotted for
a fixed λ̃2 in the same plane.8 An allowed points are con-

7 In this part, we label (ηR, ηI , η
+, η−) as (η1, η2, η3, η4).

8 We note that the second condition in Eq. (5) is automatically satisfied
if the last one is fulfilled.

-1

-0.8

-0.6

-0.4

-0.2

 0

-1 -0.5  0  0.5  1

λ 4

λ
~

3

Ωh2=0.12
λ~2=0.01
λ~2=0.4

Fig. 2 Points plotted by a red solid line in the (λ̃3, λ4) plane can
realize the required DM relic abundance �h2 = 0.12 as the relic ηR
abundance. The last condition in Eq. (5) is satisfied at a region above

the straight line which represents λ̃3 + λ4 = |λ̃5| − 2
√

λ̃1λ̃2 for a fixed
λ̃2

tained in the region above a straight line which is fixed by an
assumed value of λ̃2. We give two examples here. Although
the DM abundance can be satisfied for the negative value
of λ̃3, we find that such cases contradict with the vacuum
stability condition for λ̃3 given in Eq. (5). The figure shows
that λ̃3 and/or |λ4| are required to take rather large values for
realization of the DM abundance. This suggests that the RG
evolution of the scalar quartic couplings λ̃i could be largely
affected if they are used as initial values at the weak scale.
In that case, vacuum stability and perturbativity of the model
could give constraints on the model. In the next part, we focus
our study on this point.

Before proceeding to this subject, we comment on the con-
tribution of the axion to the DM abundance and also a possible
violation of U (1)PQ by the quantum gravity effect. In this
model, the axion could also contribute to the DM abundance
through the misalignment mechanism. If the initial misalign-
ment of the axion is written as 〈θi 〉, the axion contribution to
the present energy density is estimated as [13,14]

�ah
2 = 2 × 104

( 〈S〉
1016 GeV

)7/6

〈θ2
i 〉. (17)

The axion contribution to the DM abundance crucially
depends on the scale of 〈S〉 and 〈θi 〉. This estimation shows
that it could be too small to give the required value �DMh2 =
0.12 for 〈S〉 < 1011 GeV even if we assume 〈θi 〉 = O(1).9

Thus, the axion contribution to the DM abundance is sub-
dominant or negligible for 〈S〉 < 1011 GeV. In this region of

9 The estimation of the relic axion abundance has to take account of
the contribution from the decay of string and domain walls. Depending
on it, the upper bound on the PQ breaking scale seems to be somewhat
ambiguous. While one group finds that the axion production is more
efficient than the misalignment case [64,65], the other group finds that
it is less efficient than the misalignment case [66,67].
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〈S〉, the result obtained for (λ̃3, λ4) through the above study
can be still applicable even if the axion contribution to the
DM abundance is taken into account.

Although we assume that U (1)PQ is exact in this study,
continuous global symmetry is suggested to be violated by
the quantum gravity. This possible effect on the PQ mecha-
nism has been studied [68–70]. If the U (1)PQ symmetry is
violated by the gravity induced effective interaction which is
suppressed by the Planck scale such as

|S|n+3

Mn
pl

(
gS + g∗S

)
, (18)

it has been shown that n ≥ 6 should be satisfied for the
PQ mechanism to give a solution to the strong CP prob-
lem in case that |g| is of O(1). If accidental appearance
of global U (1) happens due to some discrete or continuous
gauge symmetry [71–78], it might protect the PQ symmetry
up to sufficiently higher order operators. The same breaking
effect could also affect the axion CDM abundance [68–70].
If the contribution to the axion mass due to the quantum grav-
ity is small compared to the one due to the QCD anomaly,
〈S〉 � 1011 GeV is required for saturating �h2 = 0.12 by
the axion contribution. Even if its contribution to the axion
mass is larger than the one from the QCD anomaly within the
bound which is required so as not to disturb the PQ mech-
anism, 〈S〉 � 1011 GeV is required again for saturating
�h2 = 0.12. Thus, ηR could play a dominant role in the
DM abundance as long as 〈S〉 is smaller than 1011 GeV.

The stability for ηR could be also violated through the
same effect. The most effective processes for the ηR decay
are induced by nonrenormalizable Yukawa couplings such as

Sn

Mn
pl

(
huq̄LuRη + hdq̄LdR η̃ + he�̄LeR η̃

)
. (19)

If the allowed dimension for these kind of operators is the
same as the one which guarantees the PQ mechanism to work,
the lifetime of ηR could be longer than the age of our universe
in case mη = O(1) TeV and hu,d,e = O(1) as long as we
take 〈S〉 � 1010 GeV. If the lower dimension operators such
as n < 6 are allowed, its lifetime cannot be long enough to
be the DM at the present universe.

3.2 Consistency of the scenario with a cut-off scale of the
model

It is crucial to check what kind of values of the right-handed
neutrino mass Mi and λ̃5 could be consistent with a value of
〈S〉 which is restricted by the axion physics. In this model,
DM is identified with ηR whose mass is of O(1) TeV. In such
a mass region, we find that its abundance is determined by
the values of the scalar quartic couplings λ̃3 and λ4. On the

other hand, these couplings could affect the vacuum stability
and also the perturbativity of the model through the radiative
effects on the scalar quartic couplings λ̃i . Here, we exam-
ine the consistency of the values of λ̃3 and λ4 required to
realize of the DM abundance with these issues.10 Since the
breaking of the perturbativity is considered to be relevant to
a scale for the applicability of the model, we could obtain
an information for the cut-off scale M∗. It allows us to judge
whether the required value for λ̃5 by the neutrino masses and
the leptogenesis could be induced through the VEV of S.

The one-loop β-functions for the scalar quartic couplings
in the effective model at energy regions below MS are given
as follows [80,81],

βλ̃1
= 24λ̃2

1 + λ̃2
3 + (λ̃3 + λ4)

2 + λ̃2
5

+3

8

(
3g4 + g′4 + 2g2g′2)

−3λ̃1

(
3g2 + g′2 − 4h2

t

)
− 6h4

t ,

βλ̃2
= 24λ̃2

2 + λ̃2
3 + (λ̃3 + λ4)

2 + λ̃2
5

+3

8

(
3g4 + g′4 + 2g2g′2) − 3λ̃2

(
3g2 + g′2) ,

βλ̃3
= 2(λ̃1 + λ̃2)(6λ̃3 + 2λ4) + 4λ̃2

3 + 2λ2
4 + 2λ̃2

5

+3

4

(
3g4 + g′4 − 2g2g′2) − 3λ̃3

(
3g2 + g′2 − 2h2

t

)
,

βλ4 = 4(λ̃1 + λ̃2)λ4 + 8λ̃3λ4 + 4λ2
4 + 8λ̃2

5 + 3g2g′2

−3λ4

(
3g2 + g′2 − 2h2

t

)
,

βλ̃5
= 4(λ̃1 + λ̃2)λ̃5 + 8λ̃3λ̃5 + 12λ4λ̃5

−3λ̃5

(
3g2 + g′2 − 2h2

t

)
, (20)

where βλ is defined as βλ = 16π2μ dλ
dμ

. In these equations,

we can expect that the positive contributions of λ̃3 and λ4 to
the β-functions of λ̃1,2 tend to save the model from violating
the first two vacuum stability conditions in Eq. (5). On the
other hand, the same contributions of λ̃3 and λ4 could induce
the breaking of the perturbativity of the model at a rather low
energy scale since they could give large positive contributions
to βλ̃1

, βλ̃2
and βλ̃3

. Here, we identify a cut-off scale M∗ of the
model with a scale where any of the perturbativity conditions
λi (M∗) < 4π and κi (M∗) < 4π is violated.11 In this case,
M∗ > |〈S〉| should be satisfied. If M∗ is smaller than 〈S〉, the
consistency of the scenario is lost.

10 The constraint due to the vacuum stability and the perturbativity
is taken into account in the DM study of the inert doublet model on
the basis of a different viewpoint from the present one [53–56]. The
consistency between fermionic DM and the vacuum stability is also
studied in the scotogenic model [44,79].
11 Since the Landau pole appearing scale is expected to be near to this
M∗, it seems to be natural to identify M∗ with a cut-off scale of the
model.
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Fig. 3 Left panel: running of the scalar quartic couplings for t =
ln μ

MZ
. λ̃2 = 0.23, λ̃3 = 0.65 and λ4 = − 0.806 are used as the

initial values at μ = MZ . A vertical line corresponds to t = ln
(

MS
MZ

)
.

The running of the SM Higgs quartic coupling λ is also plotted as a
reference. Right panel: the cut-off scale M∗ as a function of λ̃2 which
is fixed as a value at MZ for four points marked by the black bulbs in
Fig. 2 where �h2 = 0.12 is satisfied

We analyze this issue by solving the above one-loop RGEs
at μ < MS and also the ones at μ > MS , which are given in
Appendix. The quartic couplings λ̃i in the tree-level potential
at the energy scale μ < MS are connected with the ones λi
at μ > MS through Eq. (4). Since the masses of the right-
handed neutrinos Ni are considered to be heavy in the present
model, they decouple at the scale μ < Mi

<∼ O(MS) to be
irrelevant to the RGEs there. On the other hand, the mass
of the colored fields DL ,R can take any values larger than
1 TeV as discussed before, they can contribute to the RGEs at
larger scales than their mass. In the present study, we assume
that DL ,R is light of O(1) TeV but its Yukawa coupling hD

with the ordinary quarks is small enough.12 Thus, they are
considered to contribute substantially only to the β-functions
of the gauge couplings. In this study, we take its hypercharge
as Y = − 1

3 as shown in Table 1.
The free parameters in the scalar potential of the effective

model (3) are λ̃1, λ̃2, λ̃3, λ4 and λ̃5 at MZ as long as we
assume m̃η = 1 TeV.13 Among them, we should fix λ̃5 at
a value used in the discussion of the neutrino mass and the
leptogenesis. Both λ̃3 and λ4 are fixed at values determined
through the DM relic abundance as shown in Fig. 2. We also
have λ̃1 � 0.13 from the Higgs mass. From this point of
view, λ̃2 is an only remaining parameter. Thus, if we solve
the RGEs varying the value of λ̃2 for other fixed parameters,
we can find M∗ checking the vacuum stability for each λ̃2.

In the left panel of Fig. 3, as an example, we present the
running of the scalar quartic couplings λ̃1,2,3 for the initial

12 In the light D case, study of the bound for this Yukawa coupling is
an interesting subject related to the search of mixing with the ordinary
quarks. However, it is beyond the scope of the present study and we do
not discuss it here.
13 Quartic couplings κi for S are fixed as κ1 = M2

S
4〈S〉2 and κ2,3 = 0.1 at

MS in the present study. As easily found from RGEs, larger values of
κ2,3 make M∗ smaller.

values λ̃2 = 0.23, λ̃3 = 0.65 and λ4 = − 0.806 at MZ

by assuming the U (1)PQ breaking scale as 〈S〉 = MS =
1010 GeV. In the same panel, we also plot the value of λ̃3 +
λ4 −|λ̃5|+2

√
λ̃1λ̃2 as C[λ34], which corresponds to the last

one in Eq. (5). In this example, we can see that the vacuum
stability is kept until the cut-off scale M∗ � 1.54 × 1013 GeV.
These values of 〈S〉 and M∗ can naturally realize the assumed
value for λ̃5 through the relation given in Eq. (4) just by taking
λ5 as a value of O(1). This feature can be verified for other
allowed values of λ̃3 and λ4. Here, we note that the axion
contribution to the DM abundance can be neglected for a
value such as 〈S〉 < 1011 GeV. In the right panel of Fig. 3, we
plot M∗ as a function of λ̃2 for four sets of (λ̃3, λ4) which are
shown by black bulbs in Fig. 2. End points found in the two
lines represent the value of λ̃2 for which the vacuum stability
is violated before reaching M∗. This figure shows that λ̃2

which is restricted to a rather narrow region can make M∗
appropriate values in order to realize a required value of λ̃5 for
〈S〉 < 1011 GeV. This study suggests that the scenario could
work well without strict tuning of the relevant parameters.

As found from the above study, the simultaneous expla-
nation of the neutrino masses and the DM abundance could
be preserved in this extended model in the same way as in
the original scotogenic model. We should stress that no other
additional constraint from the DM physics and the neutrino
physics is brought about by taking the present scenario. The
cosmological baryon number asymmetry is expected to be
explained through the out-of-equilibrium decay of the light-
est right-handed neutrino. The required right-handed neu-
trino mass could be smaller compared with the Davidson–
Ibarra bound in the ordinary thermal leptogenesis [61]. This
is consistent with the result in [45,46] where the mass bound
of the right-handed neutrino for the successful leptogenesis
is shown to be relaxed in the radiative neutrino mass model
in comparison with the ordinary seesaw model .
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Finally, we give brief comments on possible experimen-
tal signatures of the model. The present model might be
examined through (i) the search of the ηR DM and the
charged scalars η± through the DM direct detection exper-
iments and the accelerator experiments, (ii) the search of
the mixing of D with the ordinary quarks although it could
be observed only in the light D case, and (iii) the search
of the axion whose coupling with photon is characterized by
gaγ γ = ma

eV
2.0

1010GeV
(6Y 2 −1.92), where Y is the hypercharge

of D [32].

4 Summary

We have proposed an extension of the KSVZ invisible axion
model so as to include a DM candidate and explain the small
neutrino masses. An extra inert doublet scalar η and three
right-handed neutrinos Ni are introduced as new ingredi-
ents. After the U (1)PQ symmetry breaking, its subgroup Z2

could remain as a remnant effective symmetry, which is vio-
lated through the QCD anomaly but it can play the same
role as the Z2 in the scotogenic neutrino mass model. Since
only the new ones η and Ni have its odd parity, the model
reduces to the scotogenic model which has Z2 in the lep-
tonic sector. The neutrino masses are generated at one-loop
level and the DM abundance can be explained by the ther-
mal relics of the neutral component of η. The cosmological
baryon number asymmetry could be generated through the
out-of-equilibrium decay of a right-handed neutrino in the
same way as the ordinary thermal leptogenesis in the tree-
level seesaw model. However, the bound for the right-handed
neutrino mass can be relaxed in this model. Since this simple
extension can relate the strong CP problem to the origin of
neutrino masses and DM, it may be a promising extension of
both the KSVZ model and the scotogenic model.

Acknowledgements This work is partially supported by MEXT
Grant-in-Aid for Scientific Research on Innovative Areas (Grant No.
26104009).

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.
Funded by SCOAP3.

Appendix

The β-function for the scalar quartic couplings at μ > MS

are given as

βλ1 = 24λ2
1 + λ2

3 + (λ3 + λ4)
2 + κ2

2

+ 3

8

(
3g4 + g′4 + 2g2g′2)

− 3λ1
(
3g2 + g′2 − 4h2

t

) − 6h4
t ,

βλ2 = 24λ2
2 + λ2

3 + (λ3 + λ4)
2 + κ2

3

+ 3

8

(
3g4 + g′4 + 2g2g′2) − 3λ2

(
3g2 + g′2)

+ 4λ2
[
2(h2

1 + h2
2) + 3h2

3

] − 8(h2
1 + h2

2)
2 − 18h4

3,

βλ3 = 2(λ1 + λ2)(6λ3 + 2λ4) + 4λ2
3 + 2λ2

4 + 2κ2κ3

+ 3

4

(
3g4 + g′4 − 2g2g′2)

− 3λ3
(
3g2 + g′2 − 2h2

t

) + 2λ3
[
2(h2

1 + h2
2) + 3h2

3

]
,

βλ4 = 4(λ1 + λ2)λ4 + 8λ3λ4 + 4λ2
4 + 3g2g′2

− 3λ4
(
3g2 + g′2 − 2h2

t

)
+ 2λ4

[
2(h2

1 + h2
2) + 3h2

3

]
,

βκ1 = 20κ2
1 + 2κ2

2 + 2κ2
3 + 4κ1

(
3y2

D +
∑
i

y2
i

)

− 2

(
3y4

D +
∑
i

y4
i

)
,

βκ2 = 4κ2
2 + 2κ2(6λ1 + 4κ1) + 2κ3(2λ3 + λ4)

+ 2κ2

(
3y2

D +
∑
i

y2
i

)

− 3

2
κ2(3g

2 + g′2 − 4h2
t ),

βκ3 = 4κ2
3 + 2κ3(6λ2 + 4κ1) + 2κ2(2λ3 + λ4)

+ 2κ3

(
3y2

D +
∑
i

y2
i

)

− 3

2
κ3

[
3g2 + g′2 − 4

3

(
2(h2

1 + h2
2) + 3h2

3

)]
, (21)

where Eq. (9) is assumed for the flavor structure of neutrino
Yukawa couplings. The β-functions for the gauge couplings
and the Yukawa couplings for top, D and neutrinos are given
as

βgs = −11 + 2

3
(6 + δ)g3

s , βg = −3g3,

βg′ = (7 + 4Y 2δ)g′3,

βht = ht

(
9

2
h2
t − 8g2

s − 9

4
g2 − 17

12
g′2

)
,

βyk = yk

(
y2
k + 3y2

D +
∑
i

y2
i

)
,

βyD = yD

(
−8g3

3 − 6Y 2δg′2 + 4y2
D +

∑
i

y2
i

)
,

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Eur. Phys. J. C (2018) 78 :33 Page 9 of 9 33

βh1,2 = h1,2

[
−9

4
g2 − 3

4
g′2 + 5(h2

1 + h2
2) + 3h2

3 + 1

2

∑
i

y2
i

]
,

βh3 = h3

[
−9

4
g2 − 3

4
g′2 + 2(h2

1 + h2
2) + 6h2

3 + 1

2

∑
i

y2
i

]
,

(22)

where δ stands for the number of extra color triplets DL ,R .
Since DL ,R is assumed to be light in this study, δ is treated
as 1. The Yukawa coupling hD with the ordinary quarks
is assumed to be small enough and then its contribution is
neglected in these equations.
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