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Abstract The interaction between the dark/mirror sector
and the ordinary sector is considered, where the two sec-
tors interact with each other by sharing the same QCD axion
field. This feature makes the mixing between ordinary and
dark/mirror photons in ordinary and dark electromagnetic
fields possible. Perturbative solutions of the equations of
motion describing the evolution of fields in ordinary and dark
external magnetic fields are found. User-friendly quantities
such as transition probability rates and Stokes parameters
are derived. Possible astrophysical and cosmological appli-
cations of this model are suggested.

1 Introduction

One main problem in quantum chromodynamics (QCD) is
that it preserves the charge–parity (CP) symmetry which is
observed to be broken in weak interactions. In general, if
we are not concerned with the violation of the CP sym-
metry or time (T ) symmetry, in any gauge theory we can
introduce in the Lagrangian density a term of the type L ∝
θαβ εμνρσ Fα

μνF
β
ρσ , where θαβ is a constant matrix and Fα

μν is
a gauge field tensor. In the case of QCD, the P, T , and CP vio-
lating term in the Lagrangian density is Lθ ∝ θ̄ Gμν,aG̃a,μν

where θ̄ is the effective angle of the theory and Ga,μν is
the gluon field tensor. However, one problem is that the CP
violating term induces electric dipole moments in baryons,
where for example in the case of the neutron, theoretical
estimates give for the dipole moment dn(θ̄) � 10−16θ̄ e cm
[1–4] while experimentally is found dn < 2.9 × 10−26e cm
[5]. Such a small experimental value for dn implies a small
effective angle of the order θ̄ � 10−10, namely the so called
strong CP problem.

One possible solution for the strong CP problem, is based
on the Peccei–Quinn (PQ) mechanism [6] where the exis-
tence of a new particle, the axion, is proposed. In the PQ
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mechanism, θ̄ becomes a dynamical field with an effec-
tive potential V (a) for the axion field a induced by non-
perturbative QCD effects. The vacuum expectation value
(VEV) of the axion field 〈a〉 = −θ̄ f is minimum for the
effective potential and the CP violating term in the effec-
tive Lagrangian is dynamically cancelled. Usually, the axion
scale parameter f is a free one and is model dependent. Orig-
inally, f was taken to coincide with the electroweak scale
[7,8] but the non-observation of axions in experiments would
suggest that its scale could in principle be much larger than
the electroweak scale. This fact has been implemented in the
so called invisible axion models, namely the KSVZ axion
model [9,10] and DFSZ axion model [11].

A more complicated possibility that solves the strong CP
problem is based on mirror symmetry, namely M-symmetry1

see Ref. [13]. This possible solution of the strong CP problem
is still based on the PQ mechanism but the particle content
group is duplicated with respect to the standard model (SM),
namely one adds an additional sector of particles, the mir-
ror sector. In this context the strong CP problem is solved
simultaneously in both sectors through the PQ mechanism
where the two sectors are supposed to weakly interact with
each other, primarily through the gravitational force.

The general idea of the M-symmetry is based on the
assumption that there exists a parallel sector of mirror or
dark particles which has the same group and coupling con-
stants analogous to the SM sector [14,15]. In this model the
SM Lagrangian is invariant under M-symmetry. More pre-
cisely, the gauge group of the theory is G × G ′ where G
is the ordinary group of the SM of particles G = SU (3) ×
SU (2) ×U (1) with fermion fields 	i = qi , li , ūi , d̄i , ēi and
Higgs doublets H1, H2 and G ′ = SU (3)′ × SU (2)′ ×U (1)′

1 The first proposed solution for the strong CP problem based on M-
symmetry, was considered in Ref. [12] in the context of complex grand
unification theories, namely non-supersymmetric GUT based on the
gauge group SU (5) × SU ′(5).
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is the mirror gauge group2 with analogous particle content
	 ′

i = q ′
i , l

′
i , ū

′
i , d̄

′
i , ē

′
i and Higgs doublets H ′

1, H
′
2. Here,

qi , i = 1, 2, 3 is the left handed quark doublet, li is the
left handed lepton doublet, ūi is the right handed quark sin-
glet (u, c, t), d̄i is the right handed quark singlet (d, s, b) and
ēi is the right handed anti-lepton singlet. Here fermions are
represented as Weyl spinors.

In the case when M-parity is an exact symmetry, the par-
ticle physics must be the same in both sectors. For exam-
ple, for the Yukawa theory, we would see that ordinary and
mirror sectors have the same pattern LYuk = Y i j

U ūi q j H2 +
Y i j
D d̄i q j H1 + Y i j

E ēi l j H1 + h.c., L′
Yuk = Y ′i j

U ū′
i q

′
j H

′
2 +

Y ′i j
D d̄ ′

i q
′
j H

′
1 + Y ′i j

E ē′
i l

′
j H

′
1 + h.c., where Y i j

l = Y ′i j
l with l =

{U, D, E} are the Yukawa couplings (3 × 3 complex matri-
ces) and are equal in both sectors. Since the Yukawa cou-
plings are the same, this would imply that quark and lepton
mass matrices have the same form, namely MU = GU 〈H2〉,
M′

U = GU 〈H ′
2〉, MD = GD〈H1〉, M′

D = GD〈H ′
1〉 etc. On

the other hand, the total renormalizable Higgs potential in
this model has the form Vtot = V + V ′ + Vmix, where V is
the standard model Higgs potential and V ′ is the mirror/dark
sector Higgs potential with the same pattern as its standard
model counterpart. The mixing potential comes out due to
gauge symmetry of the theory and has a quartic interaction
term of the form Vmix = −κ(H1H2)(H ′

1H
′
2)

† + h.c., where
the coupling constant κ is real due to M-symmetry.

The M-parity can be spontaneously broken with the intro-
duction of a real scalar singlet η with odd parity, namely
under the M-parity it changes the sign η → −η. If η has a
non-zero VEV, namely 〈η〉 = μ, it would induce differences
in mass-squared of ordinary and mirror Higgses. This dif-
ference would imply that VEVs, v1,2 are different from v′

1,2
and consequently we would have different weak interaction
scales v �= v′ where v = (v2

1 + v2
2)1/2 � 247 GeV and

v′ = (v′2
1 + v′2

2 )1/2.
In the M-symmetry solution of the strong CP problem,

the axion field is identified as a linear combination of the
Higgs doublets phases φ and φ′ with a = f −1

a ( f φ + f ′φ′)
where fa gets contribution from both ordinary and dark sec-
tors, fa = √

f 2 + f ′2, with f ′ = v′
1v

′
2/v

′ being the axion
decay constant in the dark sector and f = v1v2/v being the
axion decay constant in the ordinary sector; see Ref. [13] for
details. Consequently, the axion mass ma gets contribution
from ordinary and dark sectors

m2
a = N 2

f 2
a

(
V K

V + K TrM−1 + V ′K ′

V ′ + K ′ TrM′−1

)
, (1)

where N is the color anomaly of U (1)PQ current, K and K ′
are, respectively, the gluon condensates of ordinary and dark

2 In this paper the sign (′) denotes quantities of the mirror sector if not
otherwise specified.

sectors which are, respectively, related to the ordinary and
dark QCD scales 
,
′ through K ∼ 
3, K ′ ∼ 
′3 and
V, V ′ are, respectively, the quark condensates of ordinary
and dark sectors with V ∼ 
3 and V ′ ∼ 
′3. Here M and
M′ are, respectively, the mass matrices of light quarks of
ordinary and dark sectors where M = diag(mu,md) and
M′ = diag(m′

u,m
′
d).

One characteristic of this model is that in the case when
f ′ 
 f or 
′ 
 
, the axion field a couples to ordinary sec-
tor as DFSZ-like axion while it couples to the dark sector as
the original axion or Weinberg–Wilczek (WW) axion [7,8].
In this case while the axion behaves as DFSZ-like axion with
respect to the ordinary sector its mass given in (1) gets contri-
bution from a small term coming from the ordinary sector and
a much larger term coming from the dark sector. In addition,
the axion field couples to photons3 with two different cou-
pling constants gaγ and g′

aγ , which are, respectively, given
by

gaγ � αS

π

Nz

fa(1 + z)
, g′

aγ � αS

π

Nz′

fa(1 + z′)
, (2)

where z = mu/md , z′ = m′
u/m

′
d and αS is the fine structure

constant.
In itself, the introduction of the mirror sector can have sev-

eral consequences in cosmology [16–18] and consequently
there exist several constraints on the main parameters of the
model, and for a detailed review see Ref. [19]. The appli-
cation of M-symmetry does not necessarily means that the
abundances of mirror sector particles are the same as those
of the ordinary sector. On the contrary, the abundances of
elements of ordinary and mirror sectors must be different,
not necessarily for all elements, in order to avoid any con-
flict with well known constraints on extra degrees of freedom
such those imposed by big bang nucleosynthesis (BBN) etc.
Indeed, the BBN constraint on the number of extra degrees
of freedom, which usually is expressed in terms of effective
neutrino species, constraints the mirror sector equilibrium
temperature T ′ to be T ′ < 0.64 �N 1/4

ν T where �Nν is the
effective number of neutrino species and T is the equilibrium
temperature of ordinary sector. The fact that T ′ < T , means
that the mirror and ordinary sectors do not come in thermal
equilibrium and therefore they evolve almost separately, a
condition which is easily achieved if the two sectors commu-
nicate through the gravity force. Another constraint imposed
on the parameters of the model comes from the mixing term
Vmix of the ordinary and mirror sector Higgs doublets. The
presence of such term in the Lagrangian density, would make
possible the decay H†

1,2H1,2 → H ′†
1,2H

′
1,2, which in princi-

3 In this work we call the photon of the mirror sector simply dark photon.
In the literature also the name hidden photon for the dark/mirror photon
is used.
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ple would bring the two sectors in equilibrium in the early
universe unless κ is very small, namely κ < 10−8 [20–23].

Another important consequence with the introduction of
the mirror sector is that it may provide the right abundance
of elements in order to explain the origin of dark matter in
a rather natural way. Indeed, as shown in Refs. [24–27], it
is possible that the baryon asymmetry in the early universe
for the mirror sector could be larger than that of the ordi-
nary sector and consequently the number density of mirror
baryons would be larger than that of the ordinary sector,
namely n′

B ≥ nB . In the case when n′
B/nB � 5, we would

see that the mirror particles would be plausible candidates
for the dark matter; see Ref. [19] for details.

The solution of the strong CP problem through the PQ
mechanism in both sectors and the introduction of the axion
field which communicates simultaneously with the ordinary
and dark sectors, give a unique possibility to explore the vast
implications of the model. As we will show in this work, an
important consequence of the model proposed in Ref. [13] is
that ordinary photons can mix with dark photons by sharing
the same axion field. Such process is very important espe-
cially in those situations where do exist both ordinary and
dark external magnetic fields. In this case is possible for
dark photons to transform into ordinary photons and vice
versa in external magnetic fields. Such mixing/oscillation is
very important in the early universe where in the presence of
ordinary and dark large-scale magnetic fields, the dark CMB
photons would mix/oscillate into ordinary CMB photons and
vice versa. This situation could in principle be realized in the
early universe since there are enough left ordinary and mirror
baryons that can contribute to the generation of large-scale
magnetic fields. In addition, the photon–axion–dark photon
mixing/oscillation would be important also in those situa-
tions where dark objects emit dark photons into intergalac-
tic space where both ordinary and dark large-scale magnetic
fields coexist.

In this work, we present a model in which the two sectors
interact only via the same axion field in the case when ordi-
nary and dark external magnetic fields coexist in the same
place and time. Here I assume the large-scale dark mag-
netic field to be generated in an analogous way as the ordi-
nary large-scale magnetic field. In addition, we consider the
axion mass given in expression (1) to be a free parameter
of the model without any a priory assumption if the biggest
contribution to ma comes either from the ordinary sector or
from the dark sector. This work is organized as follows: in
Sect. 2, we introduce the photon–axion–dark photon mixing
and derive the field equations of motion in external magnetic
fields. In Sect. 3, we calculate transitions probabilities for
different transition channels and calculate the Stokes param-
eters which describe the polarization state of light. In Sect.
4, we suggest some possible applications of the proposed
model and in Sect. 5, I conclude. In this work we adopt

the metric with signature ημν = diag(1,−1,−1,−1) and
work with the natural (rationalized) Lorentz–Heaviside units
(kB = h̄ = c = ε0 = μ0 = 1) with e2 = 4πα.

2 Photon–axion–dark photon mixing: the model

The M-symmetry solution of the strong CP problem intro-
duced in Sect. 1, has several interesting theoretical and phe-
nomenological aspects. Before proceeding further, is neces-
sary to stress right now that apart from interacting with the
same axion field a, the two sectors also interact gravitation-
ally but this interaction is not important for the purposes of
this work and will not be considered in what follows. In par-
ticular, in this work we are mostly interested in the interaction
of the axion field with ordinary and dark photon fields. There-
fore, let us consider the model where the effective Lagrangian
density is given by

Leff = −1

4
FμνF

μν + 1

4
gaγ a Fμν F̃

μν − 1

2
m2

a a
2

+1

2
∂μa∂μa − 1

4
F ′

μνF
′μν + 1

4
g′
aγ a F ′

μν F̃
′μν + Lmed

(3)

where Fμν is the electromagnetic field tensor of ordinary
sector and F ′

μν is the electromagnetic field tensor of the dark
sector. We may note the appearance of the axion field a in the
second and sixth terms in Eq. (3) which make possible the
mixing of ordinary photons with dark photons mediated by
a; see Fig. 1. The last term in (3) is the interaction Lagrangian
of photons and dark photons with ordinary and dark media.
Such term essentially corresponds to the forward scattering
of photons and dark photons in media which is encoded in
the index of refraction. Generally, the Lagrangian density
in this case involves a non-local photon and dark photon
polarization tensors in position space and is given by [28–
30]

Lmed = −(1/2)

∫
d4x ′Aμ(x)�μν(x, x ′)Aν(x

′) − (1/2)

×
∫

d4x ′A′
μ(x)�′μν(x, x ′)A′

ν(x
′),

where Aμ, A′
μ are, respectively, the ordinary and dark photon

fields and �μν,�′μν are respectively the photon polarization
tensors of ordinary and dark photons in ordinary and dark
media. The interaction Lagrangian Lmed gives rise to disper-
sion relations for ordinary and dark photons in ordinary and
dark media.

The equations of motions of (3) for the fields Aν, A′ν and
a in the case when particles propagate in ordinary and dark
media are, respectively, given by
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a

Fig. 1 Axion mediated photon to dark photon transition in ordinary
and dark external magnetic fields. The external magnetic fields are
denoted with cross symbols

�Aν −
∫

d4x ′ �μν(x, x ′) Aμ(x ′) = gaγ F̃
μν∂μa,

�A′ν −
∫

d4x ′ �′μν(x, x ′) A′
μ(x ′) = g′

aγ F̃
′μν∂μa, (4)

(� + m2
a)a = 1

4
gaγ Fμν F̃

μν + 1

4
g′
aγ F

′
μν F̃

′μν.

Next, we assume that media is magnetized, namely there is
respectively an external magnetic field in ordinary and dark
sectors where photons and dark photons propagate through.
Adopting the Coulomb gauge,4 the equations of motions for
the vector potentials Ai , A′i and axion field a become

(∂2
t −∇2)Ai +

∫
d4x ′ �i j (x, x ′)A j (x

′) = −gaγ (∂t a)Bi
e,

(∂2
t − ∇2)A′i+

∫
d4x ′ �′i j (x, x ′)A′

j (x
′) = −g′

aγ (∂t a)B′i
e ,

(∂2
t −∇2 + m2

a)a = gaγ ∂t Ai · Bi
e + g′

aγ ∂t A′
i · B′i

e . (5)

Let us expand the fields Ai , A′i and a in Fourier modes
for fixed wave-vector k as

Ai (x, t) =
∑

λ

eλ
i Aλ(k, t)eikx,

A′i (x, t) =
∑

λ

eλ
i A

′
λ(k, t)e

ikx,

a(x, t) = a(k, t)eikx, (6)

where eλ
i is the i th component of the polarization vec-

tor of a photon with helicity λ, Aλ(k, t) and A′
λ(k, t)

are, respectively, the photon and dark photon amplitudes
with helicity λ while a(k, t) is the amplitude of the axion
field. Consider ordinary and dark photons propagating along

4 In the Coulomb gauge there are also the equations of motion for
A0 and A′0 (scalar potentials) which are, respectively, proportional to
(∇ ·a)Be and (∇ ·a)B′

e for a globally neutral medium. In the case when
k · Be = 0 and k · B′

e = 0 and/or a is spatially homogeneous, there is
not mixing of the modes A0 and A′0 with the usual ordinary and dark
photons transverse modes and the axion field. However, in the opposite
case there is mixing of A0 and A′0 with the transverse ordinary and dark
photons states and the axion field, but the effects of these equations to
the mixing problem are very small and can be safely neglected for our
purposes [31].

the observer’s z axis which points to the East, namely
k = (0, 0, k) and let Be = Ben̂, B′

e = B ′
en̂

′ where
n̂ = [cos(�), sin(�) cos(�), sin(�) sin(�)] and n̂′ =
[cos(�′), sin(�′) cos(�′), sin(�′) sin(�′)] are two generic
direction unit vectors. Here �,�′ are, respectively, the polar
angles between magnetic fields Be, B′

e and x axis which
points to North and �,�′ are respectively the azimutal
angles of Be, B′

e with respect to y axis which points out-
ward. Now we can use the expansion (6) in Eq. (5) and
then expand the operator ∂2

t + k2 = (−i∂t + k)(i∂t +
k). After we look for solutions of the field amplitudes
in the form Aλ(k, t) = Akλ(t)e−i

∫
ω(t ′) dt ′ , A′

λ(k, t) =
A′
kλ(t)e

−i
∫

ω(t ′) dt ′ , a(k, t) = ak(t)e−i
∫

ω(t ′) dt ′ where ω

is the particle energy and work in the WKB approxi-
mation, namely ∂t |Akλ| 
 ω|Akλ|, ∂t |A′

kλ| 
 ω|A′
kλ|,

∂t |ak | 
 ω|ak |. These approximations are valid when the
time variation of the field amplitudes are much smaller
than ω|Akλ|, ω|A′

kλ|, ω|ak | or equivalently when variation
in time of external magnetic fields are much smaller than
photon/dark photon frequencies.

Now by acting on the fields with the term (i∂t +k), which
becomes k + ω while keeping untouched the second term
(−i∂t + k), one can linearize Eq. (5) and get the following
system of linear differential equations:

(i∂t − k)	k(t)I + M	k(t) = 0, (7)

where I is the unit matrix, 	k(t) = (A+, A×, A′+, A′×, a)T

is a five component field and M is the mixing matrix, which
is given by

M =

⎛

⎜⎜⎜⎜⎜
⎝

M+ iMF 0 0 iM+
aγ

−iMF M× 0 0 iM×
aγ

0 0 M ′+ iM ′
F iM ′+

aγ

0 0 −iM ′
F M ′× iM ′×

aγ

−iM+
aγ −iM×

aγ −iM ′+
aγ −iM ′×

aγ Ma

⎞

⎟⎟⎟⎟⎟
⎠

.

(8)

The photon states labeled with (+) are the linear polariza-
tion states which are parallel to the y axis, namely A+ ≡
Ay, A′+ ≡ A′

y while the states labeled with (×) are those
which are parallel to the x axis, A× ≡ Ax , A′× ≡ A′

x .
The elements of the mixing matrix M are given by Ma =
−m2

a/(ω + k), M+
aγ = gaγ ω Be sin(�) cos(�)/(ω + k),

M×
aγ = gaγ ω Be cos(�)/(ω + k), M ′+

aγ = g′
aγ ω B ′

e sin(�′)
cos(�′)/(ω + k), M ′×

aγ = g′
aγ ω B ′

e cos(�′)/(ω + k), M+ =
−�22/(ω + k), M× = −�11/(ω + k), M ′+ = −�′22/(ω +
k), M ′× = −�′11/(ω + k) and MF = i �12/(ω + k), M ′

F =
i �′12/(ω + k) are, respectively, the terms that include the
Faraday effect5 in ordinary and dark media; see Appendix B

5 In the case when � = π/2, the term MF includes solely the Faraday
effect while for � �= π/2 it is a combination of Faraday and Cotton–
Mouton effects; see Appendix B.
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for calculations of the matrix elements of �i j in plasma. The
elements of �′i j are formally the same as those of �i j but
with ordinary quantities that enter in �i j replaced with those
of the dark sector. Here ω is the total energy of the fields,
namely ω = ωγ = ωγ ′ = ωa . In this work we assume that
all particles participating in the mixing process are relativis-
tic. In general, ordinary and dark photons are relativistic since
the effects of the medium in generating an effective mass are
very small. On the other hand, the axion can be either rela-
tivistic or not depending on its mass ma . In the case when all
particles participating in the mixing are relativistic, we can
approximate ω + k � 2k for ma 
 ω.

3 Transition probability rates and Stokes parameters

The expressions for field amplitudes in (A.19) found by solv-
ing the equations of motion (7) are of extreme importance
since we can derive very useful quantities such as the tran-
sition probabilities, phase shifts, the Stokes parameters etc.
It is worth to stress that the expressions derived in (A.19)
are valid for arbitrary values of the angles �,�′,�,�′. In
many situations is very convenient to have the expressions
for the transition probabilities from one state into another
in complete analogy with the case when the axion interacts
with the ordinary sector only. However, the expressions for
the transition probabilities for the case at hand are more com-
plicated due to the interaction with the dark sector and due
to the mixing of all ordinary and dark photon states with the
axion state. This situation in principle can be simplified in
the case when one knows the directions of ordinary and dark
magnetic fields and then rotate the reference system in such
a way as to get rid of MF , M ′

F terms, and allow only one of
the photon states to mix with the axion state. But typically
the direction of the dark external field is not known, while for
the ordinary external magnetic field there may be situations
where its direction is known. In any case, in this section we
derive general results without making any speculation about
the magnetic fields directions.

The mixing of the axion with ordinary and dark photons
makes possible the transition of ordinary photons into dark
photons and vice versa. The transition probabilities explic-
itly depend on the initial amplitude of fields at the initial time
tin = 0. Assuming for example that initially a(0) = 0, we
get the following transition probability rates for |Aλ(0)〉 →
|A′+(t)〉 (with Aλ(0) = δλ

ρ, A′+(0) = A′×(0) = 0) and
|A′

λ(0)〉 → |A+(t)〉 (with A+(0) = A×(0) = 0, A′
λ(0) =

δλ
ρ where ρ = +,×):

P[|A+(0)〉 → |A′+(t)〉]

=
∣∣∣∣∣

∫ t

0

∫ t ′

0
dt ′dt ′′ M ′+

aγ (t ′)M+
aγ (t ′′)e−i(�M ′

1(t
′)−�M1(t ′′))

∣∣∣∣∣

2

,

P[|A×(0)〉 → |A′+(t)〉]

=
∣∣∣∣∣

∫ t

0

∫ t ′

0
dt ′dt ′′ M ′+

aγ (t ′)M×
aγ (t ′′)e−i(�M ′

1(t
′)−�M2(t ′′))

∣∣∣∣∣

2

,

P[A′+(0) → A+(t)]

=
∣∣∣∣∣

∫ t

0

∫ t ′

0
dt ′dt ′′ M+

aγ (t ′)M ′+
aγ (t ′′)e−i(�M ′

1(t
′)−�M1(t ′′))

∣∣∣∣∣

2

,

P[|A×(0)〉 → |A′+(t)〉]

=
∣∣∣∣∣

∫ t

0

∫ t ′

0
dt ′dt ′′ M ′+

aγ (t ′)M×
aγ (t ′′)e−i(�M ′

1(t
′)−�M2(t ′′))

∣∣∣∣∣

2

.

(9)

On the other hand the transition probabilities from
|Aλ(0)〉 → |a(t)〉 (with Aλ(0) = δλ

ρ, A′+(0) = A′×(0) = 0)
and |A′

λ(0)〉 → |a(t)〉 (with A+(0) = A×(0) = 0, A′
λ(0) =

δλ
ρ) are, respectively, given by

P[|A+(0)〉 → |a(t)〉] =
∣∣∣∣∣

∫ t

0
dt ′ M+

aγ (t ′)ei�M1(t ′)

−
∫ t

0

∫ t ′

0
dt ′dt ′′ M×

aγ (t ′)MF (t ′′)ei(�M2(t ′)+�M(t ′′))

∣∣∣∣∣

2

,

P[|A×(0)〉 → |a(t)〉] =
∣∣∣∣∣

∫ t

0
dt ′ M×

aγ (t ′)ei�M2(t ′)

+
∫ t

0

∫ t ′

0
dt ′dt ′′ M+

aγ (t ′)MF (t ′′)ei(�M1(t ′)−�M(t ′′))

∣∣∣∣∣

2

,

P[|A′+(0)〉 → |a(t)〉] =
∣∣∣∣∣

∫ t

0
dt ′ M ′+

aγ (t ′)ei�M ′
1(t

′)

−
∫ t

0

∫ t ′

0
dt ′dt ′′ M ′×

aγ (t ′)M ′
F (t ′′)ei(�M ′

2(t
′)+�M ′(t ′′))

∣∣∣∣∣

2

,

P[|A′×(0)〉 → |a(t)〉] =
∣∣∣∣∣

∫ t

0
dt ′ M ′×

aγ (t ′)ei�M ′
2(t ′)

+
∫ t

0

∫ t ′

0
dt ′dt ′′ M ′+

aγ (t ′)M ′
F (t ′′)ei(�M ′

1(t
′)−�M ′(t ′′))

∣∣∣∣∣

2

.

(10)

We may note that in (10) there is no contribution of the dark
sector to the transition probabilities P[|Aλ(0)〉 → |a(t)〉] to
second order in perturbation theory and there is no contri-
bution, to second order, of the ordinary sector to the tran-
sition probabilities P[|A′

λ(0)〉 → |a(t)〉]. The contributions
of, respectively, the dark and ordinary sectors in (10) start
from the third order of iteration.

The transition probability rates calculated in (10) are very
important in those situations where one is not interested
directly in the polarization state of the light. However, there
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might be situations where one is mostly interested in the
polarization state of light and consequently the transition
probability rates are not useful in this case. Instead, the Stokes
parameters are those quantities which give us information as
regards the polarization state of the light. They are usually
defined in terms of the electric field components Ei in a
cartesian reference system but here we define them in terms
of vector potential components Ai as follows:

Iγ (t) ≡ |A×(t)|2 + |A+(t)|2, Q(t) ≡ |A×(t)|2 − |A+(t)|2,
U (t) ≡ 2 Re{A×(t)A∗+(t)}, V (t) ≡ −2 Im{A×(t)A∗+(t)}.

(11)

Now by writing the field amplitudes as show in (A.20),
using the expressions for |A+(t)|2 and |A×(t)|2 derived in
Appendix A, using the definitions of the Stokes parameters in
(11) and then after lengthy calculations, we get the following
expressions in the case when a(0) = 0

Iγ (t) = (|I2(t)|2 + |I6(t)|2)|A×(0)|2 + (|I1(t)|2
+ |I5(t)|2)|A+(0)|2 + (|I3(t)|2 + |I7(t)|2)|A′+(0)|2
+ (|I4(t)|2 + |I8(t)|2)|A′×(0)|2 − 2 Re{[I1(t)I ∗

2 (t)

+ I5(t)I
∗
6 (t)]A+(0)A∗×(0)

+[I1(t)I ∗
3 (t) − I5(t)I

∗
7 (t)]A+(0)A′∗+(0)

+[I1(t)I ∗
4 (t) − I5(t)I

∗
8 (t)]A+(0)A′∗×(0)}

+ 2 Re{[I2(t)I ∗
3 (t) − I6(t)I

∗
7 (t)]A×(0)A′∗+(0)

+[I2(t)I ∗
4 (t) − I6(t)I

∗
8 (t)]A×(0)A′∗×(0)

+[I3(t)I ∗
4 (t) + I7(t)I

∗
8 (t)]A′+(0)A′∗×(0)},

Q(t) = (|I6(t)|2 − |I2(t)|2)|A×(0)|2 + (|I5(t)|2
− |I1(t)|2)|A+(0)|2 + (|I7(t)|2
−|I3(t)|2)|A′+(0)|2 + (|I8(t)|2
− |I4(t)|2)|A′×(0)|2 − 2 Re{[I5(t)I ∗

6 (t)

−I1(t)I
∗
2 (t)] × A+(0)A∗×(0) − [I1(t)I ∗

3 (t)

+I5(t)I
∗
7 (t)]A+(0)A′∗+(0) − [I1(t)I ∗

4 (t)

+I5(t)I
∗
8 (t)]A+(0)A′∗×(0)} − 2 Re{[I6(t)I ∗

7 (t)

+I2(t)I
∗
3 (t)]A×(0)A′∗+(0) − [I2(t)I ∗

4 (t)

+I6(t)I
∗
8 (t)]A×(0)A′∗×(0) − [I7(t)I ∗

8 (t)

−I3(t)I
∗
4 (t)]A′+(0)A′∗×(0)},

U (t) = 2 Re{A×(t)A∗+(t)}, V (t) = −2 Im{A×(t)A∗+(t)},
(12)

where

A×(t)A∗+(t) = −I6(t)I
∗
2 (t)|A×(0)|2 − I5(t)I

∗
1 (t)|A+(0)|2

+I7(t)I
∗
3 (t)|A′+(0)|2 + I8(t)I

∗
4 (t)|A′×(0)|2

+I5(t)I
∗
2 (t)A+(0)A∗×(0) + I5(t)I

∗
3 (t)A+(0)A′∗+(0)

+I5(t)I
∗
4 (t)A+(0)A′∗×(0) + I6(t)I

∗
1 (t)A×(0)A∗+(0)

−I6(t)I
∗
3 (t)A×(0)A′∗+(0) − I6(t)I

∗
4 (t)A×(0)A′∗×(0)

−I7(t)I
∗
1 (t)A′+(0)A∗+(0) + I7(t)I

∗
2 (t)A′+(0)A∗×(0)

+I7(t)I
∗
4 (t)A′+(0)A′∗×(0) − I8(t)I

∗
1 (t)A′×(0)A∗+(0)

+I8(t)I
∗
2 (t)A′×(0)A∗×(0) + I8(t)I

∗
3 (t)A′×(0)A′∗+(0).

It is worth to stress that the expressions for the Stokes
parameters in (12) are valid for any direction of photon propa-
gation with respect to the external ordinary and dark magnetic
fields, namely for any values of the angles �,�′,�,�′. In
addition, is quite straightforward to see from the definitions
of I1(t) and I6(t) that Iγ (t) = Iγ (0) + other terms, where
Iγ (0) = |A×(0)|2 + |A+(0)|2 and the other terms can have
either signs.

4 Effects on ordinary and dark CMBs

The model of photon–axion–dark photon mixing which we
discussed above may have several applications. However,
before applying it to a concrete example, is important to recall
that in order to have photon–dark photon mixing there must
necessarily exist an external dark magnetic field in addition
to the ordinary one. Obviously, laboratory experiments look-
ing for axions and dark photons are ruled out since one can
generate in the laboratory an ordinary magnetic field but not
a dark magnetic field. This fundamental observation tells us
that we must look for this effect elsewhere, possibly in astro-
physical or cosmological situations where ordinary and dark
magnetic fields coexist.

One possibility to apply our model is in cosmology or,
more precisely, in the context of CMB physics. Indeed, as
already mentioned in Sect. 1, based on the concept of M-
symmetry one would expects that both sectors have similar
cosmological evolution and same microphysics. In order to
avoid any conflict with the BBN, the two sectors must have
different initial conditions and different temperatures T �=
T ′ at the reheating epoch [21–23]. The BBN bound on the
number of effective neutrino species puts very stringent limit
on the temperature of the dark CMB which must be T ′ <

0.64 T [24] where T is the temperature of the ordinary CMB.
Since ordinary and dark CMBs evolve with different tem-

peratures and because they do not come in thermal equilib-
rium with each other, one would also expects the dark CMB to
experience a decoupling epoch which happens to be slightly
earlier than the ordinary decoupling epoch. Therefore one
would also expect that there must exist a large-scale dark
magnetic field complementary to the ordinary large-scale
magnetic field. Consequently, we would have two CMBs,
one ordinary and one dark, where each of them interacts with
its respective large-scale magnetic field. Based on this asser-
tion, we may use our earlier formalism of photon–axion–dark
photon mixing in order to study the effects which the dark
CMB has on the ordinary CMB.
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Here we illustrate one possible effect that the dark CMB
has on the ordinary CMB due to photo–axion–dark pho-
ton mixing, namely it generates for example a temperature
anisotropy. In order to calculate this effect, first we must
recall that according to the standard cosmology, the temper-
ature anisotropy of the ordinary CMB is essentially generated
at the decoupling time or afterwards due to several processes.
Here we consider the case where the CMB acquires a tem-
perature anisotropy starting from the decoupling epoch and
it continues evolving until at the present epoch. Therefore,
we must study the evolution of the temperature anisotropy in
this time interval and consequently all quantities of interest
would evolve in time. So, based on this observation we must
use our time dependent formalism developed in Appendix A.

Consider now two observation directions in the ordinary
sector, namely one parallel to the ordinary external magnetic
field and one perpendicular to it. Here we are supposing that
we know the direction of Be but the direction of B′

e is sup-
posed to be not known. The generalization when even Be

is not known and might change in time randomly can eas-
ily be taken into account by averaging the ordinary sector
quantities over � and �. The accuracy between considering
a fixed direction of observation in the ordinary sector instead
of averaging over � and � is expected to be within an order
of magnitude. In addition, in this section we assume that
axions are initially absent at the ordinary and dark decou-
pling epochs, namely a(0) = 0.

In the direction perpendicular to the ordinary external
magnetic field the intensity of the CMB would be6 I⊥

γ (t0) ∝
(|A+(t0)|2 +|A×(t0)|2) where A+(t) and A×(t) are given in
Eq. (A.19). In this direction, namely � = 0, only the quanti-
ties MF (t0) ∝ sin(�) sin(�) and M+

aγ (t0) ∝ cos(�) sin(�)

in the mixing matrix M are zero. This implies also that in
Eqs. (A.21), I2(t0) = I3(t0) = I4(t0) = I5(t0) = 0, while
the other integrals are different from zero.

In the direction parallel to the ordinary external mag-
netic field � = π/2, consider also that Be is in the xz
plane with � = π/2. For this configuration, we have only
M+

aγ (t0) ∝ cos(�) sin(�) = 0 and M×
aγ (t0) ∝ cos(�) = 0.

In this case there is not generation of axions since ordinary
photons do not mix with the axion because the ordinary and
dark sectors are decoupled from each other. In this case, the
intensity of the states A+ and A× changes only due to the
Faraday effect. However, it is well known that the Faraday
effect does not change the total intensity of light but only its
polarization state. This fact can easily be verified by consid-
ering the case where only the Faraday effect is present in the
ordinary photon mixing matrix M with M+ = M×. Con-
sequently, the intensity of the light parallel to the external

6 The proportionality factor in I⊥
γ and I ||

γ in general is a factor which
takes into account the dilution of the particle number density in an
expanding universe and it cancels out in the final result.

magnetic field would be I ||
γ (t0) ∝ (|A+(0)|2 + |A×(0)|2),

namely it is equal to the intensity of light in an unperturbed
universe.

Consider the CMB in a thermal state at the ordinary decou-
pling time where its intensity is given by the black body for-
mula. In this case one can derive the following relation, to
first order, between the differential intensity and temperature
changes: δ Iγ (t0)/Iγ (t0) � [xex/(ex − 1)]δT0/T0 where T0

is the present day temperature of the CMB averaged over all
directions in the sky and x = 2πν0/T0 with ν0 being the
CMB frequency at present epoch. Since changes in the ordi-
nary CMB intensity or temperature are very small for two
given observation directions, we would have

I⊥
γ (t0) − I ||

γ (t0)

Iγ (t0)
� δ Iγ (t0)

Iγ (t0)
. (13)

In the direction perpendicular to the ordinary magnetic
field, the intensity of ordinary photons is given by

I⊥
γ (t0) ∝ [Iγ (0) + (|I(t0)|2 − 2Re{I(t0)})|A×(0)|2
+|I7(t0)|2|A′+(0)|2 + |I8(t0)|2|A′×(0)|2
−2 Re{I6(t0)I ∗

7 (t0)A×(0)A′∗+(0)

+I6(t0)I
∗
8 (t0)A×(0)A′∗×(0) − I7(t0)I

∗
8 (t0)A

′+(0)A′∗×(0)}],
(14)

where we used Eq. (12) for the perpendicular propagation
with respect to the ordinary magnetic field with I2(t0) =
I3(t0) = I4(t0) = I5(t0) = 0 and have defined

I(t0)≡
∫ t0

0

∫ t ′

0
dt ′dt ′′M×

aγ (t ′)M×
aγ (t ′′)e−i(�M2(t ′)−�M2(t ′′)).

Now by using the fact that for parallel propagation the inten-
sity of ordinary photons is I ||

γ (t0) ∝ (|A+(0)|2 + |A×(0)|2)
and using Eq. (14), we get

I⊥
γ (t0) − I ||

γ (t0) ∝ [(|I(t0)|2 − 2Re{I(t0)})|A×(0)|2
+|I7(t0)|2|A′+(0)|2 + |I8(t0)|2|A′×(0)|2
−2 Re{I6(t0)I ∗

7 (t0)A×(0)A′∗+(0)

+I6(t0)I
∗
8 (t0)A×(0)A′∗×(0) − I7(t0)I

∗
8 (t0)A

′+(0)A′∗×(0)}].
(15)

At this point we make the assumption that at the ordinary
decoupling time, the dark CMB is roughly speaking in a
thermal state. In addition, by averaging over the polarization
states at the initial time tin = 0, which we choose to coin-
cide with the ordinary decoupling time, we get 〈|A+(0)|2〉 =
〈|A×(0)|2〉 = (1/2)Iγ (0), 〈|A′+(0)|2〉 = 〈|A′×(0)|2〉 =
(1/2)I ′

γ (0) where the symbol 〈(.)〉 expresses the average
value over the initial polarization states of ordinary and
dark photons. Moreover, we assume that the mixed terms
〈A×(0)A′∗×(0)〉 = 〈A×(0)A′∗+(0)〉 = 〈A′+(0)A′∗×(0)〉 = 0.
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Making use of these considerations in Eq. (15), we get the fol-
lowing relation for the averaged value over the initial polar-
ization states of the fractional change of the ordinary photon
intensity:

〈I⊥
γ (t0) − I ||

γ (t0)〉
〈Iγ (t0)〉 =

(|I(t0)|2 − 2Re{I(t0)}
) 〈|A×(0)|2〉 + |I7(t0)|2〈|A′+(0)|2〉 + |I8(t0)|2〈|A′×(0)|2〉

〈|A+(0)|2〉 + 〈|A×(0)|2〉 , (16)

where Iγ (0) is the photon intensity in an unperturbed uni-

verse which in our case is equal to I ||
γ (0). By expressing all

average values of amplitudes square in (16) in terms of the
photon intensities and using the Eq. (13), we get the following
expression which relates the CMB temperature anisotropy
between two directions at 90◦ in the sky with the photon and
dark photon intensities:
(|I(t0)|2 − 2Re{I(t0)}

)
Iγ (0)+(|I7(t0)|2+|I8(t0)|2

)
I ′
γ (0)

2 Iγ (0)

=
(

xex

ex − 1

)
δT0

T0

∣∣∣∣
90◦

. (17)

We must stress that Eq. (17) has been derived by using the
expressions of fields up to the second order in the perturbation
theory where M1(t) has been considered as a perturbation
matrix with respect to M0(t). In addition, we considered the
ordinary photon intensity difference between the direction
parallel and perpendicular with respect to the ordinary exter-
nal magnetic field. The first term on the left hand side of (17)
reflects the change in the photon intensity due to photon–
axion mixing, which results in a decrease of the ordinary
photon intensity while the second term is the contribution
of the conversion of the dark photons into ordinary photons,
namely it is a gain term. In general, the relative magnitude of
the two terms would depend on several parameters and one
would expects the photon-axion contribution to be the dom-
inant term. It is worth also to stress that Eq. (17) is valid for
arbitrary direction of the dark magnetic field B′

e with respect
to the direction of observation. The dependence of |I7(t0)|2
and |I8(t0)|2 in (17) on the angles �′ and �′ is straightfor-
wardly averaged out in the case when the angles �′ and �′ are
independent on the time. In the case when �′ and �′ depend
on the time, one can still average out the contribution of the
dark sector by assuming �′ and �′ as random functions of
the time.

5 Conclusions

In this work we proposed and studied the effect of the photo–
axion–dark photon mixing in external ordinary and dark mag-
netic fields. As a consequence of this mixing, dark pho-
tons can interact with the ordinary photons via the same

axion field. Then we solved equations of motion for time
depended mixing matrix where perturbative solutions for the
photon, dark photon and axion fields have been found. The
derived results can be applied in the cases when ordinary and

dark photons propagate through time dependent magnetized
media such as those present in cosmological situations. With
the introduction of the dark photon in the mixing problem,
the usual expressions for the photon–axion transition prob-
ability rates, Stokes parameters etc., get modified. This fact
could have a significant impact in those situations where an
external dark magnetic field is present and one needs to know
the magnitude of these quantities in order to compare them
with experimentally measurable quantities.

Our results have been derived by neglecting the weak grav-
itational interaction between the two sectors and considered
their interaction only through the same axion field. In our
model ordinary and dark photons interact solely through the
axion field. In principle, one could also include in the inter-
action Lagrangian density a kinetic mixing between photons
and dark photons, namely LI ∝ εFμνF ′μν , which is not for-
bidden by the M-symmetry. The inclusion of such a term is
only optional and can easily be accommodated in our for-
malism.

In order for the photon–axion–dark photon mixing to work
there must coexist in the same place and time both ordinary
and dark magnetic fields. The only possibility to apply this
mixing, happens to be in astrophysical and cosmological sit-
uations. In this work we applied our mechanisms in the con-
text of CMB physics and showed as a matter of example
that the photon–axion–dark photon mixing would generates
a CMB temperature anisotropy at the ordinary post decou-
pling epoch. The same effect would also generates polariza-
tion of the CMB as is evident from the expressions of the
Stokes parameters in (12). In an astrophysical situation, our
model could be used in order to calculate the generated flux
of photons in ordinary and dark magnetic fields by dark stars
and other dark objects which emit dark photons, where the
generated flux might contributes to well know galactic and/or
extragalactic backgrounds.

With respect to the case of photon–axion mixing, our
model has additional free parameters. Indeed, by a close
inspection of the Eq. (2) we may observe that the coupling
constants are related with each other through fa , namely
the coupling constants are proportional to each other. The
proportionality term is a combination of z and z′ where the
former is usually known while the latter is less known. If
both z, z′ are known, the number of independent param-
eters is either ma or gaγ or g′

aγ similarly as in the case
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of photon–axion mixing. Additional implicit parameters of
our model essentially do appear in the index of refraction
of dark photons which usually contains the plasma fre-
quency which is related to the number density of the free
dark electrons and to the amplitude of the dark magnetic
field.

In the context of the CMB physics, our model can be
applied to constrain the parameter space of axions which
are essentially either the coupling constant to photons and
dark photons or its mass. Indeed, Eq. (17) can be used to
limit/constrain the axion parameter space and/or the mag-
netic field amplitudes based on the known value of the ampli-
tude of the CMB temperature anisotropy. On the other hand,
if one knows the values of the parameters which enter in (17),
one can estimates which is the contribution of photon–axion–
dark photon mixing to the CMB temperature anisotropy. The
presence of the ordinary large-scale magnetic field gener-
ates a CMB temperature anisotropy by itself, so, the result
(17) gives only the contribution of the photon–axion–dark
photon mixing to the total CMB temperature anisotropy.
On the other hand, even though we studied for simplic-
ity only the effects of the photon–axion–dark photon mix-
ing on the CMB temperature anisotropy, additional lim-
its/constraints can be inferred from the present limits on the
CMB polarization. Indeed, our model generates also bire-
fringence and dichroism effects on the CMB, namely it gen-
erates an elliptic polarization with non-zero Stokes param-
eters Q(t),U (t) and V (t), as one can observe from Eq.
(12).
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Appendix A: Perturbative solutions of equations of
motion and photon field amplitudes

In the case when the field mixing matrix M is time depen-
dent, in general is not possible to find exact closed solu-
tions but one might attempt to look for solutions by using the
perturbation theory. In this regard, we can split the mixing

matrix in the following way7: M(t) = M0(t)+M1(t) where
M0(t) = diag

[
M+(t), M×(t), M ′+(t), M ′×(t), Ma(t)

]
is a

diagonal matrix and M1(t) is a small perturbation matrix
given by

M1(t)

=

⎛

⎜⎜⎜⎜⎜
⎝

0 iMF 0 0 iM+
aγ

−iMF 0 0 0 iM×
aγ

0 0 0 iM ′
F iM ′+

aγ

0 0 −iM ′
F 0 iM ′×

aγ

−iM+
aγ −iM×

aγ −iM ′+
aγ −iM ′×

aγ 0

⎞

⎟⎟⎟⎟⎟
⎠

.

Now it is convenient to move to the interaction picture by
defining 	int(t) = U †(t)	(t) (where we dropped the index
k on 	 for simplicity) and Mint(t) = U †(t)M1(t)U (t) where
U (t) = exp[−i

∫ t
0 dt ′(k(t ′)I − M0(t ′))]. In the interaction

picture, Eq. (7) becomes i∂t	int(t) = Mint(t)	int(t). By
using the standard iterative procedure, we find the following
perturbative solution for 	int(t) to the first and second order
in the perturbation matrix Mint(t):

	
(1)
int (t) = −i

∫ t

0
dt ′ Mint(t

′)	(0), 	
(2)
int (t)

= −
∫ t

0

∫ t ′

0
dt ′ dt ′′ Mint(t

′) Mint(t
′′)	(0), (A.18)

where 	
(0)
int (t) = 	(0), 	int(t) = 	

(0)
int (t) + 	

(1)
int (t) +

	
(2)
int (t) + higher order terms, and we have chosen for sim-

plicity the initial time tin = 0. Performing several algebraic
operations, we get the following solutions for the field ampli-
tudes up to the second order in perturbation theory in the
Schrödinger picture:

A+(t)

=
[

1 −
∫ t

0

∫ t ′

0
dt ′dt ′′ M+

aγ (t ′)M+
aγ (t ′′)e−i(�M1(t ′)−�M1(t ′′))

−
∫ t

0

∫ t ′

0
dt ′dt ′′ MF (t ′)MF (t ′′)× e−i(�M(t ′)−�M(t ′′))

]

× e−i M̃+(t)A+(0) +
[∫ t

0
dt ′ MF (t ′)e−i�M(t ′)

−
∫ t

0

∫ t ′

0
dt ′dt ′′ M+

aγ (t ′)M×
aγ (t ′′)

× e−i(�M1(t ′)−�M2(t ′′))
]

e−i M̃+(t) A×(0)

−
[∫ t

0

∫ t ′

0
dt ′dt ′′ M+

aγ (t ′)M ′+
aγ (t ′′)e−i(�M ′

1(t ′)−�M1(t ′′))
]

× e−i M̃+(t)A′+(0)

7 Here we are simply treating the case when M1(t) is considered a small
perturbation since in most practical cases the magnitude of elements of
M0(t) are bigger than those of M1(t) independently on the values of
the angles �,�,�′,�′.
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−
[∫ t

0

∫ t ′

0
dt ′dt ′′ M+

aγ (t ′)M ′×
aγ (t ′′)e−i(�M1(t ′)−�M ′

2(t ′′))
]

× e−i M̃+(t)A′×(0)

+
[∫ t

0
dt ′ M+

aγ (t ′)e−i�M1(t ′)

+
∫ t

0

∫ t ′

0
dt ′dt ′′ MF (t ′)M×

aγ (t ′′)e−i(�M(t ′)+�M2(t ′′))
]

×e−i M̃+(t)a(0),

A×(t)

= −
[ ∫ t

0
dt ′ MF (t ′)ei�M(t ′)

+
∫ t

0

∫ t ′

0
dt ′dt ′′ M×

aγ (t ′)M+
aγ (t ′′)

×e−i(�M2(t ′)−�M1(t ′′))
]

e−i M̃×(t) A+(0)

+
[

1 −
∫ t

0

∫ t ′

0
dt ′dt ′′ M×

aγ (t ′)M×
aγ (t ′′)

×e−i(�M2(t ′)−�M2(t ′′)) −
∫ t

0

∫ t ′

0
dt ′dt ′′ MF (t ′)MF (t ′′)

× ei(�M(t ′)−�M(t ′′))
]

e−i M̃×(t)A×(0)

−
[∫ t

0

∫ t ′

0
dt ′dt ′′ M×

aγ (t ′)M ′+
aγ (t ′′)e−i(�M2(t ′)−�M ′

1(t
′′))

]

× e−i M̃×(t)A′+(0)

−
[∫ t

0

∫ t ′

0
dt ′dt ′′ M×

aγ (t ′)M ′×
aγ (t ′′)e−i(�M2(t ′)−�M ′

2(t
′′))

]

× e−i M̃×(t)A′×(0) +
[ ∫ t

0
dt ′ M×

aγ (t ′)e−i�M2(t ′)

−
∫ t

0

∫ t ′

0
dt ′dt ′′ MF (t ′)M+

aγ (t ′′)

× ei(�M(t ′)−�M1(t ′′))
]

e−i M̃×(t)a(0),

A′+(t)

= −
[∫ t

0

∫ t ′

0
dt ′dt ′′ M ′+

aγ (t ′)M+
aγ (t ′′)e−i(�M ′

1(t
′)−�M1(t ′′))

]

× e−i M̃ ′+(t)A+(0) −
[ ∫ t

0

∫ t ′

0
dt ′dt ′′ M ′+

aγ (t ′)M×
aγ (t ′′)

× e−i(�M ′
1(t

′)−�M2(t ′′))
]
e−i M̃ ′+(t) A×(0)

+
[

1 −
∫ t

0

∫ t ′

0
dt ′dt ′′ M ′+

aγ (t ′)M ′+
aγ (t ′′)e−i(�M ′

1(t
′)−�M ′

1(t
′′))

−
∫ t

0

∫ t ′

0
dt ′dt ′′ M ′

F (t ′)M ′
F (t ′′)e−i(�M ′(t ′)−�M ′(t ′′))

]

× e−i M̃ ′+(t)A′+(0) +
[∫ t

0
dt ′ MF (t ′)e−i�M ′(t ′)

−
∫ t

0

∫ t ′

0
dt ′dt ′′ M ′+

aγ (t ′)M×
aγ (t ′′)e−i(�M ′

1(t
′)−�M ′

2(t ′′))
]

× e−i M̃ ′+(t)A′×(0) +
[∫ t

0
dt ′ M ′+

aγ (t ′)e−i�M ′
1(t

′)

+
∫ t

0

∫ t ′

0
dt ′dt ′′ M ′

F (t ′)M ′×
aγ (t ′′)e−i(�M ′(t ′)+�M ′

2(t ′′))
]

× e−i M̃ ′+(t)a(0),

A′×(t)

= −
[∫ t

0

∫ t ′

0
dt ′dt ′′ M ′×

aγ (t ′)M+
aγ (t ′′)e−i(�M ′

2(t ′)−�M1(t ′′))
]

×e−i M̃ ′×(t)A+(0) −
[ ∫ t

0

∫ t ′

0
dt ′dt ′′ M ′×

aγ (t ′)M×
aγ (t ′′)

×e−i(�M ′
2(t ′)−�M2(t ′′))

]
e−i M̃ ′×(t) A×(0)

−
[ ∫ t

0
dt ′ M ′

F (t ′)ei�M ′(t ′) +
∫ t

0

∫ t ′

0
dt ′dt ′′ M ′×

aγ (t ′)M ′+
aγ (t ′′)

×e−i(�M ′
2(t ′)−�M ′

1(t ′′))
]
e−i M̃ ′×(t)A′+(0)

+
[

1 −
∫ t

0

∫ t ′

0
dt ′dt ′′ M ′×

aγ (t ′)M ′×
aγ (t ′′)e−i(�M ′

2(t ′)−�M ′
2(t ′′))

−
∫ t

0

∫ t ′

0
dt ′dt ′′ M ′

F (t ′)M ′
F (t ′′)ei(�M ′(t ′)−�M ′(t ′′))

]

×e−i M̃ ′×(t)A′×(0) +
[∫ t

0
dt ′ M ′×

aγ (t ′)e−i�M ′
2(t ′)

−
∫ t

0

∫ t ′

0
dt ′dt ′′ M ′

F (t ′)M ′+
aγ (t ′′)ei(�M ′(t ′)−�M ′

1(t ′′))
]

×e−i M̃ ′×(t)a(0),

a(t) = −
[∫ t

0
dt ′ M+

aγ (t ′)ei�M1(t ′)

−
∫ t

0

∫ t ′

0
dt ′dt ′′ M×

aγ (t ′)MF (t ′′)ei(�M2(t ′)+�M(t ′′))
]

×e−i M̃a (t)A+(0) −
[∫ t

0
dt ′ M×

aγ (t ′)ei�M2(t ′)

+
∫ t

0

∫ t ′

0
dt ′dt ′′ M+

aγ (t ′)MF (t ′′)ei(�M1(t ′)−�M(t ′′))
]

×e−i M̃a (t)A×(0) −
[∫ t

0
dt ′ M ′+

aγ (t ′)ei�M ′
1(t ′)
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−
∫ t

0

∫ t ′

0
dt ′dt ′′ M ′×

aγ (t ′)M ′
F (t ′′)ei(�M ′

2(t ′)+�M ′(t ′′))
]

×e−i M̃a (t)A′+(0) −
[∫ t

0
dt ′ M ′×

aγ (t ′)ei�M ′
2(t ′)

+
∫ t

0

∫ t ′

0
dt ′dt ′′ M ′+

aγ (t ′)M ′
F (t ′′)ei(�M ′

1(t ′)−�M ′(t ′′))
]

×e−i M̃a (t)A′×(0)

+
[

1 −
∫ t

0

∫ t ′

0
dt ′dt ′′ M+

aγ (t ′)M+
aγ (t ′′)ei(�M1(t ′)−�M1(t ′′))

−
∫ t

0

∫ t ′

0
dt ′dt ′′ M×

aγ (t ′)M×
aγ (t ′′)ei(�M2(t ′)−�M2(t ′′))

−
∫ t

0

∫ t ′

0
dt ′dt ′′ M ′+

aγ (t ′)M ′+
aγ (t ′′)ei(�M ′

1(t ′)−�M ′
1(t ′′))

−
∫ t

0

∫ t ′

0
dt ′dt ′′ M ′×

aγ (t ′)M ′×
aγ (t ′′)ei(�M ′

2(t ′)−�M ′
2(t ′′))

]

×e−i M̃a (t)a(0), (A.19)

where we have defined M̃λ(t) = ∫
dt (k(t) − Mλ(t)),

M̃ ′
λ(t) = ∫

dt
(
k(t) − M ′

λ(t)
)
, M̃a(t) = ∫

dt (k(t) − Ma(t))
with λ = (+,×) and �M(t) = M+(t)−M×(t), �M1(t) =
M+(t) − Ma(t), �M2(t) = M×(t) − Ma(t), �M ′(t) =
M ′+(t) − Ma(t), �M ′

2(t) = M ′×(t) − Ma(t).
Consider the amplitudes A×(t) and A+(t) of ordinary

photons as given in Eq. (A.19) and let us consider the case
when a(0) = 0. Therefore, we can write

A+(t) = I1(t)A+(0) − I2(t)A×(0) − I3(t)A
′+(0) − I4(t)A

′×(0)

A×(t) = −I5(t)A+(0) + I6(t)A×(0) − I7(t)A
′+(0) − I8(t)A

′×(0),

(A.20)

where we have defined

I1(t) ≡
[

1 −
∫ t

0

∫ t ′

0
dt ′dt ′′ M+

aγ (t ′)M+
aγ (t ′′)e−i(�M1(t ′)−�M1(t ′′))

−
∫ t

0

∫ t ′

0
dt ′dt ′′ MF (t ′)MF (t ′′)e−i(�M(t ′)−�M(t ′′))

]

×e−i M̃+(t),

I2(t) ≡
[ ∫ t

0
dt ′ MF (t ′)e−i�M(t ′)

−
∫ t

0

∫ t ′

0
dt ′dt ′′ M+

aγ (t ′)M×
aγ (t ′′)e−i(�M1(t ′)−�M2(t ′′))

]

×e−i M̃+(t),

I3(t) ≡
[∫ t

0

∫ t ′

0
dt ′dt ′′ M+

aγ (t ′)M ′+
aγ (t ′′)e−i(�M ′

1(t ′)−�M1(t ′′))
]

×e−i M̃+(t),

I4(t) ≡
[∫ t

0

∫ t ′

0
dt ′dt ′′ M+

aγ (t ′)M ′×
aγ (t ′′)e−i(�M1(t ′)−�M ′

2(t ′′))
]

×e−i M̃+(t),

I5(t) ≡ −
[∫ t

0
dt ′ MF (t ′)ei�M(t ′)

+
∫ t

0

∫ t ′

0
dt ′dt ′′ M×

aγ (t ′)M+
aγ (t ′′)e−i(�M2(t ′)−�M1(t ′′))

]

×e−i M̃×(t),

I6(t) ≡
[

1 −
∫ t

0

∫ t ′

0
dt ′dt ′′ M×

aγ (t ′)M×
aγ (t ′′)e−i(�M2(t ′)−�M2(t ′′))

−
∫ t

0

∫ t ′

0
dt ′dt ′′ MF (t ′)MF (t ′′)

× ei(�M(t ′)−�M(t ′′))
]

e−i M̃×(t),

I7(t) ≡
[∫ t

0

∫ t ′

0
dt ′dt ′′ M×

aγ (t ′)M ′+
aγ (t ′′)e−i(�M2(t ′)−�M ′

1(t ′′))
]

×e−i M̃×(t),

I8(t) ≡
[∫ t

0

∫ t ′

0
dt ′dt ′′ M×

aγ (t ′)M ′×
aγ (t ′′)e−i(�M2(t ′)−�M ′

2(t ′′))
]

×e−i M̃×(t). (A.21)

The intensity of ordinary photons in terms of the ampli-
tudes A+(t) and A×(t) is given by Iγ (t) ≡ |A+(t)|2 +
|A×(t)|2. Using the expressions (A.20), the absolute values
of amplitudes square of the states A+(t) and A×(t) are given
by

|A+(t)|2 = |I1(t)|2 |A+(0)|2
−2 Re{I1(t)I ∗

2 (t)A+(0)A∗×(0)}
−2 Re{I1(t)I ∗

3 (t)A+(0)A′∗+(0)}
−2 Re{I1(t)I ∗

4 (t)A+(0)A′∗×(0)}
+|I2(t)|2 |A×(0)|2 + 2 Re

{
I2(t)I

∗
3 (t)A×(0)A′∗+(0)

}

+2 Re
{
I2(t)I

∗
4 (t)A×(0)A′∗×(0)

} + |I3(t)|2 |A′+(0)|2
+2 Re

{
I3(t)I

∗
4 (t)A′+(0)A′∗×(0)

} + |I4(t)|2 |A′×(0)|2,
|A×(t)|2 = |I5(t)|2 |A+(0)|2

−2 Re
{
I5(t)I

∗
6 (t)A+(0)A∗×(0)

}

+2 Re
{
I5(t)I

∗
7 (t)A+(0)A′∗+(0)

}

+2 Re
{
I5(t)I

∗
8 (t)A+(0)A′∗×(0)

} + |I6(t)|2 |A×(0)|2
−2 Re

{
I6(t)I

∗
7 (t)A×(0)A′∗+(0)

}

−2 Re
{
I6(t)I

∗
8 (t)A×(0)A′∗×(0)

}

+|I7(t)|2 |A′+(0)|2 + 2 Re
{
I7(t)I

∗
8 (t)A′+(0)A′∗×(0)

}

+|I8(t)|2 |A′×(0)|2.

Appendix B: Photon polarization tensor in ordinary mag-
netized medium

When photons propagate in media, is well known that absorp-
tion and dispersive phenomena occur depending on the pho-
ton energy or frequency. In vacuum, the dispersion relation
of photons is usually give by ω = k2 where ω is the photon

123



63 Page 12 of 14 Eur. Phys. J. C (2018) 78 :63

energy and k is the photon wave vector. However, in media
such relation is modified in order to take into account the
coherent interaction of photons with the medium. In general,
in the presence of a medium, the vacuum Maxwell equations,
�Aν − ∂μ∂ν Aμ = 0, get modified to �Aν − ∂μ∂ν Aμ = J ν ,
in order to take into account the effects of the medium on the
photons or electromagnetic waves. Here the current J ν is the
sum of external prescribed currents J ν

ext and of the medium
induced current J ν

ind.
Typically, if the fields propagating through the medium

are sufficiently weak, one assumes a linear response of the
medium due to the interaction of electromagnetic waves with
external currents. In this case the induced current in momen-
tum space can be written as power series of the four-potential
Aμ(K )

Jμ
ind(K ) = �μν(K )Aν(K ) + higher order terms, (B.1)

where K = (ω, k) is the photon four-vector. The higher order
terms reflect the non-linear response of the medium. The first
term in (B.1) is the one which defines the linear response of
the medium where �μν is the photon polarization tensor.

The linear response term in (B.1) is the Fourier transform
of a position space term [28–30]

Jμ(x) =
∫

d4x ′ �μν(x − x ′) Aν(x
′),

where �μν(x, x ′) = �μν(x − x ′) is the photon polariza-
tion tensor in position space of a homogeneous medium. The
non-locality of �μν(x − x ′) follows from the fact that the
relationships between the incident fields and the external cur-
rents are in general non-local (within restrictions imposed by
causality), see chap. 6 of Ref. [32]. By keeping only the linear
term in (B.1), the modified Maxwell equations in momentum
space in the presence of the medium become

(−ημνK 2 + KμK ν + �μν)Aν = J ν
ext. (B.2)

It is straightforward to check that the modified Maxwell equa-
tions (B.2) can be obtained by adding to the free electro-
magnetic Lagrangian density, the medium induced poten-
tial energy (or photon self energy in medium) in momentum
space of the formV = (1/2)Aμ(K )�μν(K )Aν(K )or equiv-
alently the Lagrangian density in position space of the form

Lmed(x) = −1

2

∫
d4x ′ Aμ(x)�μν(x − x ′) Aν(x

′). (B.3)

The explicit expression of the photon polarization ten-
sor, that usually is calculated in momentum space, implicitly
depends on the prescribed external currents that enter a given
problem. In the case of a magnetized medium, both classi-
cal and field theory expressions do exist. In this section, we

focus on the calculation of the photon polarization tensor
in a cold magnetized plasma. This kind of situation is quite
common in many astrophysical and cosmological situations.
Here, we derive gauge independent expressions for the polar-
ization tensor by simply using classical arguments. The mag-
netized plasma is assumed to be with almost no collisions,
globally neutral, anisotropic and homogeneous. There is no
external electric field. In the literature such an approximation
is known as the Appleton approximation of the Drude model
with a magnetic field added. The presence of the external
magnetic field breaks the isotropy of the medium.

Consider an electromagnetic wave which propagates
along the z axis in given cartesian coordinate system coin-
cident with the coordinate system in which the plasma is at
rest. Let the external magnetic field be Be = Ben̂ where
n̂ = [cos(�), sin(�) cos(�), sin(�) sin(�)] as described in
Sect. 2. The induced motion on the i th electron in the plasma
due to the combined action of the external magnetic field
and incident electromagnetic wave is presumed to satisfy the
classical equation of motion

me r̈ i = −eE − e ṙ i × Be, (B.4)

where r i is the position vector of the i th electron and E is
the electric field of the incident electromagnetic wave. The
contribution of the incident magnetic field wave is assumed to
be negligible with respect to the prescribed external magnetic
field Be. Now is more convenient to write the equation of
motion (B.4) in terms of the medium polarization vector P =
−(e/V )

∑
i r i as

P̈ = ω2
plE − ωc Ṗ × n̂, (B.5)

where ωpl = 4παne/me is the plasma frequency, ne is the
free electron number density, ωc = eBe/me is the cyclotron
frequency and V is the volume of the region of space where
the plasma is located.

Assume that the fields evolve in time harmonically at a
given point x and then let us write

P(t) = P(ω)e−iωt , E(t) = E(ω)e−iωt . (B.6)

Now by inserting the expressions in (B.6) into Eq. (B.5) and
then solving for the components of P , after lengthy calcula-
tions we get the following solution in terms of electric field
components E j :

Pi = χi j E j , i, j = 1, 2, 3. (B.7)

where χi j is the electromagnetic susceptibility tensor and the
sum over repeated indices is implicitly assumed. Its compo-
nents in our case are given by
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χ11 = − ω2
pl

ω2 − ω2
c

+ ω2
plω

2
c cos2(�)

ω2(ω2 − ω2
c )

,

χ12 = ω2
pl ω

2
c sin(2�) cos(�)

2 ω2(ω2 − ω2
c )

+ i
ω2

plωc sin(�) sin(�)

ω(ω2 − ω2
c )

,

χ13 = ω2
pl ω

2
c sin(2�) sin(�)

2 ω2(ω2 − ω2
c )

−i
ω2

plωc sin(�) cos(�)

ω(ω2 − ω2
c )

, χ21 = χ∗
12,

χ22 = − ω2
pl

ω2 − ω2
c

+ ω2
plω

2
c sin2(�) cos2(�)

ω2(ω2 − ω2
c )

,

χ23 = ω2
pl ω

2
c sin(2�) sin2(�)

2 ω2(ω2 − ω2
c )

+ i
ω2

plωc cos(�)

ω(ω2 − ω2
c )

,

χ31 = χ∗
13, χ32 = χ∗

23,

χ33 = − ω2
pl

ω2 − ω2
c

+ ω2
plω

2
c sin2(�) sin2(�)

ω2(ω2 − ω2
c )

. (B.8)

After having calculated the elements of electromagnetic
susceptibility tensor, is quite straightforward to calculate the
elements of the photon polarization tensor �i j . Indeed, their
expressions are given by �i j = −χ i j ω2 for (i, j = 1, 2)

and �i j = −χ i j (ω2 − k2)1/2 ω for (i j = 13, 23, 31, 32)

and �33 = −χ33 (ω2 − k2), see Refs. [28–30] and [33]
for details. The matrix elements �11 and �22 correspond to
the modification of the dispersion relations for the states A×
and A+, namely the momentum space Maxwell equations
become ω2 − k2×,+ = ω2(1 − n2×,+) = �×,+, where n×,+
are the total indices of refraction and �11 = �×,�22 = �+.
The expressions for the elements �11 and �22 are given by

�11 = ω2ω2
pl

ω2 − ω2
c

− ω2
plω

2
c cos2(�)

ω2 − ω2
c

,

�22 = ω2ω2
pl

ω2 − ω2
c

− ω2
plω

2
c sin2(�) cos2(�)

ω2 − ω2
c

. (B.9)

The first two terms in (B.9) correspond to the effect of only
plasma to the polarization tensor. Indeed, it is straightforward
to see that index of refraction corresponding to plasma fre-
quency only (without external magnetic field) is given by
1−n2×,+ = ω2

pl/(ω
2 −ω2

c ). The second terms in (B.9) corre-
spond to the Cotton–Mouton effect in plasma since this effect
is proportional to B2

e . The element �12 is given by

�12 = −ω2
pl ω

2
c sin(2�) cos(�)

2 (ω2 − ω2
c )

− i
ω2

plωωc sin(�) sin(�)

ω2 − ω2
c

.

(B.10)

Since the element �12 is in general a complex quantity, it
essentially means that the intensity of the state A× changes
for an electromagnetic wave propagating in magnetized
plasma. The first term is due to the Cotton–Mouton effect

while the second term corresponds to the Faraday effect in
plasma. Typically in the literature one gets rid of the first term
in �12 by choosing � = π/2, namely by choosing the exter-
nal magnetic field Be and the photon wave-vector k in the
xz plane. In this case �12 is purely imaginary and it includes
the Faraday effect only.

The gauge invariant calculations for the elements of the
polarization tensor presented above include also the lon-
gitudinal plasma oscillation, which in the Coulomb gauge
modifies the dispersion relation for the scalar potential A0.
Indeed, in the Coulomb gauge the matrix element �33 is
associated with the effective mass of the longitudinal plasma
oscillation [32]. The presence of the longitudinal plasma
oscillation makes the mixing of A0 with the usual trans-
verse photon states possible even in the case when there
is no axion field. However, such mixing is usually very
small since the elements of the photon polarization tensor
for (i j = 13, 31, 23, 32) are proportional to (ω2 − k2)1/2,
which in general is a small quantity for ω � k. It is also worth
to note that the elements of the photon polarization tensor in
a cold magnetized plasma, calculated above by using a clas-
sical approach, do exactly coincide with the quantum field
calculation of the photon polarization tensor in a cold mag-
netized plasma [33].
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