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Abstract In this paper, we make a deep analysis for the
five typical interacting holographic dark energy models with
the interaction terms Q = 3βH0ρde, Q = 3βH0ρc, Q =
3βH0(ρde +ρc), Q = 3βH0

√
ρdeρc, and Q = 3βH0

ρdeρc
ρde+ρc

,
respectively. We obtain observational constraints on these
models by using the type Ia supernova data (the Joint Light-
Curve Analysis sample), the cosmic microwave background
data (Planck 2015 distance priors), the baryon acoustic oscil-
lations data, and the direct measurement of the Hubble con-
stant. We find that the values of χ2

min for all the five models are
almost equal (around 699), indicating that the current obser-
vational data equally favor these IHDE models. In addition,
a comparison with the cases of an interaction term involving
the Hubble parameter H is also made.

1 Introduction

The accelerated expansion of the universe has been discov-
ered by the type Ia supernova observations [1,2] and further
confirmed by various other cosmological observations [3–6].
Dark energy that has negative pressure has been proposed
to explain the phenomenon of cosmic acceleration [7–15].
In the present universe, dark energy contributes about 70%
of the cosmic energy density, and thus it is now dominat-
ing the evolution of the universe. The study of dark energy
has become one of the most important issues in theoretical
physics and modern cosmology. Although enormous efforts
have been made to investigate dark energy, its nature is still
in the dark.

The primary candidate of dark energy is the so-called
“cosmological constant” (denoted as �), which is equiva-
lent to the density of vacuum energy and thus is a constant in
space and time. The cosmological constant � has a constant
equation-of-state parameter (EoS) w� ≡ p�/ρ� = −1. The
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cosmological model with � and cold dark matter (CDM) is
called the �CDM model, which can explain the current var-
ious cosmological observations quite well [16]. However,
the cosmological constant always suffers from serious theo-
retical challenges, i.e., the so-called “fine-tuning” and “cos-
mic coincidence” puzzles [17,18]. The value of the vacuum
energy density calculated by quantum field theory is higher
than the fit value of the cosmological constant by cosmolog-
ical observations by about the 120 orders of magnitude, and
so a bare cosmological constant needs to be introduced to
make an offset, leading to the fine-tuning problem. The coin-
cidence problem asks why the densities of vacuum energy
and matter are in the same order today, although their evolu-
tionary histories differ enormously. These two puzzles have
been frustrating the �CDM cosmology in theoretical aspect.

Actually, there are many other candidates for dark energy,
for which the vast majority believes that dark energy has
dynamics, often realized by some scalar field [19–29]. How-
ever, more theoretically, it is believed that the dark energy
problems are closely related to the theory of quantum grav-
ity in nature. It is actually obvious that � has a quantum
origin and at the same time it yields repulsive gravity leading
the current universe to accelerate. Therefore, it is of great
interest to explore the nature of dark energy from the per-
spective of quantum gravity. In the current circumstance that
we have no a complete theory of quantum gravity, we have
to appeal to the holographic principle of quantum gravity for
an effective theory of dark energy.

Together with the effective quantum field theory, the holo-
graphic principle leads to a model of dark energy, named
“holographic dark energy” (HDE) model, which can solve the
two theoretical puzzles of cosmological constant at the same
time to some extent [30] and can explain the current cosmo-
logical observations well (see Ref. [31] for a recent review).
By considering the holographic principle, it is required that
in a spatial region there is an upper limit for the number
of degrees of freedom involved in it, due to the gravita-
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tional effects of them (the condition of black hole forma-
tion sets such a bound) [32]. That is to say, in this theory,
the infrared (IR) cutoff (with length scale L) is related to
the ultraviolet (UV) cutoff (with energy scale kmax). Recall
that for the vacuum energy density we have the evaluation
ρvac � k4

max/(16π2). Thus, one finds that by such a theoreti-
cal consideration the density of dark energy can be decided by
some IR cutoff length scale of the universe. The holographic
reasoning gives the density of dark energy of the form [30]

ρde = 3c2M2
plL

−2, (1)

where Mpl = 1√
8πG

is the reduced Planck mass and c is a
dimensionless constant characterizing ambiguous factors in
the effective theory. In the HDE model, Li [30] argues that L
should be chosen as the future event horizon of the universe,
which can lead to a cosmic acceleration. Namely, in the HDE
model, we have

L = a(t)
∫ ∞

t

dt ′

a(t ′)
= a

∫ ∞

a

da′

Ha′2 . (2)

The HDE model has been widely studied in depth [33–52].
There are also some variants of this kind [53–62]. In the HDE
model, it is found that the parameter c solely determines the
evolution of dark energy, by solving a differential equation
(see, e.g., Ref. [30]). When c > 1, the dark energy has w >

−1 (in the case of c = 1, w will eventually evolve to get
−1); when c < 1, the EoS of dark energy w will cross the
phantom divide −1 from w → −1/3 to w → −1/3−2/(3c)
[63]. The cosmological constraints show that c is around 0.7
(see, e.g., Refs. [64–66]). A recent work [67] on comparing
popular dark energy models shows that the HDE model is
still a competitive model in the aspect of fitting the current
cosmological observations.

On the other hand, there might be some direct interac-
tion between dark energy and dark matter, which is capable
of helping resolve (or alleviate) the coincidence problem of
dark energy [68–70]. Therefore, in addition to probing the
dynamics of dark energy, another important mission for the
investigation of dark energy is to detect such a “fifth force”
between dark energy and dark matter by accurate cosmolog-
ical observations. The interacting dark energy models have
been widely studied [71–109]. The interacting models in the
framework of holographic dark energy have also been deeply
explored (see, e.g., Refs. [110–112]).

In interacting models of dark energy, one considers that
there is an energy transfer between dark energy and dark
matter in the background universe (and in a perturbed uni-
verse there is also a momentum transfer between them). In a
concrete model, a form of the energy (density) transfer rate
(denoted as Q) should be assumed. Usually, consulting from
the theories of nuclear decay and inflationary reheating, the
form of Q is assumed to be proportional to the density of dark
energy or dark matter, i.e., Q = 3βHρde or Q = 3βHρc,

where ρde and ρc are the densities of dark energy and cold
dark matter, respectively, H is the Hubble parameter, and β

denotes the dimensionless coupling between dark energy and
dark matter. Note that here 3H appears only for mathemati-
cal convenience. In our recent work [112], Feng and Zhang
explored the interacting models in the framework of holo-
graphic dark energy and made a comparison for five interact-
ing cases (Q = 3βHρde, Q = 3βHρc, Q = 3βH(ρde +ρc),
Q = 3βH

√
ρdeρc, and Q = 3βH ρdeρc

ρde+ρc
), according to the

constraint results of current observations.
However, in the research area of interacting dark energy,

there is another perspective that Q should not involve the
Hubble parameter H because the local interaction should
not depend on the global expansion of the universe [102].
According to this perspective, one should write down the
form of Q as, e.g., Q = 3βH0ρde or Q = 3βH0ρc, where
the appearance of H0 is only for a dimensional consideration.
In this paper, we will revisit the exploration of interacting
holographic dark energy models by adopting this perspective.
We will consider the five cases with Q = 3βH0ρde, Q =
3βH0ρc, Q = 3βH0(ρde + ρc), Q = 3βH0

√
ρdeρc, and

Q = 3βH0
ρdeρc

ρde+ρc
. We constrain the models by using the

current cosmological observations, and we report the results
and make an analysis for them.

This paper is organized as follows. In Sect. 2, we briefly
describe the interacting holographic dark energy model. In
Sect. 3, we present the analysis method and the observational
data used in this paper. In Sect. 4, we report the constraint
results and make a deep discussion for them. Conclusion is
given in Sect. 5.

2 The interacting model of holographic dark energy

In this section, we briefly derive the equations describing the
interacting holographic dark energy (IHDE) model for a flat
cosmology.

In the context of the flat Friedmann–Roberston–Walker
universe, the Friedmann equation can be written as

3M2
plH

2 = ρc + ρb + ρr + ρde, (3)

where 3M2
plH

2 is the critical density of the universe, ρc, ρb,
ρr, and ρde represent the energy densities of cold dark matter,
baryon, radiation, and dark energy, respectively. For conve-
nience, we define the fractional energy densities of various
components as

�c = ρc

3M2
plH

2
, �b = ρb

3M2
plH

2
,

�r = ρr

3M2
plH

2
, �de = ρde

3M2
plH

2
.

(4)
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By definition, we have

�c + �b + �r + �de = 1. (5)

In the IHDE model, there is some direct, non-gravitational
interaction between holographic dark energy and dark matter,
and thus we have the following continuity equations for the
various components:

ρ̇c + 3Hρc = Q, (6)

ρ̇de + 3H(ρde + pde) = −Q, (7)

ρ̇b + 3Hρb = 0, (8)

ρ̇r + 4Hρr = 0, (9)

where Q is the phenomenological interaction term [113–
122], denoting the energy transfer rate between dark energy
and dark matter. In this paper, we consider the following five
cases in the IHDE model:

Q1 = 3βH0ρde, (10)

Q2 = 3βH0ρc, (11)

Q3 = 3βH0(ρde + ρc), (12)

Q4 = 3βH0
√

ρdeρc, (13)

Q5 = 3βH0
ρdeρc

ρde + ρc
. (14)

As has been mentioned above, β is a dimensionless coupling
parameter describing the strength of interaction between dark
energy and dark matter.

Combining Eqs. (3) and (5)–(9), we obtain

pde = −2

3

Ḣ

H2 ρc − ρc − 1

3
ρr. (15)

Substituting Eq. (15) into Eq. (7), we obtain

2
Ḣ

H
(�de − 1) + �̇de + H(3�de + �I − 3 − �r) = 0. (16)

Here, for convenience, following Ref. [110] we define

�I = Q

3M2
plH

3
. (17)

From Eq. (1) (i.e., the definition of density of holographic
dark energy), we can get the relation

L = c

H
√

�de
. (18)

We now write the IR cutoff length scale L as the form

L = ar(t). (19)

Combining Eqs. (18) and (19), we get

r(t) = L

a
= c

Ha
√

�de
. (20)

Combining Eqs. (2) and (20), we have the relation
∫ ∞

t

dt ′

a(t ′)
= c

Ha
√

�de
. (21)

Taking the derivative of Eq. (21) with respect to t , we can get
the equation

�̇de

2�de
+ H + Ḣ

H
= H

c

√
�de. (22)

Combining Eqs. (16) and (22), we get the following two
differential equations governing the dynamical evolution of
dark energy in the IHDE model for a flat cosmology:

1

E

dE

dz
= − �de

1 + z

(
1

c

√
�de + 1

2
+ �I − 3 − �r

2�de

)
, (23)

d�de

dz
= −2(1 − �de)�de

1 + z

(
1

c

√
�de + 1

2
+ �I − �r

2(1 − �de)

)
,

(24)

where E(z) = H(z)/H0 is the dimensionless Hubble expan-
sion rate, �de(z) is the fractional density of dark energy, and
�r(z) = �r0(1 + z)4/E(z)2 is the fractional density of radi-
ation. Here we have �r0 = �m0/(1 + zeq), where �m0 =
�c0 +�b0 and zeq = 2.5 × 104�m0h2(Tcmb/2.7 K)−4, with
Tcmb = 2.7255 K. The initial conditions of these equations
are E0 = 1 and �de0 = 1 − �m0 − �r0 at z = 0.

In this paper, for convenience, we occasionally call the
cases with Q1–Q5 [described by Eqs. (10)–(14)] the IHDE1–
IHDE5 models, respectively.

3 Method and data

In a flat universe, the IHDE models have four free parameters,
c, h, �m0, and β. We will use the current observational data
to constrain the models.

We use the χ2 statistic to estimate the model parameters.
The form of χ2 function is as follows:

χ2
ξ = (ξth − ξobs)

2

σ 2
ξ

, (25)

where ξth is the theoretically predicted value for the observ-
able ξ , ξobs is the corresponding experimentally measured
value, and σξ is the standard deviation. The total χ2 is the
sum of all χ2

ξ ,

χ2 =
∑
ξ

χ2
ξ . (26)

The observational data we use in this paper include the
type Ia supernova (SN) data, the cosmic microwave back-
ground (CMB) anisotropy data, the baryon acoustic oscilla-
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tion (BAO) data, and the direct measurement of the Hubble
constant H0. Thus the total χ2 function is

χ2 = χ2
SN + χ2

CMB + χ2
BAO + χ2

H0
. (27)

Since these IHDE models have the same parameter num-
ber, we can direct compare them with their χ2 values. But
when we compare them with the �CDM model and the HDE
model (without interaction), the χ2 comparison becomes
unfair because their parameter numbers are different. We
thus employ the Akaike information criterion (AIC) [123]
and the Bayesian information criterion (BIC) [124] to do the
model comparison in this situation. By definition, we have
AIC = −2 lnLmax + 2k and BIC = −2 lnLmax + k ln N ,
where k is the number of parameters, and N is the num-
ber of data points. Since we wish to measure the difference
between models, we are more interested in the relative val-
ues of them. In this work, we choose the �CDM model as a
reference model, and then calculate 
AIC = 
χ2

min + 2
k
and 
BIC = 
χ2

min +
k ln N . A model with a lower value
of AIC or BIC is believed to be more favored by data.

3.1 Type Ia supernovae

We use the JLA compilation of type Ia supernovae [125]
in this work. It is from a joint analysis of type Ia super-
nova observations. The JLA compilation consists of 740 Ia
supernovae data points, obtained by the SDSS-II and SNLS
collaborations. The distance modulus of a SN Ia is

μ̂ = m∗
B − (MB − α × X1 + β × C), (28)

where m∗
B is the observed peak magnitude, MB is the abso-

lute magnitude, X1 is the time stretching of the light curve,
and C is the supernova color at maximum brightness. The
luminosity distance dL of a supernova in a spatially flat FRW
universe is defined as

dL(zhel, z) = 1 + zhel

H0

∫ z

0

dz′

E(z′)
, (29)

where z and zhel are the CMB frame and heliocentric red-
shifts, respectively. The χ2 function for the JLA SN obser-
vation is

χ2
SN = (μ̂ − μth)

†C−1
SN(μ̂ − μth), (30)

where CSN is the covariance matrix of the JLA SN observa-
tion andμth denotes the theoretical distance modulus, defined
as

μth = 5 log10
dL

10pc
. (31)

3.2 Cosmic microwave background

For the CMB data, we use the “Planck distance priors” from
the Planck 2015 data [126]. The distance priors contain the

shift parameter R, the “acoustic scale” �A, and the baryon
density ωb ≡ �b0h2. R and �A are defined as

R =
√

�m0H2
0 (1 + z∗)DA(z∗), (32)

�A = (1 + z∗)πDA(z∗)/rs(z∗), (33)

where �m0 is the present-day fractional energy density of
matter, DA(z∗) is the proper angular diameter distance at the
redshift of the decoupling epoch of photons z∗, and rs(z∗)
is the comoving size of the sound horizon at z∗. In a flat
universe, DA can be expressed as

DA(z) = 1

H0(1 + z)

∫ z

0

dz′

E(z′)
, (34)

and rs(z) can be expressed as

rs(z) = 1√
3

∫ 1/(1+z)

0

da

a2H(a)
√

1 + (3�b0/4�γ 0)a
, (35)

where �b0 and �γ 0 are the present-day fractional energy
densities of baryons and photons, respectively. From the mea-
surement of CMB, we have 3�b0/4�γ 0 = 31500�b0h2

(Tcmb/2.7 K)−4, where Tcmb = 2.7255 K. The fitting for-
mula of z∗ is given by [127]

z∗ = 1048[1 + 0.00124(�b0h
2)−0.738]

[1 + g1(�m0h
2)g2 ], (36)

where

g1 = 0.0783(�b0h2)−0.238

1 + 39.5(�b0h2)0.763 ,

g2 = 0.560

1 + 21.1(�b0h2)1.81 . (37)

Using the Planck TT + LowP data, the values of the three
quantities are obtained: R = 1.7488 ± 0.0074, �A =
301.76±0.14, and �bh2 = 0.02228±0.00023. The inverse
covariance matrix for them, Cov−1

CMB, can be found in Ref.
[126],

Cov−1
CMB =

⎛
⎝ 1 0.54 −0.63

0.54 1 −0.43
−0.63 −0.43 1

⎞
⎠ .

The χ2 function for CMB is thus given by

χ2
CMB = 
pi [Cov−1

CMB(pi , p j )]
p j ,


pi = pth
i − pobs

i , (38)

where p1 = �A, p2 = R, and p3 = ωb.

3.3 Baryon acoustic oscillations

The BAO data can be used to measure the angular diameter
distance DA(z) and the expansion rate of the universe H(z).
The BAO measurements can provide the ratio of the effective
distance measure DV(z) and the comoving sound horizon
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size rs(zd) for us [i.e., ξ(z) = DV (z)/rs(zd)]. The expression
of DV(z) from the spherical average is

DV(z) =
[
(1 + z)2D2

A(z)
z

H(z)

]1/3

, (39)

where DA(z) is the proper angular diameter distance [see
Eq. (34)]. rs(zd) is the comoving sound horizon [see Eq. (35)]
at the drag epoch with redshift zd. Its fitting formula is given
by [128]

zd = 1219(�m0h2)0.251

1 + 0.659(�m0h2)0.828 [1 + b1(�b0h
2)b2 ], (40)

where

b1 = 0.313(�m0h
2)−0.419[1 + 0.607(�m0h

2)0.674], (41)

b2 = 0.238(�m0h
2)0.223. (42)

We use four BAO points from the six-degree-field galaxy
survey (6dFGS) at zeff = 0.106 [129], the SDSS main galaxy
sample (MGS) at zeff = 0.15 [130], the baryon oscillation
spectroscopic survey (BOSS) “LOWZ” at zeff = 0.32 [131],
and the BOSS CMASS at zeff = 0.57 [131]. The χ2 function
for BAO is given by

χ2
BAO =

4∑
i=1

(ξobs
i − ξ th

i )2

σ 2
i

. (43)

3.4 The Hubble constant

The direct measurement of the Hubble constant we use in this
work is given by Efstathiou [132], H0 = 70.6 ± 3.3 km s−1

Mpc−1. It is a re-analysis of the Cepheid data of Riess et al.
[133]. The χ2 function of the Hubble constant measurement
is

χ2
H0

=
(
h − 0.706

0.033

)2

. (44)

4 Results and discussion

In this section, we report the fitting results of the IHDE mod-
els and discuss the implications of these results. We use the
observational data combination SN + CMB + BAO + H0 to
constrain the models (the �CDM model, the HDE model,
and the IHDE1–5 models). The fitting results are summa-
rized in Tables 1 and 2.

In Table 1, we give the values of χ2
min, 
AIC, and 
BIC

for these models. We find that, among these models, the
�CDM model is still the best one in fitting the current obser-
vational data. The �CDM model has the least number of
parameters, but it gets the smallest χ2

min value in this fit. The
HDE model has one more parameter than the �CDM model,
but it yields a greater χ2

min value, by 
χ2 ∼ 5. The IHDE
models have two more parameters than the �CDM model,
but they only yield similar χ2

min values (all around 699) to
that of �CDM. So, although the �CDM model has been
facing the severe theoretical problems, it is the simplest dark
energy theoretical model and can explain the observations
best. The HDE model indeed can provide an attractive theo-
retical scheme for avoiding the cosmological constant prob-
lems, but it performs worse than the �CDM model in fitting

Table 1 Summary of the information criteria results

Model χ2
min 
AIC 
BIC

�CDM 699.3776 0 0

HDE 704.6058 7.2282 11.8456

IHDE1 699.6552 4.2776 13.5124

IHDE2 699.8078 4.4302 13.6650

IHDE3 699.7468 4.3692 13.6040

IHDE4 699.7050 4.3274 13.5622

IHDE5 699.7330 4.3554 13.5902

Table 2 Fitting results of the models. Best-fit values with ±1σ errors are presented

Parameter HDE IHDE1 IHDE2 IHDE3 IHDE4 IHDE5

�m0 0.3242+0.0081
−0.0079 0.3148+0.0084

−0.0103 0.3130+0.0101
−0.0091 0.3133+0.0101

−0.0093 0.3135+0.0099
−0.0090 0.3119+0.0117

−0.0080

�b0 0.0522+0.0011
−0.0012 0.0501+0.0031

−0.0035 0.0500+0.0016
−0.0015 0.0498+0.0018

−0.0015 0.0499+0.0016
−0.0015 0.0497+0.0019

−0.0014

c 0.7331+0.0354
−0.0421 0.7133+0.0499

−0.0636 0.6964+0.0576
−0.0511 0.6933+0.0727

−0.0468 0.6959+0.0637
−0.0490 0.6895+0.0754

−0.0413

β . . . 0.0340+0.0180
−0.0237 0.0257+0.0183

−0.0183 0.0134+0.0111
−0.0089 0.0286+0.0247

−0.0195 0.0558+0.0587
−0.0358

h 0.6565+0.0076
−0.0068 0.6665+0.0115

−0.0090 0.6678+0.0106
−0.0113 0.6685+0.0100

−0.0118 0.6683+0.0101
−0.0115 0.6702+0.0083

−0.0135
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Fig. 1 Graphical representation of the results of 
AIC and 
BIC for
the HDE model and the IHDE models

the observational data. It seems that one should explore more
possible factors in the framework of holographic dark energy
for seeking for a better model of dark energy in the sense of
quantum gravity.

Using the information criteria to assess the models (the
�CDM model is selected as a reference model in this work),
we can see that the HDE model has 
AIC = 7.2 and

BIC = 11.8, and the IHDE1–5 models have 
AIC ∼ 4.3
and 
BIC ∼ 13.6. The comparison of HDE and IHDE shows
that, only considering the factor of number of parameters
(i.e., AIC), the IHDE performs better, but when further con-
sidering the factor of number of data points (i.e., BIC), the
HDE performs better. We show the graphical representation
of the results of 
AIC and 
BIC for the HDE model and the
IHDE models in Fig. 1. We also find that the values of χ2

min
(also, 
AIC and 
BIC) for all the five IHDE models are
almost equal, indicating that the current observational data
equally favor these IHDE models (see also Fig. 1).

In the previous study [112], Feng and Zhang investi-
gated the IHDE models with interaction terms involving the
Hubble parameter H (also Q1–Q5, but with the form like
Q = 3βHρ). We would like to make a comparison of our
results in the present paper with those in Ref. [112]. We will
occasionally use the names like Q = 3βH0ρ models and
Q = 3βHρ models to distinguish the models in this paper
and those in Ref. [112]. It was shown in Ref. [112] that, for
the Q = 3βHρ models, according to the same data sets as
this work, the IHDE5 model is the best one, the IHDE1 model
is the next best one, and the IHDE2 model is the worst one.
Namely, in the framework of holographic dark energy with
Q = 3βHρ, the Q = 3βH ρdeρc

ρde+ρc
model is most favored by

the current data, the Q = 3βHρde model is also a good model
in the sense of fitting data, and the Q = 3βHρc model is rela-
tively not favored by the current data. However, in the present

work, we find that all the IHDE models with Q = 3βH0ρ

are equally favored by the current data.
From Table 2, we find that the fitting values of c in both

HDE and IHDE cases are all around 0.7. For the HDE model,
we obtain c = 0.73 (the best-fit value); and for the IHDE
models, we obtain c = 0.69–0.71 (the best-fit values). The
c value in the IHDE models is slightly smaller than that in
the HDE model. For the coupling parameter β in the IHDE
models, we find that in all the cases β > 0 is favored at the
more than 1σ level, indicating that the decay of dark energy
into cold dark matter is favored at the more than 1σ statistical
significance by the current data. For the IHDE1, IHDE2, and
IHDE4 models, we have β ∼ 0.03 and σβ ∼ 0.02; for the
IHDE3 model, we have β ∼ 0.01 and σβ ∼ 0.01; and for
the IHDE5 model, we have β ∼ 0.06 and σβ ∼ 0.04–0.06.

In Figs. 2, 3 and 4, we show the 1σ and 2σ confidence level
contours in the �m0–c, �m0–β, and c–β planes, respectively.
The blue contours and the pink contours correspond to the
Q = 3βH0ρ models (in the present work) and the Q =
3βHρ models (in Ref. [112]), respectively. In Fig. 2, we find
that the Q = 3βH0ρ models systematically move towards
lower left, relative to the Q = 3βHρ models, in the �m0–c
plane, indicating that for the Q = 3βH0ρ models both �m0

and c are smaller. In Figs. 3 and 4, we find that, for the IHDE1
and IHDE5 cases, the β value in the Q = 3βH0ρ models,
relative to the Q = 3βHρ models, is evidently smaller. In
this work, we find that β > 0 is favored at more than 1σ

level but less than 2σ level, for all the cases. But for the
Q = 3βHρ models investigated in Ref. [112], it was shown
that the interaction between dark energy and dark matter can
be detected at more than 2σ significance; for example, for
the IHDE1 model, β > 0 is favored at the 2.3σ level, and for
the IHDE5 model, β > 0 is favored at the 2.1σ level.

From Fig. 4, we find that for all the IHDE models β and
c are in positive correlation. A positive β means that dark
energy decays into dark matter, and thus the result of β > 0
will affect the parameter estimation of c. The positive corre-
lation between β and c implies that the decay of dark energy
into dark matter will decrease the possibility of a big rip in a
finite future.

In Fig. 5, we show the one-dimensional marginalized pos-
terior distributions of β (left panel) and c (right panel) for the
HDE model and the IHDE models from the current obser-
vations. The blue dashed lines in the figure denote the cases
of β = 0 (left panel) and c = 1 (right panel). We can see
from the right panel that the c values for the IHDE models
are almost the same and slightly smaller than the c value
of the HDE model. But, although the c value of the IHDE
models is smaller, thanks to the positive β, the risk of a big
rip in the IHDE models, compared to the HDE model, is
still decreased. (Note that, in the model of holographic dark
energy, c < 1 will lead to a late-time phantom and thus a
big rip in the finite future; see, e.g., Ref. [134].) In Fig. 6,
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we show the reconstructed evolution of w (with 1–3σ errors)
for the HDE model and the IHDE models. The red dashed
line in the figure denotes the cosmological constant bound-
ary w = −1. We can clearly see that, compared to the HDE
model, the risk in the IHDE models is indeed decreased.

5 Conclusion

In this paper, we have investigated the interacting holographic
dark energy models in which the interaction term Q does not
involve the Hubble parameter H . We consider five typical
IHDE models with the interaction terms Q = 3βH0ρde, Q =
3βH0ρc, Q = 3βH0(ρde+ρc), Q = 3βH0

√
ρdeρc, and Q =

3βH0
ρdeρc

ρde+ρc
, respectively. We use the current observational

data, including SN (JLA) data, CMB (Planck 2015 distance
priors) data, BAO data, and H0 measurement, to constrain
these models.

We find that the current observational data equally favor
these IHDE models. We also find that in all the cases the cou-
pling parameter β > 0 is favored at more than 1σ level (but
less than 2σ level), indicating that the current observations
slightly favor the decay of dark energy into dark matter in
the current framework of IHDE (with Q excluding H ).

We have made a comparison of our results in the present
work with those in the previous work [112] in which the
IHDE models with Q involving H are investigated. In Ref.
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[112], it was shown that the IHDE5 (Q = 3βH ρdeρc
ρde+ρc

) model
and the IHDE1 (Q = 3βHρde) model are most favored by
the current data, and the IHDE2 (Q = 3βHρc) model is
relatively not favored by the current data; and, in some cases,
the coupling of β > 0 can be detected at more than 2σ

level (e.g., 2.3σ in the IHDE1 model and 2.1σ in the IHDE5
model). The comparison is shown in Figs. 2, 3 and 4. We also
show that for all the cases β and c are in positive correlation,
and as a result in the IHDE models the risk of a big rip is
decreased, compared to the HDE model.
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