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Abstract Different black hole solutions of the coupled
Einstein–Yang–Mills equations have been well known for
a long time. They have attracted much attention from math-
ematicians and physicists since their discovery. In this work,
we analyze black holes associated with the gauge Lorentz
group. In particular, we study solutions which identify the
gauge connection with the spin connection. This ansatz
allows one to find exact solutions to the complete system
of equations. By using this procedure, we show the equiv-
alence between the Yang–Mills–Lorentz model in curved
space-time and a particular set of extended gravitational the-
ories.

1 Introduction

The dynamical interacting system of equations related to
non-abelian gauge theories defined on a curved space-time
is known as Einstein–Yang–Mills (EYM) theory. Thus, this
theory describes the phenomenology of Yang–Mills fields
[1] interacting with the gravitational attraction, such as the
electro-weak model or the strong nuclear force associated
with quantum chromodynamics. The EYM model constitutes
a paradigmatic example of the non-linear interactions related
to gravitational phenomenology. Indeed, the evolution of a
spherical symmetric system obeying these equations can be
very rich. Its dynamics is opposite to the one predicted by
other models, such as the ones provided by the Einstein–
Maxwell (EM) equations, whose static behaviour is enforced
by a version of the Birkhoff theorem.

For instance, in the four-dimensional space-time, the
EYM equations associated with the gauge group SU (2) sup-
port a discrete family of static self-gravitating solitonic solu-
tions, found by Bartnik and McKinnon [2]. There are also
hairy black hole (BH) solutions, as was shown by Bizon
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[3–5]. They are known as colored black holes and can be
labeled by the number of nodes of the exterior Yang–Mills
field configuration. Although the Yang–Mills fields do not
vanish completely outside the horizon, these solutions are
characterized by the absence of a global charge. This feature
is opposite to the one predicted by the standard BH unique-
ness theorems related to the EM equations, whose solutions
can be classified solely with the values of the mass, (electric
and/or magnetic) charge and angular momentum evaluated
at infinity. In any case, the EYM model also supports the
Reissner–Nordström BH as an embedded abelian solution
with global electric and/or magnetic charge [6]. It is also
interesting to mention that there are a larger variety of solu-
tions associated with different generalizations of the EYM
equations extended with dilaton fields, higher curvature cor-
rections, Higgs fields, merons or cosmological constants (see
[7,8] and the references therein).

In this work, we are interested in finding solutions of the
EYM equations associated with the Lorentz group as gauge
group. The main motivation for considering such a gauge
symmetry is offered by the spin connection dynamics. This
connection is introduced for a consistent description of spinor
fields defined on curved space-times. Although general coor-
dinate transformations do not have spinor representations [9],
they can be described by the representations associated with
the Lorentz group. In addition, they can be used to define
alternative theories of gravity [10].

We shall impose the requirement that the spin connection
is dynamical and its evolution is determined by the Yang–
Mills action related to the SO(1, n − 1) symmetry, where n
is the number of dimensions of the space-time. In order to
complete the EYM equations, we shall assume that gravita-
tion is described by the metric of a Lorentzian manifold. We
shall find vacuum analytic solutions to the EYM system by
choosing a particular ansatz, which will relate the spin con-
nection to the gauge connection. Therefore, this assumption
provides additional gravitational degrees of freedom besides
the ones given by the standard case, so that all the BH con-
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figurations found by this approach are not associated with an
internal symmetry group and they do not carry any classical
hair (i.e. they constitute a class of non-hairy BH solutions in
a pure gravity model).

This work is organized in the following way. First, in
Sect. 2, we present basic features of the EYM model. In
Sect. 3, we show the general results based on the Lorentz
group taking as a starting point the spin connection, which
yields exact solutions to the EYM equations in vacuum. The
expressions of the field for the Schwarzschild–de Sitter met-
ric in a four-dimensional space-time are shown in Sect. 4,
where we also remark some properties of particular the solu-
tions in higher-dimensional space-times. Finally, we classify
the Yang–Mills field configurations through Carmeli method
in Sect. 5, and we present the conclusions obtained from our
analysis in Sect. 6.

2 EYM equations associated with the Lorentz group

The dynamics of a non-abelian gauge theory defined on a
four-dimensional Lorentzian manifold is described by the
following EYM action:

S = − 1

16π

∫
d4x

√−g R

+α

∫
d4x

√−g tr(FμνF
μν), (1)

where Aμ = Aa
μ T a , [Aμ, Aν] = i f abc Aa

μ Ab
ν T

c, and
Fμν = Fa

μν T
a , Fa

μν = ∂μAa
ν − ∂ν Aa

μ + f abc Ab
μ Ac

ν . Unless
otherwise specified, we will use Planck units throughout this
work (G = c = h̄ = 1), the signature (+,−,−,−) is
used for the metric tensor, and Greek letters denote covariant
indices, whereas Latin letters stand for Lorentzian indices.
The above action is called pure EYM, since it is related to its
simplest form, without any additional field or matter content
(see [8] for more complex systems).

The EYM equations can be derived from this action by
performing variations with respect to the gauge connection:
(
Dμ Fμν

)a = 0, (2)

and the metric tensor:

Rμν − R

2
gμν = 8πTμν, (3)

where the energy-momentum tensor associated with the
Yang–Mills field configuration is given by

Tμν = 4α tr

(
FμρF

ρ
ν − 1

4
gμνFλρF

λρ

)
. (4)

As we have commented, the first non-abelian solution with
matter fields was found numerically by Bartnik and McK-
innon for the case of a four-dimensional space-time and a

SU (2) gauge group [2]. We are interested in solving the
above system of equations when the gauge symmetry is asso-
ciated with the Lorentz group SO(1, 3). In this case, we can
write the gauge connection as Aμ = Aab

μ Jab, where the
generators of the gauge group Jab, can be written in terms of
the Dirac gamma matrices: Jab = i[γa, γb]/8. In such a case,
it is straightforward to deduce the commutative relations of
the Lorentz generators:

[Jab, Jcd ] = i

2
(ηad Jbc + ηcb Jad − ηdb Jac − ηac Jbd) .

(5)

3 EYM-Lorentz ansatz

The above set of equations constitutes a complicated system
involving a large number of degrees of freedom, which inter-
act not only under the regular gravitational attraction but also
under the non-abelian gauge interaction. It is not simple to
find its solutions. We propose the following ansatz, which
identifies the gauge connection with the spin connection:

Aab
μ = ea λ e

bρ 
λ
ρμ + ea λ ∂μ ebλ, (6)

with ea λ the tetrad field [11,12], that is defined through the
metric tensor gμν = ea μ eb ν ηab; and 
λ

ρμ is the affine
connection of a semi-Riemannian manifold V4.

By using the antisymmetric property of the gauge connec-
tion with respect to the Lorentz indices: Aab

μ = − Aba
μ,

we can write the field strength tensor as

Fab
μν = ∂μA

ab
ν − ∂ν A

ab
μ

+ Aa
cμ Acb

ν − Aa
cν Acb

μ. (7)

Then, by taking into account the orthogonal property of the
tetrad field ea λ ea ρ = δλ

ρ , the field strength tensor takes the
form [13,14]

Fab
μν = ea λ e

bρ Rλ
ρμν, (8)

where Rλ
ρμν are the components of the Riemann tensor.

Thus, Fμν = ea λ ebρ Rλ
ρμν Jab represents a gauge cur-

vature and we can express the pure EYM equations (2) and
(3) in terms of geometrical quantities. On the one hand, Eq.
(2) can be written as
(
Dμ Fμν

)ab = ea λ e
b

ρ ∇μ Rμνλρ = 0, (9)

whereas, on the other hand, the standard Einstein equation
given by Eq. (3) has the following gravitational correction to
the Einstein tensor:

Tμν = 2α

(
Rσω

μρRσων
ρ − 1

4
gμνRσωλρR

σωλρ

)
, (10)

which replaces Eq. (4).
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4 Solutions of the EYM-Lorentz ansatz

The EYM-Lorentz ansatz described above reduces the prob-
lem to a pure gravitational system and simplifies the search
for particular solutions. According to the second Bianchi
identity for a semi-Riemannian manifold, the components
of the Riemann tensor satisfy

∇[μ Rλρ] σν = 0. (11)

By contracting this expression with the metric tensor:

∇[μ Rλρ] μν = 0. (12)

By using the symmetries of the Riemann tensor:

∇μ Rμν
λρ + ∇ρ Rλ

ν − ∇λ Rρ
ν = 0, (13)

with R ν
λ the components of the Ricci tensor. Then, taking

into account (9), we finally obtain

∇[λRρ]ν = 0. (14)

The integrability condition R[μν|λ| σ Rρ]σ = 0 for this
expression is known to have as only solutions [15]:

Rμν = b gμν, (15)

where b is a constant.
First, we shall analyze the case of a space-time charac-

terized by four dimensions. In such a case, Tμν is trace-free
and the solutions are scalar-flat. From the expression of this
tensor in terms of the Weyl and Ricci tensors, the Einstein
equations are

Rμν − 16πα CμλνρR
λρ = 0, (16)

where Cμλνρ = Rμλνρ − (
gμ[νRρ]λ − gλ[νRρ]μ

)
+ Rgμ[νgρ]λ/3.

Therefore, by using (15) and the condition Cμλν
λ = 0,

the only solutions are vacuum solutions defined by Rμν = 0
[16,17]. Hence, for empty space, Tμν = 0 and all the equa-
tions are satisfied for well-known solutions [18], such as the
Schwarzschild or Kerr metric. We can also add a cosmolog-
ical constant in the Lagrangian and generalize the standard
solutions to de Sitter or anti-de Sitter asymptotic space-times,
depending on the sign of such a constant. Note that these solu-
tions are generally supported for a large variety of different
field models and gravitational theories [19,20].

It is worthwhile to stress that these conclusions contrast
with the ones given by other classical BH solutions in higher
derivative gravity, where the approach assumes the require-
ment of the metric formalism and it leads to a different system
of variational equations [21]. Indeed, whereas the gauge and
the Palatini formalisms are found to be equivalent by requir-
ing the presence of a metric-compatible connection [22], it
is shown that the latter also implies the metric formalism but
the opposite is not true for theories endowed with this type
of higher order curvature corrections in the Lagrangian [23].

Then it is expected that alternative vacuum solutions may
also arise in the framework of the higher derivative gravity
[24].

On the other hand, although the EYM theory typi-
cally involves gauging internal degrees of freedom associ-
ated with fields coupled to gravity, our solutions are also
compatible with other gauge gravitational theories, such
as Poincaré Gauge Gravity (PGG) [25–27]. This theory
is based on the Poincaré group, which is also known as
the inhomogeneous Lorentz group. Within this model, the
external degrees of freedom (rotations and translations) are
gauged and the connection is defined by Aμ = ea μ Pa +(
ea λ ebρ 
λ

ρμ + ea λ ∂μ ebλ
)
Jab, where Pa are the genera-

tors of the translation group. The equations corresponding to
the Lagrangian (1) in PGG are the same than the previous
system of equations [22]. However, PGG is less constrained
than a purely quadratic YM field strength.

Once the metric solution is fixed by the particular bound-
ary conditions, the EYM-Lorentz ansatz defined by Eq. (6)
determines the solution of the Yang–Mills field configura-
tion. In order to characterize such a configuration, it is inter-
esting to establish the form of the electric Eμ = Fμν uν ,
and magnetic field Bμ = ∗Fμν uν , as measured by an
observer moving with four-velocity uν . In particular, for the
Schwarzschild–de Sitter solution, one may find the follow-
ing electric and magnetic projections of the Yang–Mills field
strength tensor in the rest frame of reference [28]:

Er =
4M
r3 + 2�

3√
1 − 2M

r − �
3 r2

J01, (17)

Eθ = − 2r

(
M

r3 − �

3

)
J02, (18)

Eφ = − 2r sin θ

(
M

r3 − �

3

)
J03, (19)

Br =
4M
r3 + 2�

3√
1 − 2M

r − �
3 r2

J23, (20)

Bθ = 2r

(
M

r3 − �

3

)
J13, (21)

Bφ = − 2r sin θ

(
M

r3 − �

3

)
J12. (22)

It is straightforward to check that the above solution ver-
ifies

tr
( �E2 + �B2

)
= 0 (23)

and

tr
( �E · �B

)
= 0. (24)

It is also interesting to remark that the family of solu-
tions provided by the EYM-Lorentz ansatz is not restricted to
the signature (+,−,−,−). It is also valid for the Euclidean
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case (+,+,+,+). For the latter signature, the corresponding
gauge group is SO (4) and the associated generators satisfy
the following commutation relations:

[Jab, Jcd ] = i

2
(δad Jbc + δcb Jad − δdb Jac − δac Jbd) .

(25)

The above solutions can also be generalized to a space-
time with an arbitrarily higher number of dimensions. For
the n-dimensional case, the assumption of the ansatz (6) in
the EYM equations (2), (3) and (4) is equivalent to work with
the following gravitational action in the Palatini formalism:

S =
∫

dnx
√−g

{
− 1

16π
R + 2ñ/2−3αRλρμνR

λρμν

}
,

(26)

where ñ = n and ñ = n − 1 for even and odd n.
In such a case, the quadratic Yang–Mills correction takes

the form of the one associated with a cosmological constant,
in a similar way to certain solutions of modified gravity theo-
ries, as the Boulware–Deser solution in Gauss–Bonnet grav-
ity [29]. For instance, for a de Sitter geometry, the Riemann
curvature tensor is given by

Rλρμν = 2�

(n − 2)(n − 3)

(
gλμ gρν − gλν gρμ

)
. (27)

In this case, the geometrical correction associated with the
Yang–Mills configuration given by Eq. (10) takes the form

Tμν = − 2ñ/2α �2 (n − 1) (n − 4)

(n − 2)2 (n − 3)2 gμν. (28)

Therefore, Tμν = 0 is a particular result associated with
the four-dimensional space-time.

On the other hand, the equivalence between the Yang–
Mills–Lorentz model in curved space-time and a pure gravi-
tational theory is not restricted to Einstein gravity. For exam-
ple, in the five-dimensional case, we can study the gravita-
tional model defined by the following action in the Palatini
formalism:

SG =
∫

d5x
√−g

{
α0 + α1R + α2R

2

− 4α3RμνR
μν + α4RλρμνR

λρμν
}
. (29)

The above expression includes not only the cosmologi-
cal constant (proportional to α0) and the Einstein–Hilbert
term (proportional to α1), but also quadratic contributions
of the curvature tensor (proportional to α2, α3 and α4). In
this case, the addition of the Yang–Mills action under the
restriction of the Lorentz ansatz (6) is equivalent to work
with the same gravitational model given by Eq. (29) with the
following redefinition of α4:

αYM
4 = α4 + α

2
. (30)

It is particularly interesting to consider the model with
α2 = α3 = αYM

4 . In such a case, the higher order contri-
bution in the equivalent gravitational system is proportional
to the Gauss–Bonnet term. As is well known, this latter term
reduces to a topological surface contribution for n = 4, but
it is dynamical for n ≥ 5. In particular, according to the
Boulware–Deser solution, the metric associated with the cor-
responding equations takes the simple form

ds2 = A2(r) dt2 − dr2

A2(r)
− r2d�2

3, (31)

where d�2
3 is the metric of a unitary three-sphere, and A2(r)

is given by

A2(r) = 1 + r2

4ϒ
+ σ

r2

4ϒ

√
1 + 16ϒM

r4 + 4ϒ�

3
, (32)

with α0/α1 = −2�, α2/α1 = ϒ , and σ = 1 or σ = −1.
Therefore, from the EYM point of view, the Yang–Mills field
contribution modifies the metric solution in a very non-trivial
way. We can study the limit ϒ → 0 in the Boulware–Deser
metric. It is interesting to note that it does not necessarily
mean a weak coupling regime of the EYM interaction, since
αYM

4 → 0 does not imply α → 0. It is convenient to distin-
guish between the branchσ = −1 andσ = 1. The first choice
recovers the Schwarzschild–de Sitter solution for ϒ = 0:

A2
σ=−1(r) � 1 − 2M

r2

(
1 − 2�ϒ

3

)

− �

6

(
1 − �ϒ

3

)
r2 + 8M2ϒ

r6 . (33)

When this metric is deduced from the equations corre-
sponding to a pure gravitational theory, the new contribu-
tions from finite values of ϒ are usually interpreted as short
distance corrections of high-curvature terms in the Einstein–
Hilbert action. From the EYM model point of view, these
corrections originate with the Yang–Mills contribution inter-
acting with the gravitational attraction.

On the other hand, the metric solution takes the following
form in the EYM weak coupling limit for the value σ = 1:

A2
σ=1(r) � 1 + 2M

r2

(
1 − 2�ϒ

3

)

+ �

6

(
1 + 3

�ϒ
− �ϒ

3

)
r2 − 8M2ϒ

r6 . (34)

The corresponding geometry does not recover the
Schwarzschild–de Sitter limit when ϒ → 0, and it shows
ghost instabilities.
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5 Carmeli classification of the Yang–Mills field
configurations

In the same way that the Petrov classification of the gravita-
tional field describes the possible algebraic symmetries of the
Weyl tensor through the problem of finding their eigenvalues
and eigenbivectors [30], the Carmeli classification analyzes
the symmetries of Yang–Mills fields configurations [31].

Let ξABCD be the gauge invariant spinor defined by
ξABCD = 1

4ε Ė Ḟε Ġ Ḣ tr
(
f AĖ B Ḟ fCĠDḢ

)
, with f AḂC Ḋ =

τ
μ

AḂ
τ ν

C Ḋ
Fμν the spinor equivalent to the Yang–Mills strength

field tensor written in terms of the generalizations of the
unit and Pauli matrices, which establish the correspon-
dence between spinors and tensors. Let φAB be a sym-
metrical spinor. Then, by studying the eigenspinor equation
ξAB

CD φCD = λ φAB , we can classify Yang–Mills field con-
figurations in a systematic way.

This analysis can be applied to any of the EYM-Lorentz
solutions but, for simplicity, we will illustrate the computa-
tion for the EYM solution related to the Schwarzschild metric
in four dimensions. We find the following invariants of the
Yang–Mills field:

P = ξAB
AB = 3M2

4r6 , (35)

G = ηABCD ηABCD = 3M4

32r12 , (36)

H = ηAB
CD ηCD

EF ηEF
AB = 3M6

256r18 , (37)

S = ξABCD ξ ABCD = 9M4

32r12 , (38)

F = ξAB
CD ξCD

EF ξEF
AB = 33M6

256r18 , (39)

where ηABCD is the totally symmetric spinor ξ(ABCD),
and ξABCD satisfies the equalities ξABCD = ξBACD =
ξABDC = ξCDAB . Then the characteristic polynomial
p(λ′) = λ′3 − Gλ′/2 − H/3 associated with eigenspinor
equation of ηABCD provides directly the eigenvalues of the
corresponding ξABCD . By taking λ = λ′ + P/3, we obtain
the following results:

λ1 = M2

2r6 , (40)

λ2,3 = M2

8r6 . (41)

Thus, there are two different eigenvalues: the first one is
simple, whereas the second one is double. There are three dis-
tinct eigenspinors and the corresponding Yang–Mills field is
of type DP , which is associated with the Yang–Mills config-
urations of isolated massive objects.

6 Conclusions

In this work, we have studied the EYM theory associated
with a SO(1, n−1) gauge symmetry, where n is the number
of dimensions associated with the space-time. In particular,
we have derived analytical expressions for a large variety
of BH solutions. For this analysis, we have used an ansatz
that identifies the gauge connection with the spin connec-
tion. We have shown that this ansatz allows one to interpret
different known metric solutions corresponding to pure grav-
itational systems, in terms of equivalent EYM models. We
have demonstrated that this analytical method can also be
applied successfully to the study of fundamental BH config-
urations. Such configurations usually differ from the given
by the standard case, so that they are useful to improve the
understanding of the resulting approach by showing the sim-
ilarities and differences with respect to the present in other
quadratic gravity theories (see [32] and the references therein
for a recent overview and additional BH solutions).

For the analysis of the corresponding Yang–Mills model
with Lorentz gauge symmetry in curved space-time, we have
used the appropriate procedure in order to solve the equiva-
lent gravitational equations, which governs the dynamics of
pure gravitational systems associated with the proper gravita-
tional theory. In particular, we have derived the solutions for
the Schwarzschild–de Sitter geometry in a four-dimensional
space-time and for the Boulware–Deser metric in the five-
dimensional case. For these solutions, we have specified
the corresponding pure gravitational theories. The algebraic
symmetries associated with the Yang–Mills configuration
related to a given solution can be classified by following the
Carmeli method. We have explicitly shown the equivalence
with the Petrov classification for the Schwarzschild metric
in four dimensions.

In addition, numerical results obtained for these gravi-
tational systems can be extrapolated to the EYM-Lorentz
model by following our prescription. Through the gravita-
tional analogy, one can also deduce the stability properties
of the EYM solutions or the gravitational collapse associated
with such a system. Here, we have limited the EYM-Lorentz
ansatz to the analysis of spherical and static BH configura-
tions, but it can be used to study other types of solutions.
For example, by using the same ansatz, gravitational plane
waves in modified theories of gravity may be interpreted as
EYM-Lorentz waves. We consider that all these ideas deserve
further investigation in future work.
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