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Abstract We studied the effects of NLO Q2 evolution of
generalized parton distributions (GPDs) using the aligned-
jet model for the singlet quark and gluon GPDs at an initial
evolution scale. We found that the skewness ratio for quarks
is a slow logarithmic function of Q2, reaching rS = 1.5−2
at Q2 = 100 GeV2 and rg ≈ 1 for gluons in a wide range
of Q2. Using the resulting GPDs, we calculated the DVCS
cross section on the proton in NLO pQCD and found that
this model in conjunction with modern parameterizations of
proton PDFs (CJ15 and CT14) provides a good description
of the available H1 and ZEUS data in a wide kinematic range.

1 Introduction

Generalized parton distributions (GPDs) have become a
familiar and standard tool of Quantum Chromodynamics
(QCD) describing the response of hadronic targets in var-
ious hard exclusive processes [1–8]. GPDs can be rigor-
ously defined in the framework of QCD collinear factor-
ization for hard exclusive processes [9,10], which allows
one to access universal, i.e., process-independent, GPDs in
such processes as deeply virtual Compton scattering (DVCS)
γ ∗ + T → γ + T , timelike Compton scattering (TCS)
γ + T → γ ∗ + T , exclusive meson production by lon-
gitudinally polarized photons γ ∗

L + T → M + T , and,
recently, photoproduction of heavy (J/ψ , Υ ) vector mesons
γ + T → V + T [11,12]. GPDs contain information on the
hadron structure in QCD, which is hybrid of that encoded in
usual parton distributions and elastic form factors. In partic-
ular, GPDs describe the distributions of quarks and gluons in
hadrons in terms of two light-cone momentum fractions and
the position in the transverse plane. Also, GPDs are involved
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in the hadron spin decomposition in terms of the helicity and
orbital motion contributions of quarks and gluons [4–8], and
carry information on the spatial distribution of forces expe-
rienced by partons inside hadrons [13].

GPDs are essentially non-perturbative quantities, which
cannot be calculated from the first principles apart from first
Mellin moments in special cases in lattice QCD [14,15]. At
the same time, evolution of GPDs with an increase of the
resolution scale Q2 is predicted by the QCD Dokshitzer–
Gribov–Lipatov–Altarelli–Parisi (DGLAP) evolution equa-
tions modified to the case of GPDs, which are presently
known to the next-to-leading order (NLO) accuracy [16–
18]. Therefore, one of directions of phenomenological stud-
ies of GPDs is to determine the non-perturbative input for
these evolution equations. After early studies of GPDs using
various dynamical models of the nucleon structure [19–27],
one currently focuses on parameterizations of GPDs, which
are determined from fitting the available data. The two main
contemporary approaches include the flexible parameteriza-
tion based on the conformal expansion of GPDs [28–31] and
global fits of GPDs [32–35], which use the double distribu-
tion (DD) model [36–40] in the Vanderhaeghen–Guichon–
Guidal (VGG) framework; see for details [34]. One should
also mention a pioneering study of global QCD fits of GPDs
within the neural network approach [41].

The mentioned above analyses present only a partial,
model-dependent picture of GPDs in a limited kinematic
range. For further progress, it is important to perform a
systematic QCD analysis of evolution of GPDs and cross
sections of hard exclusive processes involving them. It will
enable one to separate the effects of non-perturbative input
GPDs from the perturbative DGLAP evolution and help to
explore the possibility to use the data on hard exclusive reac-
tions at high energies for constraining GPDs; see, e.g., [42].

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-017-5490-5&domain=pdf
mailto:guzey\protect _va@pnpi.nrcki.ru


7 Page 2 of 12 Eur. Phys. J. C (2018) 78 :7

In this paper, we calculate the effect of next-to-leading
(NLO) QCD evolution on quark and gluon GPDs of the pro-
ton using the brute-force evolution method of [16–18] and
the physical model for input GPDs, which is motivated by the
aligned-jet model [27]. Using the obtained results, we cal-
culate the DVCS cross section on the proton in NLO QCD
and compare it to the available HERA data. We find that our
approach provides a good description of the DVCS data over
a wide kinematic range, including most of the data from H1
and ZEUS collaborations for the unpolarized proton target.

2 Aligned-jet model for GPDs and QCD evolution
effects

2.1 Input GPDs

The aligned-jet model (AJM) [43,44] for photon–hadron
interactions at high energies is based on the general obser-
vation that in the target rest frame, the incoming photon
first fluctuates into quark–antiquark configurations, which
then interact with the target. For the photon virtualities
Q2 = O(few) GeV2, the qq̄ pair (dipole) is characterized
by a small relative transverse momentum (hence the name
aligned-jet), the invariant mass of the order of Q2, the asym-
metric sharing of the photon’s light-cone momentum, and
the dipole–nucleon cross section, which has the magnitude
typical for hadron–nucleon cross sections. Note that in QCD,
this parton picture is complemented by the gluon emission
and the contribution of quark–antiquark dipoles with large
relative transverse momenta, which become progressively
important as Q2 is increased; see the discussion in Ref. [45].

In the AJM model, one obtains for the ratio of the imagi-
nary parts of DVCS and DIS amplitudes at Q2 = 1−3 GeV2,
R = �TDVCS/�TDIS = 2.5−3.5 [27,46], which agrees
nicely with the values of R extracted from the HERA
data [47]. This in turn means that the effect of skewness of
the singlet quark GPDs in the DGLAP region of X ≥ ζ can
be neglected (X is the light-cone momentum fraction of the
target in the initial state carried by the interacting parton; ζ

is the momentum fraction difference between the two inter-
acting partons). This observation is also supported by the
analysis of Ref. [6], which showed that the good description
of the high-energy HERA data on the DVCS cross section on
the proton can be achieved with the forward parton distribu-
tion model for the singlet quark GPDs [48,49], i.e., with the
δ-function-like profile in the DD model for sea quark GPDs.

In general, modeling and parametrization of GPDs is
a non-trivial task since GPDs should satisfy several gen-
eral constraints: GPDs reduce to usual parton distributions
functions (PDFs) in the forward limit; integration of GPDs
over the momentum fraction gives the corresponding elastic
form factors; as a consequence of Lorentz invariance, Mellin
moments of GPDs are finite-order polynomials in even pow-

ers of the skewness η = ζ/(2−ζ ) (the property of polynomi-
ality); GPDs obey positivity bounds expressed an inequalities
involving GPDs and usual PDFs. While the first three prop-
erties can be naturally implemented in momentum represen-
tation of GPDs, positivity is most naturally derived in coor-
dinate representation. Hence, it is an outstanding challenge
to propose a practical model of GPDs satisfying all these
constraints. (Naturally, field-theoretical approaches based on
perturbative diagrams will automatically lead to GPDs satis-
fying all the constraints [26], but they have little usefulness
for GPD phenomenology.)

Starting from a model for GPDs in the DGLAP region of
X ≥ ζ , there is no unique and simple way to reconstruct
GPDs in the entire range of X . For instance, the method
proposed in [27,47] does not guarantee polynomiality for
higher moments of GPDs and conflicts with dispersion rela-
tions (DR) for the real and imaginary parts of the DVCS
amplitude [50]. In principle, GPDs with the correct forward
limit and satisfying the property of polynomiality can be
constructed using the so-called Shuvaev transform [51–54].
However, this method is usually associated with the leading
order (LO) phenomenology and brings about a certain skew-
ness dependence of GPDs in the DGLAP region. Similarly,
the flexible parameterization of GPDs based on the confor-
mal expansion [28–31] contains the skewness effect of GPDs
in the DGLAP region and corresponds to model-dependent
parton distributions in the forward limit.

In this work, to simultaneously have the forward-like
GPDs in the DGLAP region and circumvent the aforemen-
tioned problem with polynomiality, we take forward-like
GPDs for all X and add the so-called D-term [55], which has
support only in the Efremov–Raduyshkin–Brodsky–Lepage
(ERBL) region of |X | ≤ ζ . Specifically, we use the follow-
ing model for the singlet quark (one sums over quark flavors
q) and gluon GPDs at t = 0 at the initial scale of μ0:

(1 − ζ/2) HS(X, ζ, t = 0, μ0)

=
⎧
⎨

⎩

∑
q [q(x, μ0) + q̄(x, μ0)] + DS (x/η) θ(ζ − X), X > ζ/2,

− ∑
q [q(x, μ0) + q̄(x, μ0)] − DS (x/η) θ(ζ − X), X < ζ/2,

(1 − ζ/2) Hg(X, ζ, t = 0, μ0) = |x |g(|x |, μ0) , (1)

where x = (X − ζ/2)/(1 − ζ/2) and η = ζ/(2 − ζ );
q(x, μ) and g(x, μ) are the quark and gluon parton distri-
bution functions (PDFs), respectively. Note that, since we
explicitly introduced antiquark GPDs, it is sufficient to con-
sider only non-negative X ≥ 0. Also, we assume that similar
relations hold for separate quark flavors q, i.e.,

(1 − ζ/2) Hq+q̄ (X, ζ, t = 0, μ0)

=
⎧
⎨

⎩

q(x, μ0) + q̄(x, μ0) + 1
nf

DS (x/η) θ(ζ − X), X > ζ/2

− [q(x, μ0) + q̄(x, μ0)] − 1
nf

DS (x/η) θ(ζ − X), X < ζ/2
,

(2)
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where nf is the number of active quark flavors. Thus, our
model does not assume the flavor symmetry of quark GPDs.

We should stress here that GPDs have to be continu-
ous at X = ζ . In addition, GPDs have to satisfy the cor-
rect symmetries around the midpoint of the ERBL region,
X = ζ/2. As follows from the general properties of GPDs,
the singlet quark GPDs HSX, ζ, t = 0, μ0) is antisymmet-
ric in the ERBL region around the X = ζ/2 point, while
the gluon GPD Hg(X, ζ, t = 0, μ0) is symmetric in the
ERBL region; these constraints are implemented in Eqs. (1)
and (2).

The function DS (x/η) is the singlet quark D-term [55],
which can be expanded in terms of odd Gegenbauer polyno-
mials C3/2

n in the following form [56]:

DS(z, μ0)

= 2(1 − z2)[d1C
3/2
1 (z) + d3C

3/2
3 (z) + d5C

3/2
5 (z)] . (3)

The coefficients d1, d3 and d5 were estimated in the chiral
quark soliton model at μ0 = 0.6 GeV in Ref. [20]: d1 = −4,
d3 = −1.2, and d5 = −0.4. Note that due to the lack of
numerical estimates, we neglected the possible gluon D-term
in Eq. (1). In this case, DS(z, μ) evolves in μ2 autonomously
(without mixing) and its value for μ > μ0 can be readily
calculated.

In summary, our GPD model in Eqs. (1) and (2) cor-
responds to the correct forward limit, satisfies polynomi-
ality (the D-term satisfies polynomiality by construction),
and obeys positivity bounds in the DGLAP region in the
small-ξ and t = 0 limit (all positivity bounds discussed
in the literature are for the DGLAP region; see Ref. [7]).
Indeed, neglecting the kinematically suppressed contribution
of the GPD E , the positivity bound for the quark GPDs reads
[7]

(1 − ξ2)[Hq(x, η, t = 0)]2 ≤ q(xin)q(xout) , (4)

where Hq(x, η) = (1 − ζ/2)Hq(X, ζ ); xin = (x + ξ)/(1 +
ξ) = X and xout = (x − ξ)/(1 − ξ) = (X − ζ/2)/(1 −
ζ/2). Assuming that q(x) ∝ 1/xα for small x , where 0 ≤
α ≤ 1, Eq. (4) is trivially satisfied with our GPD model
of Eq. (2).

By construction, see Eq. (1), in the middle of the ERBL
region at x = X − ζ/2 = 0, our singlet quark GPDs become
singular and the gluon GPD vanishes. Being a natural arti-
fact of our model imposing the correct GPD symmetry in
the ERBL problem, it does not violate general principles of
GPDs, does not conflict with factorization for amplitudes of
hard exclusive processes, and does not lead to singularities
of the DVCS amplitude. Since the main goal of our work is
to study the effects of NLO Q2 evolution of GPDs in con-
junction with different baseline PDFs, the simple model of
Eq. (1) should suffice.

Note that in this work, we focus on the quark singlet
∑

q(q + q̄) and gluon GPDs: valence (non-singlet) quark
GPDs do not mix with singlet quark and gluon GPDs under
the DGLAP evolution and do not appreciably contribute to
the DVCS amplitude at high energies.

2.2 NLO Q2 evolution of GPDs and error analysis

The determination of parton distribution functions (PDFs)
has always been one of the important ingredients for the-
ory predictions. In this respect, more accurate PDFs play an
important role in understanding of hadronic properties and
the structure of the nucleon [57–60]. Our knowledge of PDFs
has developed both theoretically and computationally. How-
ever, results of various groups lead to different predictions
of physical observables. As we know, GPDs are quantities
that are related to the PDFs in the forward limit and in many
phenomenological approaches. To investigate the impact of
different PDFs on the GPDs and their evolution, we cal-
culate the effect of next-to-leading order (NLO) DGLAP
evolution equations modified to the case of GPDs using
the formalism of [16–18] and the input GPDs of Eqs. (1).
(The early results on leading order (LO) Q2 evolution of
GPDs were presented in Refs. [51,61]). Perturbation the-
ory predicts the evolution of GPDs and, hence, they depend
on the factorization scale, μ2. Anomalous dimensions and
the kernels at NLO accuracy in pQCD can be found in
Refs. [62–66].

For the forward PDFs, we used CT14 [67] and the new
CTEQ-Jefferson Lab (CJ15) analysis [68]. To study the
impact of PDF uncertainties on the GPD evolutions and
DVCS cross sections, we include the uncertainties of CT14
and CJ15 PDFs in the calculations of the evolution and in
the DVCS cross sections. In this respect, we note that both
CT14 and CJ15 are PDF sets with Hessian PDF eigenvec-
tor error sets. In this situation, the theoretical uncertainties
of PDFs themselves and any physical quantity related to
them, such as the GPDs and DVCS cross sections consid-
ered here, can be obtained as usual using the 56 and 48
error sets of the CT14 and CJ15 parametrizations, respec-
tively. To this aim, we must first calculate our desired quantity
with various error sets. Then we can compute the deviations
from the central result and so the contribution to the size of
the upper and lower errors through the following relations
[69,70]:

δ+X =
√

∑

i

[
max(X (+)

i − X0, X
(−)
i − X0, 0)

]2

δ−X =
√

∑

i

[
max(X0 − X (+)

i , X0 − X (−)
i , 0)

]2
. (5)

The last point that should be noted here is the confidence
region considered for estimating error bands since different
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Fig. 1 The singlet quark GPD HS(X, ζ, t = 0, Q2) as a function of X at ζ = 0.001 and Q2 = 1.69, 4, 10 and 100 GeV2. The GPDs are calculated
using the input of Eq. (1) with the CT14 [67] and CJ15 [68] parameterizations of PDFs and NLO Q2 evolution for GPDs

PDF analyses typically utilize different criteria for estimating
PDF errors. The CJ15 PDF sets have been provided with 90%
C.L. uncertainties considering standard tolerance criterion
Δχ2 = 2.71, while CT14 use a tolerance criterion as Δχ2

= 100 with the same confidence level [71]. In this work,
we display the CT14 and CJ15 errors on GPDs and DVCS
cross sections for 90% C.L. region, so that the tolerance used
for CJ15 PDFs be matched with CT14, in order to have a
reasonable comparison.

Figures 1 and 2 show the results for the singlet quark
GPD HS(X, ζ, t = 0, Q2) and the gluon GPD Hg(X, ζ, t =
0, Q2), respectively, as a function of X at ζ = 0.001 and
Q2 = 1.69, 4, 10, and 100 GeV2. Note that Q2 = 1.69
GeV2 is the input scale for CT14 and CJ15. As can be seen

from these figures, the Q2 evolution pushes GPDs into the
ERBL region of X < ζ as it should be. The discontinuity of
the quark singlet GPD at X = ζ/2 is an artifact of our model
(see the discussion in Sect. 2.1), which does not affect the
physical observables.

In the quark singlet case, the difference between the pre-
dictions based on CT14 and CJ15 PDF is small, especially
at lower values of the Q2 resolution scale. At the same time,
in the gluon channel the differences between the CT14 and
CJ15 predictions are sizable and exceed the associated uncer-
tainties for large values of Q2. One should also note that the
uncertainties of the resulting GPDs based on CT14 are larger
than those for CJ15, which is related to the large uncertainties
of CT14 singlet distributions at small x .
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Fig. 2 The gluon GPD Hg(X, ζ, t = 0, Q2) as a function of X at ζ = 0.001 and Q2 = 1.69, 4, 10 and 100 GeV2. See the caption of Fig. 1 for
details

Generally speaking, our results indicate that the GPD
model of Eq. (1) is sensitive to the input PDFs. Therefore,
more accurate PDFs are very important for physical observ-
ables involving GPDs such as, e.g., DVCS cross sections.
Conversely and optimistically, data on the DVCS cross sec-
tion may provide new constraints for global QCD analysis
of PDFs. Our study makes it clear that using more recent
version of PDFs and proper scale dependence in our GPDs
model describes DVCS data over a large kinematical range.

2.3 Effect of skewness

For phenomenological applications of GPDs, it is important
to discuss the so-called skewness factor, which describes the
connection between GPDs and PDFs and parametrizes the
deviation of GPDs from PDFs. To quantify this effect, it is
convenient to introduce the following ratios of quark and
gluon GPDs and PDFs [29]:

rS(ζ, μ) = (1 − ζ/2)HS(ζ, ζ, t = 0, μ)
∑

q [q(ζ/(2 − ζ ), μ) + q̄(ζ/(2 − ζ ), μ)]
,

rg(ζ, μ) = (1 − ζ/2)Hg(ζ, ζ, t = 0, μ)

ζ/(2 − ζ )g(ζ/(2 − ζ ), μ)
. (6)

Our results for rS(ζ, μ) and rg(ζ, μ) as functions Q2 = μ2

at ζ = 0.001 are shown in Fig. 3. One can see from the
figure that both rS and rg are slow logarithmic functions
of Q2. By construction, rS = rg = 1 at the initial evo-
lution scale of Q2 = 1.69 GeV2. As Q2 is increased, rS

slowly increases up to rS ≈ 1.5–2 at Q2 = 100 GeV2,
while rg stays at the level of unity for the studied range
of Q2.

These results agree with the predictions of the flexi-
ble GPD parameterization based on the conformal expan-
sion, see Fig. 7 of Ref. [29], except for rS at the input
Q2 = 1.69 GeV2, where our result lies lower than that
of [29].
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Fig. 3 The quark and gluon skewness ratios rS(ζ, μ) (left) and rg(ζ, μ) (right) as functions Q2 = μ2 at ζ = 0.001

3 NLO pQCD predictions for the DVCS cross section
and comparison to HERA data

3.1 Evaluation of Compton form factors and DVCS
amplitudes

The standard and well-tested way to access GPDs is the
process of leptoproduction of a real photon, ep → eγ p,
or deeply virtual Compton scattering (DVCS). At the pho-
ton level, the γ ∗ p → γ p DVCS differential cross section,
dσDVCS(W, t, Q2)/dt , is expressed in terms of the so-called
Compton form factors (CFFs), which in the collinear factor-
ization approach [9] are given as convolution of the pertur-
batively calculable hard scattering coefficient functions with
the non-perturbative GPDs. In particular, at high energies the
DVCS cross section is by far dominated by the GPD H and its
corresponding CFFs. For the flavor singlet contribution (for
the quark singlet and gluon CFFs), one has in the symmetric
notation:

FS,g(ξ, t, Q2) =
∫ +1

−1

dx

ξ
CS,g(x/ξ, Q2/μ2, αs(μ))

×HS,g(x, ξ, t, μ2), (7)

where ξ = ζ/(2 − ζ ); μ is the factorization scale which
is usually set equal to the photon virtuality μ2 = Q2. The
explicit form for the coefficient functions C can be found in
Refs. [28,72,73] for the non-singlet and singlet cases. For
instance, for the quark singlet case, the QCD perturbation
series reads

1

ξ
CS(x/ξ, Q2/μ2, αs(μ)) = 1

ξ − x − iε
+ O(αs). (8)

Hence, to the LO accuracy of pQCD and in leading-twist
approximation, the DVCS scattering amplitude (CFF) can
be written as

F(ξ, t, Q2) =
∑

q=u,d,s,...

e2
q

∫ +1

−1

dx

ξ − x − iε
Hq+q̄ (x, ξ, t, Q2).

(9)

The CFFs depend on ξ (or equivalently on Bjorken xB or the
invariant energy W ), the momentum transfer t , and Q2 and,
hence, can be extracted from DVCS experiments. Note that
our model for the GPD initial conditions does not imply the
flavor symmetry of quark GPDs.

Note that the purely electromagnetic Bethe–Heitler (BH)
bremsstrahlung process leads to the same final state and inter-
feres with DVCS. However, at high energies (small values
of xB), the DVCS process dominates, which allows one to
extract the DVCS cross section by subtracting of the BH con-
tribution. In addition to this, cuts on Q2 and W have been
applied by H1 and ZEUS collaborations to enhance the con-
tribution from DVCS process (see the following subsection).

Detailed analytic expressions for the DVCS and BH
amplitudes squared and their interference are well known and
can be found in Refs. [74,75]. In our analysis we assume an
exponential and factorized t-dependence of the DVCS cross
section, e−b(Q2)|t |, where b(Q2) = a[1−c ln(Q2/2 GeV2)],
with a = 8 GeV−2 and c = 0.15 [27]. This simple
parametrization agrees with the measurements of the t depen-
dence of the differential γ ∗ p → γ p cross section at HERA
(see the following subsection).

3.2 HERA DVCS data

Unpolarized DVCS on the proton has been measured in e± p
collisions at HERA by the H1 [76–79] and ZEUS [80,81]
experiments. The list of the DVCS experiments at HERA
along with the measured observables, kinematic ranges and
corresponding references is given in Table 1.
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Table 1 Overview of DVCS on proton experiments at HERA collider used in this study. The observable σDVCS is the cross section for the sub-process
γ ∗ p → γ p

Collaboration Observables Q2 (GeV2) W (GeV) Year Reference

H1 σDVCS(Q2), σDVCS(W ) 2–20 30–120 2001 [76]

H1 σDVCS(Q2), σDVCS(W ) 2–80 30–140 2005 [77]

H1 σDVCS(Q2), σDVCS(W ), σDVCS(Q2,W ) 6.5–80 30–140 2007 [78]

H1 σDVCS(Q2), σDVCS(W ), σDVCS(Q2,W ) 6.5–80 30–140 2009 [79]

ZEUS σDVCS(Q2), σDVCS(W ), σDVCS(Q2,W ) 5–100 40-140 2003 [80]

ZEUS σDVCS(Q2), σDVCS(W ), σDVCS(Q2,W ) 1.5–100 40–170 2008 [81]

Fig. 4 The DVCS γ ∗ p → γ p cross section as a function of Q2 (left)
and W (right). The 2001 H1 data [76], where the statistical and system-
atical errors are added in quadrature, is compared to our NLO pQCD

results based on the input of Eq. (1) and CT14 [67] and CJ15 [68] PDFs.
The shadowed bands represent the uncertainty of the corresponding
PDFs

Fig. 5 The DVCS γ ∗ p → γ p cross section as a function of Q2 (left) and W (right). Our NLO pQCD results are compared to the 2005 H1
data [77]; see for details Fig. 4
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Fig. 6 The DVCS γ ∗ p → γ p cross section as a function of Q2 (left) and W (right). Our NLO pQCD results are compared to the 2007 H1
data [78]; see for details Fig. 4

Fig. 7 The DVCS γ ∗ p → γ p cross section as a function of Q2 (left) and W (right). Our NLO pQCD results are compared to the 2009 H1
data [79]; see for details Fig. 4

3.3 DVCS cross section in NLO pQCD vs. HERA data

Using our model for the singlet quark and gluon GPDs of the
proton (see Sect. 2), we make predictions for the DVCS cross
section in NLO perturbative QCD. Our results are presented
in Figs. 4, 5, 6, 7, 8 and 9, where they are compared with the
available HERA data of the H1 [76–79] and ZEUS [80,81]
measurements (see Table 1). The error bars the statistical
and systematic uncertainties added in quadrature. The bands
associated with CJ15 and CT14 prediction correspond to the
uncertainty of the respective PDFs.

One can see from these figures that within experimen-
tal and theoretical uncertainties, the input GPD model based
on the CJ15 fit provides a good description of the H1-2001,

H1-2005, H1-2007 and H1-2009 data (Q2 dependence only
for the two latter data sets), while the model based on the
CT14 fit tends to somewhat overestimate the cross section
normalization (it describes well the W dependence of the
H1-2005, H1-2007 and H1-2009 data). At the same time,
the CT14 parametrization leads to a very good description
of the ZEUS data. These results clearly show that, for some
selected PDF sets, such as, e.g., the CJ15 and CT14 fits,
the AJM GPD model of [27] together with NLO pQCD
calculations describes well the high-energy DVCS cross
section.

In order to study effects of the NLO DGLAP evolution
on GPDs, a detailed comparison of our obtained results with
the DVCS γ ∗ p → γ p cross section is shown in Fig. 10.
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Fig. 8 The DVCS γ ∗ p → γ p cross section as a function of Q2 (left) and W (right). Our NLO pQCD results are compared to the 2003 ZEUS
data [80]; see for details Fig. 4. The inner error bars represent the statistical errors, and the outer error bars the statistical and systematic errors
added in quadrature

Fig. 9 The DVCS γ ∗ p → γ p cross section as a function of Q2 (left) and W (right). Our NLO pQCD results are compared to the 2008 ZEUS
data [81]; see for details Fig. 4

In this figure, we show the DVCS cross section as a func-
tion of W for some selected values of Q2 = 2.4, 6.2, 9.9
and 18 GeV2. Our NLO pQCD predictions are based on
the CT14 [67] PDFs; the experimental points are the 2003
and 2008 ZEUS data [80,81]. The inner error bars repre-
sent the statistical, and the full error bars the quadratic sum
of the statistical and systematic uncertainties. One can see
that a very good agreement between our predictions and
ZEUS data is achieved for a wide range of Q2 and W .
It illustrates an important role of the Q2-dependence of
the quark and gluon GPD H for the successful description
of the HERA data, which spans a wide range of Q2 and
W .

In summary, we observe very good overall agreement
between our NLO pQCD predictions and most of the H1
and ZEUS data. It warrants the application of our frame-
work to forthcoming and planned DVCS measurements at
high energies, such as, e.g., at COMPASS at CERN [82],
an Electron–Ion Collider (EIC) [42], and the Large Hadron–
Electron Collider (LHeC) [83] or Future Circular Collider
(FCC-he).

Moreover, using our GPD model as a baseline, one can
perform a global fit of all available H1 and ZEUS DVCS data
(cross section and its asymmetries) as well as the data from
other DVCS experiments with fixed proton targets (HER-
MES, JLab) (the latter will require extension of our model
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Fig. 10 The DVCS γ ∗ p → γ p cross section as a function of W for
selected values of Q2 = 2.4, 6.2, 9.9, and 18 GeV2. The NLO pQCD
predictions based on the GPD model of Eq. (1) along with the CT14 [67]
PDFs are compared to the 2003 and 2008 ZEUS data [80,81]

to the remaining GPDs). It is worth mentioning here that all
known constraints on GPDs presented in Sect. 2.1 cause the
reduction of flexibility of choosing a proper GPDs functional
from. The success of global fits existing in the literature (see
the brief discussion of these in Introduction) as well as any
future attempts to global fitting procedures strongly depends
on the choice of data sets and the functional form of the GPDs.
Therefore, any advances both in theory and experiments in
these regards are most welcome.

4 Conclusions

The DVCS process is the golden channel to access GPDs and
potentially extract them from the experimental observables.
Taking advantage of the high invariant energy available in
lepton–proton collisions at HERA, the H1 and ZEUS mea-
sured the DVCS cross section in a wide kinematic range and
studied precisely its dependence on Q2, W , and t . These
measurements covered the Bjorken x range of 10−4 < xB <

10−2, where sea quarks and gluons dominate. These data
sets provide valuable information for GPDs phenomenology
and several groups have attempted to extract CFFs and GPDs
using them.

In this work, we studied the effects of NLO Q2 evo-
lution of GPDs using a model for the singlet quark and
gluon GPDs at an initial evolution scale motivated by the
aligned-jet model of photon–hadron interactions at high ener-
gies. Quantifying the skewness and evolution effects by the
GPD-to-PDF ratios rS and rg, we found that rS increases
logarithmically slowly from rS = 1 at the input scale of
Q2 = 1.69 GeV2 to rS = 1.5–2 at Q2 = 100 GeV2; in

the gluon channel, rg ≈ 1 for the studied range of Q2. This
observation agrees with the results of the more sophisticated
model of GPDs based on conformal expansion [29].

Using the resulting GPDs, we calculated the DVCS cross
section on the proton in NLO pQCD and compared it to the
available HERA data. We found that our simple physical
model of input GPDs used in conjunction with two modern
parameterizations of proton PDFs (CJ15 and CT14) provides
good description of the H1 and ZEUS data. It demonstrates
that our GPDs model is reliable and flexible enough to use
in fitting procedures using a variety of data sets.
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