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Abstract In the present work we study a concrete model
of scalar—tensor theory of gravity characterized by two free
parameters, and we compare its predictions to observational
data and constraints coming from supernovae, solar system
tests and the stability of cosmic structures. First an exact
analytical solution at the background level is obtained. Using
that solution the expression for the turnaround radius is com-
puted. Finally we show graphically how current data and
limits put bounds on the parameters of the model at hand.

1 Introduction

In the end of the 1990s the most dramatic discoveries in parti-
cle physics and cosmology were on the one hand the neutrino
oscillations and on the other hand the current acceleration of
the Universe [1,2]. Nowadays many well-established obser-
vational data from astrophysics and cosmology show that we
live in a spatially flat Universe that expands in an accelerat-
ing rate [3]. Dark energy, the fluid component that dominates
the evolution of the Universe and drives the current cosmic
acceleration, is one of the biggest challenges of modern cos-
mology, as its nature and origin still remain a mystery. The
ACDM model with a constant equation of state parameter
w = —1 is the most economical one, in excellent agreement
with current data. However, given the cosmological constant
problems other alternatives with an evolving equation of state
have been studied in the literature over the years. In general all
dark energy models fall into two broad classes, namely on the
one hand dynamical dark energy models, in which one has to
introduce a new dynamical field assuming Einstein’s general
relativity (GR) [4-7], and on the other hand geometrical dark
energy models, in which one assumes an alternative theory of
gravity that modifies GR at cosmological scales. In the latter
category we find the well-known examples of f(R) theo-
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ries of gravity [8—11], the Dvali-Gabadadze—Porrati brane
model [12] or scalar—tensor theories of gravity (ST), with
the Brans—Dicke [13] model being the archetypal one and
recently the scale dependent approach previously applied to
certain black holes problems [14—18].

Until a few years ago the observational data used to
constrain dark energy models were mainly the temperature
anisotropies of the cosmic microwave background, galaxy
surveys and supernovae data. However, recently a new poten-
tially local check was proposed in [19] based on two facts,
namely: (a) the motion of a test particle depends on the
interplay between the initial momentum of the Big-Bang,
the attractive nature of gravity and the repulsive nature of
dark energy, and (b) for a given mass of a spherical structure
there is a maximum radius, called the turnaround point Rt,
beyond which a test particle cannot stay bound due to the
antigravity effect of dark energy. This is very similar to what
happens in neutron stars where the mass-to-radius relation
depends crucially on the poorly known equation of state [20],
and observed pulsars with a mass at two solar masses rule
out equations-of-state that predict a lower higher value for
the star mass [21]. Then in [22] the authors considered dark
energy models with a constant equation-of-state w, and soon
after that the idea was further pursued in subsequent work
applied to generic dark anergy models [23], Brans—Dicke the-
ory [24] and DGP brane model [25]. Unfortunately, in novel
cosmologies characterized by non-standard Friedmann-like
equations it is highly non-trivial to see the implications of the
prediction of the models regarding the maximum turnaround
point, although a formula for Rt may exist.

ST theories of gravity are straight-forward generalizations
and in fact the simplest extension of GR. Given that the sta-
bility of cosmic structures based on the maximum turnaround
point has not adequately analyzed yet, in the present work we
ask ourselves the question what the stability of cosmic struc-
tures together with other observational data and limits can tell
us about cosmologies based on ST theories of gravity. The
goal of this work is two-fold. First we present an exact analyt-
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ical cosmological solution of a ST theory of gravity, which is
always desirable, and then we compute the turnaround radius
of the model. Our work is organized as follows: After this
introduction we present the model, the cosmological equa-
tions at the background level and the exact analytical solution
in section two. In the third section we compute the expression
for the turnaround radius, and in Sect. 4 we use current data to
constrain the parameters of the model. Finally we conclude
our work in the fifth section. We use natural units such that
¢ = 871G = h = 1 and the metric signature is (—, +, +, +).

2 The model, the cosmological equations and the exact
solution

We start by defining the model

3 [ asv[For - ga,000

“2V(@)] + S (M

where Sp, is the action of matter fields, g is the determi-
nant of the metric g,,, R is the Ricci scalar, ¢ is the scalar
field and V (¢) is the scalar self-interaction potential. The
dimensionless function F(¢) describes the variation of the
effective gravitational constant. This is a generalization of
quintessence models and it is characterized not only by the
scalar potential but also by F(¢). Considering a flat FRW
ansatz for the metric

Slguv, 91 =

ds? = —d® + a(r)? [dr2 + r2(d6? + sin? 9d<p2)] )

with ¢ being the cosmic time and a(¢) being the scale factor,
and assuming no interaction between the scalar field and the
non-relativistic matter with pressure p = 0 and energy den-
sity p, one obtains the following cosmological equation for
the background [26,27]:

1. .
3FH?>=p + §¢2 +V —3HF, 3)
—2FH=p+¢>*+F—HF, )
p+3Hp =0, (%)
¢+3Hp =3F4(H+H>) —Vy, (6)

where H = a/a is the Hubble parameter, the dot denotes
differentiation with respect to cosmic time, while , ¢ denotes
differentiation with respect to the scalar field. Clearly, when
F(¢) = 1 we recover the standard equations valid in GR.
Note that there are four equations in total, but only three of
them are independent. In addition, power-law solutions are
very common in cosmological models based on GR in various
contexts. Besides the trivial examples of the radiation and the
matter dominated era, one can mention the well-known cases
of the power-law inflation [28] and the study of cosmological
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scaling solutions [29]. Thus, we seek a power-law solution
of the form

’).
F =1l — 7
@) <¢ )
@
\% — 8
() = (¢ ®)
P
a(l)—ao< ) )
0]
(1) = o (’70) , (10)

where the subindex 0 denotes present values and ag is defined
at the present time as unity, and p > 1 corresponds to accel-
erating solutions. Plugging everything into the equations one
can check that all of them are satisfied provided that

oo P , (11)
3p—2
3
=2p—1, 12
m=2p (12)

b5 = 18 — 1(6p® —Tp + 2)], (13)

8 [V

Gp—22|"°

3ap? = (Vo + po)tg +3prG3p —2) + %4:3(31: -2)?,
(14)

8ph = 4poty + ¢y (3p —2)> +4r(12p° — 11p +2),

(15)

and it is easy to verify that combining any two of the last
three equation we obtain the third. Therefore, we can choose
P, X to be the free parameters of the model, while ¢g, Vj are
determined by the previous expressions. This is our first main
result in this work. We remark in passing that exact analytical
solutions have been obtained in [30], but without matter.

Next the behavior of the set of fields {¢, F', V'} as functions
of the red-shift z = —1+1/a is investigated. We combine the
aforementioned fields to obtain the dimensionless functions
involved, namely

d@=+277, (16)
Fz)=r(1+2)°77, (17)
V() =(1+2)7, (18)
where ¢(z) = ¢(2)/do, V(z) = V(z)/ Vo, whereas F(z)

is dimensionless by definition. Note that in our scalar—tensor
model, the potential V (z) does not depend on the free param-
eter p. We plot #(2), F(2) and V(z) as functions of red-shift
for different values of p. The three quantities are shown in
Figs. 1, 2 and 3, respectively.
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Fig. 1 Dimensionless function (]5(1) versus red-shift z for different val-
ues of the parameter p. The curves correspond to: p = 1 (solid black
line), p = 1.25 (short dashed blue line), p = 1.5 (dotted red line),
p = 1.75 (dotted dashed green line) and p = 2 (long dashed orange
line)

F(z)

Fig. 2 Dimensionless function F(z) versus red-shift z for different
values of the parameter p. The curves correspond to: p = 1 (solid
black line), p = 1.25 (short dashed blue line), p = 1.5 (dotted red
line), p = 1.75 (dotted dashed green line) and p = 2 (long dashed
orange line). Note that the vertical axis is scaled to 1 : 1072
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Fig. 3 Dimensionless function V(z) versus red-shift z

3 The maximum turnaround radius in the ST model

To study cosmic structures we need to study the evolution
of the metric scalar perturbations ¥ (7, xH, @ (n, x') defined
by [31-33]

dS2 _ a(n)2 [_(1 + 2¢)dr)2 + (1 - ZlP)Si./dxidxj] (19)

with dn = dr/a being the conformal time. We also need the
conservation equation for the peculiar velocity du’ [31-33]

' + HSU = —9; D (20)

where H is the conformal Hubble parameter. Following [25]
we consider a shell of backreactionless cold dark matter fluid
moving just outside the structure. The physical spatial coor-
dinate corresponding to the cold dark matter perturbation is
r' =a(mx'. 1)
We can now obtain the velocity as well as the acceleration of
this element as follows: First the velocity is computed to be
drt 1 drf sl 4 Hx 2
— =———=4u x',

dr a(n) dn

while taking the derivative once more we obtain the acceler-
ation

d?r _H

5T = rlo;d. (23)

In a non-standard cosmology the Poisson equation for sub-
horizon scales becomes [25]

V2D = 47 Gesedp (24)

where 8p is the perturbation of the matter energy density, and
G ft 1s the effective Newton constant which is different from
G . In the last step we approximate the whole structure as
a point mass located at r = 0, and the source in the Poisson
equation reads

sp = M3 (r) (25)

with M being the mass of the structure. Then the Poisson
equation becomes

V2P = 41 G M8 (a(n)R) (26)

and therefore the solution reads

_ GegM
Y

b = (27)
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The maximum turnaround radius by definition is computed
by requiring that the acceleration vanishes at that point. Thus
we obtain [25]

Geft M
ARy + 952 =0, (28)
T
which implies
Geff 1/3
Rr=|—M]| . 29
! [|H| } @

We see that the maximum turnaround point depends on the
interplay between the background evolution H and the effec-
tive Newton constant Gegr. In scalar—tensor theories of gravity
the effective Newton constant is given by [26,27]

2
Gt _ l 2F+4F45 N l 30)
Gy 2F+3Ffp N

F 9

assuming that F > F, 2 (in the end we check that it indeed
holds), while constramts from solar system tests require that
[26]

wy! = Fyld <4x107% 31)
Given the exact solution we obtained in the previous section

we can now compute both H and Geff, and we finally obtain
for Rt the expression

Rp = (p GNM> 32)

A H?

where we have evaluated all the time-dependent quantities
at today since the cosmic structures we consider here are
nearby structures and thus they correspond to z >~ 0. This is
our second main result in the present article.

We recall at this point that in [22,23] it was found that,
for the ACDM model, where w = —1, the turnaround point
is given by

Gy M i
Rrs= (0] . (33)
£24,0H;

Therefore to compare with the ACDM model we write the
previous formula equivalently as follows:

o 1/3
P A’°> . (34)

Rt = Rr g (

Therefore we see that the ST cosmological model studied
here agrees with the ACDM model when the ratio x =

p/a~ 1.

@ Springer
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Fig. 4 Distance modulus versus red-shift for ACDM (dashed curve in
black) and for the ST model for p = 1.25 (solid curve in magenta). The
supernovae data are from the Union 2 compilation

4 Comparison of the model with data

Finally, in this section we briefly compare the ST model con-
sidered here against observational data from: (a) supernovae
data, (b) solar system tests, and (c) stability of cosmic struc-
tures based on the maximum turnaround radius obtained in
the previous section.

4.1 Supernovae data

The Hubble parameter as a function of the red-shift z =
—1 4 1/a is computed to be

H() = Ho(1 + )7, (35)

while the luminosity distance is given by [34]

dp(z) =1+ Z)/ dx (36)

H(x)

Finally the supernovae distance modulus ;& = m — M, where
M is the absolute and m the apparent magnitude, is given by
[35,36]

d
11(z) = 25 + Slog,q [ 151;?} . 37)

In Fig. 4 we show the distance modulus as a function of
the red-shift both for ACDM and for the ST model studied
here for p = 1.25. Observational data from the Union 2
compilation [37] are shown too.

4.2 Solar system tests

As already mentioned, constraints from solar system tests
require that [26]
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Fig. 5 The constraint from solar system tests for p = 1.25and £2,, 0 =
0.27
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Fig. 6 Turnaroundradius Rt (in Mpc) versus mass M (in solar masses)
for different values of the parameter x = p /X for ACDM (black), for
dark energy with w = —2.3 (blue) and for x = 0.3, 1, 2 from bottom
to top

0)61 = F’¢|% <4 x 10_4. (38)

Given that F(¢) = A(¢/¢po)* and using Eq. (15) we obtain
the following expression for w, 1,

1 422(3p —2)2
), =
O 7 8pir— 12p22,.0 — 41(12p2 — 11p +2)

(39)

where §2,, o is today’s value of the normalized density of
matter. Figure 5 shows w ! as a function of 2 for Lm0 =
0.27 and p = 1.25. It is easy to check that the constraint
from solar system tests requires that A < 0.013.

4.3 Stability of cosmic structures

We recall that in [22,23] it was shown that in dark energy
models with a constant equation-of-state parameter w in GR,
the stability of cosmic structures requires that w > —2.3. In
Fig. 6 we show the prediction for the maximum turnaround
radius: (a) for the ACDM model (solid black line), (b) for

dark energy with w = —2.3 (short dashed blue line), (c)
for scalar—tensor cosmology for three different values of the
parameter x, namely, x = 0.3 (dotted red line), x = 1 (dotted
dashed green line) and x = 2 (long dashed orange line).
Therefore, our main result implies that the ratio x = p/A
must satisfy the lower bound

(40)

5 Conclusions

In this article we have analyzed a concrete model of scalar—
tensor theory of gravity and we have obtained an exact power-
law analytical solution (with matter included). Given that
solution, the expansion history as well as the effective New-
ton constant can be computed explicitly, and the maximum
turnaround radius can be computed in terms of the two free
parameters of the model. Finally we have used several current
observational data and constraints coming from supernovae,
solar system tests and stability of cosmic structures to put
bounds on the parameters of the model.
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