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Abstract Some effects of vacuum polarization in QED due
to the presence of field sources are investigated. We focus
on effects with no counter-part in Maxwell electrodynamics.
The the Uehling interaction energy between two stationary
point-like charges is calculated exactly in terms of Meijer-G
functions. Effects induced on a hydrogen atom by the vacuum
polarization in the vicinity of a Dirac string are considered.
We also calculate the interaction between two parallel Dirac
strings and corrections to the energy levels of a quantum par-
ticle constrained to move on a ring circumventing a solenoid.

1 Introduction

Since the establishment of the QED, the effects regarding
the vacuum polarization had been drawing attention mainly
in situations with no counterpart in classical electrodynam-
ics. In this context, we can mention the Uehling potential
[1], which is the electromagnetic potential associated with a
single point-like stationary charge corrected in lowest order
in the fine structure constant. The calculation of this poten-
tial is usually found in the literature perturbatively in the
momentum space for a point-like source [2–5] and was also
generalized for a charge distribution with finite radius [6].
Recently, the Uehling potential was calculated exactly in
terms of Bessel Integral functions [7]. In the context of non
relativistic quantum mechanics, the Uehling potential can
lead, for instance, to effects on hydrogen-like atoms [8].
Atomic effects of QED not accounted by Uehling potential
were also studied in the literature [9].

Another interesting scenario created by the vacuum polar-
ization, with no counterpart in classical electrodynamics, is
related to the effects which emerge around solenoids and
Dirac strings. In this context we can mention, for instance, the
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radiative corrections to the Aharonov–Bohm scattering [10],
the interaction between two solenoids [11], vacuum currents
produced around a Dirac string [12,13], Bremsstrahlung and
pair production in the Aharonov–Bohm potential [14] and so
on.

The vacuum polarization can be modified by the presence
of an external field. The most common situations studied in
this context are the effects produced by the presence of an
external magnetic field in the Coulomb interaction and in the
hydrogen-like atoms [15–20]. Modifications in the nuclear
Coulomb field induced by a strong laser field were also con-
sidered in the literature [21].

The vacuum polarization was also studied in coordinate
space in reference [22], where the Green’s function was cal-
culated in higher orders beyond the Uehling term.

In this paper we study some effects produced by the vac-
uum polarization of the fermionic field. We focus on sit-
uations with no counterpart in classical electrodynamics,
studying setups where sources for the electromagnetic field
can interact via the vacuum polarization. In Sect. 2 we start
by studying the standard interaction between two point-like
steady charges corrected by the vacuum polarization, in low-
est order in the fine structure constant. We calculate exactly
the Uehling interaction between them. Our result has two
main advantages: it is an exact result (in lowest order in the
fine structure constant) valid for any distance between the
charges and the result is given by a simple expression writ-
ten in terms of a K-Bessel functions and Meijer-G functions,
what makes it easier to be plotted, once those functions are
well known in the literature.

In Sect. 3 we find out the field produced outside a Dirac
string due to the vacuum polarization, in lowest order in the
fine structure constant. We show that we have a magnetic field
outside the string anti-parallel to the internal magnetic flux
and we calculate the corrections in order α (the fine struc-
ture constant) in the energy levels of a quantum particle con-
strained to move on a ring (2-D quantum rigid rotor). In Sect.
4 we show that a hydrogen atom, in its ground state, interact
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with the string via a kind of Zeeman effect. This interaction
falls down very quickly when the distance between the atom
and the string increases. This force is attractive when the total
angular momentum of the electron is parallel to the internal
magnetic flux of the string, and repulsive in the opposite case.

In Sect. 5 we show that it emerges an interaction between
two Dirac strings due to the vacuum polarization of the
fermionic field. We calculate this interacting force exactly,
up to order α, for any distance between the strings when
they are parallel to each other. Section 6 is devoted to some
comments and final remarks.

2 Uehling interaction

In this section we calculate exactly the Uehling interaction
between two point-like steady charges.

The gauge sector of the classical electrodynamics can be
described by the Lagrangian

L = − 1

16π
FμνF

μν − JμA
μ − 1

8π
(∂μA

μ)2 (1)

where the last term is a gauge fixing one, Aμ is the electro-
magnetic field, Fμν = ∂μAν − ∂ν Aμ is the field strength
and Jμ is the external source.

From the Lagrangian (1) one obtain the dynamical equa-
tion

∂μ∂μA
ν
M = 4π J ν (2)

for which the corresponding propagator DM (x − y) satisfies
the differential equation

∂μ∂μDM (x − y) = 4πδ4(x − y). (3)

The sub-index M in (3) means that we have the quantities
calculated for the Maxwell theory.

The solution for (3) is given by the Fourier integral in the
four momentum pμ,

DM (x − y) =
∫

d4 p

(2π)4 D̃M (p)e−i p(x−y), (4)

where

D̃M (p) = −4π

p2 (5)

is the Fourier transform of the propagator DM (x − y)
The solution for the field equation (2) is given by the inte-

gral

Aμ
M (x) =

∫
d4xDM (x − y)Jμ(y). (6)

Substituting the Fourier integrals for the field configura-
tion and for the external source,

Aμ
M (x) =

∫
d4 p

(2π)4 Ã
μ
M (p)e−i px ,

Jμ(y) =
∫

d4 p′

(2π)4 J̃
μ(p′)e−i p′y, (7)

and the integral (4) in Eq. (6) and using the fact that∫
d4yei(p−p′)y = (2π)4δ4(p − p′), we can show that

Ãμ
M (p) = D̃M (p) J̃μ(p). (8)

With the aid of Eqs. (8) and (5) we can write the Fourier
transform of the external source as a function of the Fourier
transform of the gauge field obtained from the Maxwell elec-
trodynamics,

J̃μ(p) = − p2

4π
Ãμ
M (p). (9)

For a steady external source, Jμ(x) = Jμ(x), one can
show that the energy stored in the electromagnetic field is
given by

EM =
∫

d3xd4y
1

2
Jμ(x)DM (x − y)Jμ(y). (10)

It is well known in the literature that the net QED effects
of the fermionic vacuum bubbles can be taken into account
by a correction in the gauge field propagator [2,5], as follows

D̃(p) = D̃M (p)
[
1 + �(p)

] = −4π

p2

[
1 + �(p)

]
. (11)

where

�(p) = −α

π

1∫

0

dv
v2

(
1 − 1

3v2
)

v2 + 4m2

p2 − 1
, (12)

with α standing for the fine structure constant and m, the
mass of the electron.

The corrected propagator for the electromagnetic field is
given by the Fourier integral

D(x − y) =
∫

d4 p

(2π)4 D̃(p)e−i p(x−y). (13)

In the presence of an external source, the corrected field
configuration is

Aμ(x) =
∫

d4xD(x − y)Jμ(y). (14)
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Substituting the second Eqs. (7) and (13) in (14), we can
show that

Aμ(x) =
∫

d4 p

(2π)4 D̃(p) J̃μ(p)e−i px

=
∫

d4 p

(2π)4 D̃M (p)
[
1 + �(p)

]
J̃μ(p)e−i px . (15)

where, in the second line, we used Eq. (11).
With the aid of Eq. (8), we can rewrite Eq. (15) in the form

Aμ(x) =
∫

d4 p

(2π)4 Ã
μ
M (p)

[
1 + �(p)

]
e−i px

= Aμ
M (x) +

∫
d4 p

(2π)4 Ã
μ
M (p)�(p)e−i px . (16)

In the second line of Eq. (16), the second term on the right
hand side can be interpreted as a correction due to the vacuum
polarization for the classical field configuration Aμ

M (x).
The energy stored in the electromagnetic field due to the

presence of a static external source Jμ(x), taking into account
the corrections imposed by the fermionic vacuum bubbles,
is given by

E =
∫

d3xd4y
1

2
Jμ(x)D(x − y)Jμ(y) (17)

Substituting Eqs. (13) in (17), using expression (11),
integrating out in dy0 and in dp0 and using the fact that∫
dy0eip

0 y0 = 2πδ(p0), we have

E = EM + 1

2

∫
d3xd3y

∫
d3p

(2π)3 Jμ(x)Jμ(y)D̃M (p0

= 0,p)�(p0 = 0,p)eip(x−y). (18)

Notice that Eq. (18) is the energy obtained from the
Maxwell electrodynamics, EM , with a correction term added.

Now, let us consider the external source produced by two
stationary charges, q1 and q2, placed at positions a1 and a2,
respectively,

Jμ(x) = q1η
μ0δ3(x − a1) + q2η

μ0δ3(x − a2). (19)

Substituting Eqs. (19), (12) and (5) in (18), discarding the
terms of self energies (the ones corresponding to the inter-
actions of a given charge with itself) and performing some
simple manipulations, we can write

E = q1q2

a
+ 4q1q2α

1∫

0

dvv2
(

1 − 1

3
v2

) ∫
d3p

(2π)3

eip·a

p2(1 − v2) + 4m2 ,

(20)

where we defined the vector a = a1 −a2 and its correspond-
ing modulus a = |a|.

The right and side of Eq. (20) is the same as the one found
in the calculations of the Uehling potential [2]. We shall cal-
culate it exactly in this section.

The first term on the right hand side of Eq. (20) is
the coulombian interaction between the charges. This well
known result [3,23–27] is obtained from EM (the interac-
tion energy given by the Maxwell electrodynamics) and the
propagator defined in (5) and (4). The integral in the second
term can be calculated by changing the integration variables
q = p

√
1 − v2, as follows

∫
d3p

(2π)3

eip·a

p2(1 − v2) + 4m2 = 1

(1 − v2)3/2

×
∫

d3q
(2π)3

eiq·a/√1−v2

q2 + 4m2 .

(21)

Now we perform the integral in d3q with the results of ref-
erence [23]. The result is∫

d3p
(2π)3

eip·a

p2(1 − v2)+4m2 = 1

4π

1

1 − v2

1

a

× exp

(
− 2ma√

1 − v2

)
(22)

Substituting the result (22) in Eq. (20), performing the
change of integration variable u = 1/

√
1 − v2 and making

some simple manipulations, we have

E = q1q2

a
+ q1q2

a

α

π

∞∫

1

du
1√

u2 − 1

×
(2

3
− 1

3u2 − 1

3u4

)
e−2mau

= q1q2

a

[
1 + α

3π

∞∫

1

du
1√

u2 − 1

×
(

2 − 1

u2 − 1

u4

)
e−2mau

]
. (23)

All integrals in Eq. (23) can be performed exactly. The
first one is given by

∞∫

1

du
1√

u2 − 1
e−2mau = K0(2ma), (24)

where K0(2ma) is the K-Bessel function of second kind
[28], and the other two ones are

∞∫

1

du
1√

u2 − 1

1

u2 e
−2mau = 1

2
(ma)3

× MeijerG
(
[[], [0]], [[−1/2,−1,−3/2], []], (ma)2

)
,
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∞∫

1

du
1√

u2 − 1

1

u4 e
−2mau = 1

2
(ma)5

× MeijerG
(
[[], [0]], [[−1/2,−2,−5/2], []], (ma)2

)
,

(25)

with MeijerG standing for the G-Meijer functions [29].
Substituting the result (24) in Eq. (23) we have finally the

Uehling interaction

E = q1q2

a

[
1 + α

3π

(
2K0(2ma)

−1

2
(ma)3MeijerG([[], [0]], [[−1/2,−1,

−3/2], []], (ma)2)

−1

2
(ma)5MeijerG([[], [0]], [[−1/2,−2,

−5/2], []], (ma)2)

)]
. (26)

Notice that expression (26) is exact, (up to order α) valid
for any distance a.

It is usual to interpret the result (26) as a coulombian
interaction between a test charge q2 and an effective one
given by

qef f = q1

[
1 + g(ma)

]
. (27)

where we defined the function

g(ma) = α

3π

(
2K0(2ma)

−1

2
(ma)3MeijerG([[], [0]], [[−1/2,−1,

−3/2], []], (ma)2)

−1

2
(ma)5MeijerG([[], [0]], [[−1/2,−2,

−5/2], []], (ma)2)

)
(28)

In the Fig. 1 we can see a plot for the function (28). It gives
the charge distribution induced in the fermionic vacuum by
the presence of a point-like stationary electric charge. For
ma → 0 the function g(ma) diverges as ln(ma) [2,5]. When
ma → ∞ the function g(ma) goes to zero as e−2ma/(ma)3/2

[2,5].

3 Field of a Dirac string

In this section we discuss some effects of the vacuum polar-
ization in the vicinity of a Dirac string. We choose a coordi-
nate system where the Dirac string lies along the z-axis with

Fig. 1 Graphic for the function g(ma), which gives the induced vac-
uum charge around a point-like electric charge

internal magnetic flux 	. Its corresponding source is given
by [30–34]

Jμ

(D)(x⊥)

=
∫

d4 p

(2π)4 i	(2π)2δ(p0)δ(p3)ε
0μ
ν3 pνe−i px . (29)

If 	 > 0 we have the internal magnetic field pointing in the
ẑ direction. For 	 < 0, the internal magnetic field points
in the opposite direction. The sub-index ⊥ means we are
taking just the components of a given vector perpendicular to
the string. For instance, p⊥ = (px , py, 0) is the momentum
perpendicular to the string.

From Eq. (29) we can identify the Fourier transform of
the Dirac string source

J̃μ

(D)(p) = i	(2π)2δ(p0)δ(p3)ε
0μ
ν3 pν . (30)

Substituting the source (29) in expression (6), with the
Maxwell propagator (4), we have the four-potential

Aμ

M(D)(x) = 	

2π

(
0,− y

x2 + y2 ,
x

x2 + y2 , 0

)
, (31)

as expected for a Dirac string. The potential (31) produces a
vanishing electromagnetic field outside the z axis.1

The vacuum polarization effects in the vicinity of a Dirac
string can be obtained by substituting, in the solution for field
configuration (15), the definitions (5) and (12) and the source
for the Dirac string (30). The result is

Aμ

(D)(x) = Aμ

M(D)(x) + �Aμ

(D)(x) (32)

where Aμ

M(D)(x) is given by (31) and we defined

�Aμ

(D)(x) =
∫

d4 p

(2π)4

4π

p2

α

π

1∫

0

dv
v2

(
1 − 1

3v2
)

v2 + 4m2

p2 − 1

× i	(2π)2δ(p0)δ(p3)ε
0μ
ν3 pνe−i px . (33)

1 Along the z axis, the magnetic field in infinity.
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Integrating out expression (33) in p0 and p3 and noticing
that just its 1 and 2 components are non-vanishing, we can
write

�Aμ

(D)(x⊥) = 4α	

1∫

0

dv

∫
d2p⊥
(2π)2

− 1

p2⊥

v2
(
1 − 1

3v2
)

v2 − 4m2

p2⊥
− 1

(0, i p2,−i p1, 0)eip⊥·x⊥

= 4α	

(
0,

∂

∂y
,− ∂

∂x
, 0

) 1∫

0

dv
v2

(
1 − 1

3v2
)

1 − v2

×
∫

d2p⊥
(2π)2

eip⊥·x⊥

p2⊥ + 4m2

1−v2

. (34)

The integral above is calculated in reference [23]

∫
d2p⊥
(2π)2

eip⊥·x⊥

p2⊥ + 4m2

1−v2

= 1

2π
K0

(
2m|x⊥|√

1 − v2

)
, (35)

where K0(x) stands for the Bessel function of second kind.
So, acting with the derivatives, performing the change of
integration variable

ξ = 1√
1 − v2

, (36)

and using the cylindrical coordinates, with ρ = |x⊥| =√
x2 + y2, we can write the vector potential (34) in the form

�A(D)(x⊥) = 23α	m

3π

∞∫

1

dξ

√
ξ2 − 1

ξ

×
(

1 + 1

2ξ2

)
K1(2mξρ)φ̂, (37)

with φ̂ standing for the unitary vector for the azimuthal coor-
dinate.

The potential (37) is static, has vanishing zero component
and does not produce any electric field. Its rotational gives
a magnetic field outside the solenoid. It is simpler, first, to
calculate the relevant derivatives for the rotational and, after,
perform the integration over the ξ variable. The result is,

�B = ∇ × �A(D) = −4α	m2

3π
f (mρ)ẑ, (38)

where we defined the function

f (x) = K 2
1 (x)(1 + 2x2) − 2xK0(x)

(
K1(x) + xK0(x)

)
,

(39)

Fig. 2 Graphic for the function f (mρ), which gives the induced mag-
netic field outside a solenoid

The function (39) is always positive, as one can see in
the Fig. 2, so the magnetic field (38) points in the opposite
direction in comparison with the magnetic flux of the string.

For small and long distances from the string, the magnetic
field (38) reads

�B ∼= −4α	

3π

1

ρ2 ẑ, mρ << 1

�B ∼= −α	
e−2mρ

ρ2 , mρ >> 1. (40)

3.1 The 2-D quantum rigid rotor

The vector potential (37) induces a modification in the
Aharonov–Bohm bound states. It can be seen by taking a
very simple example of a 2-dimensional quantum rigid rotor
composed by a non-relativistic quantum particle of mass M
constrained to move along a circular ring surrounding the
Dirac string. Let us take the ring on the plane z = 0 centered
at the origin with radius b.

As stated in Eq. (32), the total vector potential produced
by the string is composed by the one obtained from Maxwell
theory (31) added by the correction (37). Performing the inte-
gral in Eq. (37), we can write

A(D) = 	

2πρ

(
1 + 4α

9
F(mρ)

)
φ̂, (41)

where we defined the function

F(x) = (3x2 + 4x4)K 2
0 (x) − (5x2 + 4x4)K 2

1 (x)

+ (6x + 4x3)K0(x)K1(x) (42)

which is always positive, as one can see in the Fig. 3.
It is well known in the literature [35,36] that the energy

levels of a two dimensional quantum rigid rotor are modi-
fied when it circumvents an infinite solenoid. In this case we
have a very simplified version of the so called Aharonov–
Bohm bound states [36]. In this section we consider the
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Fig. 3 Graphic for the function F(mρ)

modification introduced by the vacuum polarization in the
energy levels of a quantum rigid rotor. For this task, we take
a quantum rigid rotor composed by a particle with mass M
and electric charge q, restricted no move along a ring of
radius b. We adopt a coordinate system where the ring lies
on the plane z = 0, centered at the origin. We also consider
a Dirac string placed along the z axis, with internal magnetic
flux 	. In this case, the Hamiltonian for the charged particle
reads

H = − h̄2

2Mb2

d2

dφ2 + i h̄q	

2πMb2

(
1 + 4α

9
F(mb)

)
d

dφ

+ q2	2

8π2b2

(
1 + 4α

9
F(mb)

)2

, (43)

where F(mb) is defined by (42).
The energy eigenfunctions of the hamiltonian (43) are

given by

ψ(φ) = Aeinφ, (44)

where n = 0,± 1,± 2, . . . is any integer and A is a normal-
ization constant. Up to order α, the corresponding energy
levels are

E = h̄2

2Mb2

(
n − q	

2π h̄

)2

− 2h̄q	α

9πMb2 F(mb)

(
n − q	

2π h̄

)
.

(45)

The first term on the right hand side of (45) is the well
known Aharonov–Bohm energy [35] and the second term is
a correction due to the vacuum polarization.

For small and large values of mb, the energy (45) reads

E ∼= h̄2

2Mb2

(
n − q	

2π h̄

)2

+ 4h̄q	α

3πMb2 ln(mb)

(
n − q	

2π h̄

)
, mb << 1

E ∼= h̄2

2Mb2

(
n − q	

2π h̄

)2

− h̄q	α

2Mmb3 e
−2mb

(
n − q	

2π h̄

)
, mb >> 1. (46)

4 String-atom interaction

The external magnetic field created by a Dirac string can lead
to physical phenomena. Let us consider some of its effects
produced on a single hydrogen atom. For this task, we take
a coordinates system where the atom is placed at the origin
and the Dirac string, parallel to the z axis, along the line
(d, 0, z). In this setup, the Dirac string is placed at a distance
d from the atom. We shall restrict to the situation where d is
much higher in comparison with the atomic distances. The
magnetic field produced in this case can be written by shifting
the coordinate x in Eq. (38), as follows

�B′ = −4α	m2

3π
f

(
m

√
(x − d)2 + y2

)
ẑ

∼= −4α	m2

3π
f (md)ẑ, (47)

where, in the last line, we used the fact that the coordinates x
and y are evaluated in the atomic distances and d >> x, y.

In a typical experiment d is a macroscopic distance in
order of centimeters, what makes the values of the product
md very large. So it is legitimate to approximate expression
(47) for md >> 1, as follows

�B′ ∼= −4α	m2

3π

3π

4

e−2md

(md)2 ẑ

∼= −α	
e−2md

d2 ẑ. (48)

So, in this setup, the Dirac string produces a kind of Zee-
man effect on the atom, once the field (48) is, approximately,
constant and uniform along the atom. In this regime, the field
produced by the Dirac string is lower than the atomic mag-
netic field, so we shall use the results of the Zeeman effect
(with external magnetic field pointing along the − ẑ direc-
tion) for weak external field approximation to study the sys-
tem, where the fine structure constant dominates the energy
corrections [37]. We shall take the hydrogen atom on its
ground state (n = 1, � = 0, m� = 0, j = s = 1/2). In
this case, the degeneracy is broken as follows

E = E0

(
1 + α2

4

)
− 2m jμB |�B′| (49)

where E0 is the non-perturbed ground state energy of the
hydrogen atom, μB is the Bohr magneton andm j = ± 1/2 is
the azimuthal quantum number for the total angular momen-
tum (for the ground state, m j = ms). The minus signal for
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Fig. 4 Graphic for the modulus of the force (51) multiplied by
|2m jα	μBm3|−1 as a function of md. Expression (51) is valid just
for large values of md

the Zeeman contribution is due to the fact that the external
magnetic field (48) points along the − ẑ direction.

As usual, in this case, the contribution of the nuclear mag-
netic moment (proton) is not relevant [37].

Substituting Eq. (48) in (49) we have

E = E0

(
1 + α2

4

)
− 2m jα	μB

e−2md

d2 . (50)

The energy (50) exhibits a dependence on the distance d
between the Dirac string and the atom and produces a force
on the atom (taking the string as fixed) given by

F = −∂E

∂d
= − 4m jα	μB

e−2md(md + 1)

d3

∼= − 2m jα	μB
e−2md

d3 (51)

where, in the last line, we discarded a term of order md.
When m j = 1/2, the projection of the total electronic

angular momentum of the electron points in the same direc-
tion of the internal magnetic flux of the string and the force
(51) becomes negative, what means that it exhibits an attrac-
tive nature. When the total angular electronic momentum
points in the opposite direction, with respect to the internal
magnetic flux, the force (51) is positive, what means a repul-
sive behavior.

In a scattering experiment with a beam of unpolarized
atoms propagating in the vicinity of a solenoid, we must
have a bifurcation of the beam, according to the total angular
momentum of each atom in the beam.

From the Fig. 4 we can see the behavior of the magnitude
of the force (51) as a function of md.

5 The interaction between two strings

In this section we study the interaction between two Dirac
strings due to the vacuum polarization. We take two Dirac

strings parallel to each other with the first one lying along
the z axis and the second one lying along the line (a1, a2, z).
Defining the vector a = (a1, a2, 0), we can identify the
distance between the strings by the modulus of a, | a |=√

(a1)2 + (a2)2. From Eq. (29), we can write the sources for
the two strings, as follows

Jμ

(D,1)(x⊥) =
∫

d4k

(2π)4 i	1(2π)2δ(k0)δ(k3)ε
0μ
ν3 kνe−ikx

Jμ

(D,2)(x⊥) =
∫

d4k′

(2π)4 i	2(2π)2δ(k′0)δ(k′3)ε0μ
ν3 k′νe−ik′x e−ik′⊥·a

(52)

Substituting the sources (52) in Eq. (18), discarding the
self energies of each string, noticing that EM = 0 (there is no
interaction energy between two Dirac strings in the Maxwell
Electrodynamics), integrating out in dy0, dp0, dk0, dk′0,
dk3, dk′3, dx3 and dp3, identifying the length of a Dirac
string L = ∫

dy3 and performing some simple manipula-
tions, we have the interaction energy between the strings per
unit of length

E = E

L
= 	1	2

∫
d2p⊥
(2π)2 D̃M

(
p0 = p3 = 0,p⊥

)

×�

(
p0 = p3 = 0,p⊥

)
ε

0μ
α3ε

0
μβ3 p

α pβeip⊥·a

= −	1	2

∫
d2p⊥
(2π)2 D̃M

(
p0 = p3 = 0,p⊥

)

×�(p0 = p3 = 0,p⊥)p2⊥eip⊥·a. (53)

Now we define the differential operator

∇a =
(

∂

∂a1 ,
∂

∂a2 , 0

)
, (54)

use the fact that p2⊥eip⊥·a = −∇2
a e

ip⊥·a and substitute the
definitions (5) and (12) in Eq. (53), what leads to

E = 4α	1	2

1∫

0

dv
v2

(
1 − 1

3v2
)

1 − v2 ∇2
a

∫
d2p⊥
(2π)2

eip⊥·a

p2⊥ + 4m2

1−v2

.

(55)

Using the result (35), acting with the operator ∇2
a and per-

forming the change of integration variables (36), the energy
per unit length (55) reads

E = 16

3π
α	1	2m

2

∞∫

1

dξ
√

ξ2 − 1

×
(

1 + 1

2ξ2

)
K0(2m|a|ξ). (56)
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Fig. 5 Graphic for the force (58) divided by 8
3π

α	1	2m3, which gives
the induced vacuum charge around a point-like electric charge

The integral in Eq. (56) can be calculated. The final result
for the energy is

E = 4

3π
α	1	2m

2
[
K 2

1 (ma)
(

1 + (ma)2
)

− 2(ma)2K 2
0 (ma) − 2(ma)K0(ma)K1(ma)

]
(57)

The gradient of the energy (57) with respect to a (with a
minus signal) gives the force between the strings per unity
of length

F = −∇aE = 8

3π
α	1	2m

2 1

a

[
K 2

1 (ma)
(

1 − (ma)2
)

+maK0(ma)
(
maK0(ma) + K1(ma)

)]
â, (58)

which is repulsive when 	1 and 	2 have the same sign and
attractive when the magnetic fluxes have opposite signs. In
Eq. (58), â stands for the unit vector in the direction of a and
the function inside brackets is positive along 0 ≤ ma ≤ ∞.

Figure 5 shows the graphic for the modulus of the force
(58) divided by 8

3π
α	1	2m3 as a function of ma. For small

and large values of ma, the behavior of the force (58) is

F ∼= 8

3π
α	1	2

1

a3 â, ma << 1

F ∼= 2α	1	2m
e−2ma

a2 â, ma >> 1. (59)

As a last comment, we highlight that in some other gauge
theories, even without radiative corrections, we can have
interactions between Dirac strings and other sources for the
gauge field, what is the case of Lee–Wick electrodynamics
[30] and theories with explicit Lorentz symmetry breaking
[31,32].

6 Conclusions and final remarks

In this paper we investigated some effects of the vacuum
polarization, in lowest order in the fine structure constant,

due to the presence of field sources for the electromagnetic
field. All these effects were obtained from the vacuum polar-
ization tensor of the QED. We obtained an exact expression
for the Uehling interaction (Uehling potential) between two
point-like steady charges in terms of a K-Bessel function and
MeijerG functions. Our results are compatible with that ones
obtained in the literature, approximately, for long and small
distances between the charges.

We also investigated some phenomena produced outside
a Dirac string. One of these effects are the modifications
induced in the energy levels of a quantum rigid rotor which
circumvents a Dirac string. We have calculated these modi-
fications exactly (for any radius of the quantum rigid rotor)
up to order α. We have shown that a hydrogen atom inter-
act with a Dirac string via a kind of Zeeman effect. The
nature (attractive or repulsive) of this interaction depends on
the orientation of the total magnetic moment of the electron
with respect to the internal magnetic flux of the string. We
restricted to the case where the atom is in its ground state and
far away from the string. When the total magnetic moment
of the electron is parallel to the internal magnetic flux of
the string, the interaction is attractive, on the contrary, it is
repulsive. As expected, this interaction is very small and falls
down very fast when the distance between the string and the
atom increases.

We have also investigated the interaction which emerges
between two Dirac strings due to the vacuum polarization.
We restricted to the case where the strings are parallel or
anti-parallel to each other. We showed that the strings attract
each other when their internal magnetic fluxes are anti-
parallel. This interaction is repulsive when the internal mag-
netic fluxes are parallel to each other. We have computed
this interacting force exactly (up to order α), showing that it
falls down vary fast when the distance between the strings
increases.
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