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Abstract The strong corrections to the R-ratio of electron–
positron annihilation into hadrons are studied at the higher-
loop levels. Specifically, the derivation of a general form of
the commonly employed approximate expression for the R-
ratio (which constitutes its truncated re-expansion at high
energies) is delineated, the appearance of the pertinent π2-
terms is expounded, and their basic features are examined.
It is demonstrated that the validity range of such approxima-
tion is strictly limited to

√
s/Λ > exp(π/2) � 4.81 and that

it converges rather slowly when the energy scale approaches
this value. The spectral function required for the proper cal-
culation of the R-ratio is explicitly derived and its properties
at the higher-loop levels are studied. The developed method
of calculation of the spectral function enables one to obtain
the explicit expression for the latter at an arbitrary loop level.
By making use of the derived spectral function the proper
expression for the R-ratio is calculated up to the five-loop
level and its properties are examined. It is shown that the
loop convergence of the proper expression for the R-ratio
is better than that of its commonly employed approximation.
The impact of the omitted higher-order π2-terms on the latter
is also discussed.

1 Introduction

In the studies of a variety of the strong interaction pro-
cesses a key role is played by the hadronic vacuum polar-
ization function Π(q2), the related function R(s), and the
Adler function D(Q2). In particular, these functions gov-
ern such processes as the electron–positron annihilation into
hadrons, inclusive hadronic decays of τ lepton and Z boson,
as well as the hadronic contributions to precise electroweak
observables, such as the muon anomalous magnetic moment
(g−2)μ and the running of the electromagnetic fine structure
constant. The theoretical analysis of these processes consti-
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tutes a decisive self-consistency test of Quantum Chromo-
dynamics (QCD) and entire Standard Model, that, in turn,
puts robust restrictions on a possible New Physics beyond
the latter. Additionally, the energy scales relevant to the fore-
going strong interaction processes span from the infrared to
ultraviolet domain, so that their theoretical investigation pro-
vides a native framework for a profound study of both per-
turbative and intrinsically nonperturbative aspects of hadron
dynamics. It is worth noting also that a majority of the afore-
mentioned processes are of a direct relevance to the physics
at the currently designed Future Collider Projects, such as
the Future Circular Collider FCC-ee [1], Circular Electron–
Positron Collider CEPC (its first phase) [2], the International
Linear Collider ILC [3], the Compact Linear Collider CLIC
[4], as well as the E989 experiment at Fermilab [5], the
E34 experiment at J-PARC [6], and others.

In fact, over the past decades the perturbative approach to
QCD remains a basic tool for the theoretical exploration of
the hadronic physics. However, the QCD perturbation theory
can be directly applied to the study of the strong interaction
processes only in the spacelike (Euclidean) domain, whereas
the proper description of hadron dynamics in the timelike
(Minkowskian) domain additionally requires the pertinent
dispersion relations. Specifically, the dispersion relation for
the R-ratio of electron–positron annihilation into hadrons
converts the physical kinematic restrictions on the process
on hand into the mathematical form and determines the way
how the “timelike” observable R(s) is related to the “space-
like” quantity D(Q2), the corresponding perturbative input
being embodied by the so-called spectral function. Since the
calculation of the latter at the higher-loop levels constitutes a
rather challenging task, one commonly resorts to an approx-
imate form of the R-ratio, namely, its truncated re-expansion
at high energies. At the same time, one has to be aware that at
any given loop level such re-expansion generates an infinite
number of the so-called π2-terms (which may not neces-
sarily be small enough to be safely discarded at the higher
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orders), which also worsen the loop convergence of the result-
ing approximate R-ratio.

The primary objective of the paper is to explicitly derive a
general form of the spectral function required for the proper
evaluation of the R-ratio and to study its properties up to the
five-loop level. It is also of an apparent interest to calculate
the R-ratio itself, to examine its higher-loop convergence,
and to elucidate the impact of the omitted higher-order π2-
terms on its truncated re-expanded approximation.

The layout of the paper is as follows. In Sect. 2 the essen-
tials of continuation of the spacelike perturbative results into
the timelike domain are expounded. In Sect. 3 the one-loop
expression for the R-ratio is explicated and its approxima-
tions are discussed. In Sect. 4 the derivation of a general
form of the commonly employed approximate expression for
the R-ratio (which constitutes its truncated re-expansion at
high energies) is delineated, the appearance of the pertinent
π2-terms is elucidated, and their basic features are studied.
In Sect. 5 the explicit form of the spectral function required
for the proper calculation of the R-ratio is obtained and its
properties at the higher-loop levels are examined. By mak-
ing use of the derived spectral function in Sect. 6 the proper
expression for the R-ratio is calculated up to the five-loop
level and its properties are studied. Additionally, the obtained
R-ratio is juxtaposed with its commonly employed approxi-
mation and the impact of the omitted higher-order π2-terms
on the latter is discussed. In Sect. 7 the basic results are sum-
marized.

2 R-ratio of electron–positron annihilation into hadrons

As noted above, the theoretical analysis of certain strong
interaction processes relies on the hadronic vacuum polar-
ization function Π(q2), which is defined as the scalar part of
the hadronic vacuum polarization tensor,

Πμν(q
2) = i

∫
d4x eiqx

〈
0
∣∣ T {

Jμ(x) Jν(0)
}∣∣0〉

= i

12π2 (qμqν − gμνq
2)Π(q2). (1)

For the processes involving final state hadrons the func-
tion Π(q2) (1) has the only cut along the positive semi-
axis of real q2 starting at the hadronic production thresh-
old q2 ≥ 4m2

π (the discussion of this issue can be found
in, e.g., Ref. [7]). In particular, the Feynman amplitude of
the respective process vanishes for the energies below the
threshold, which expresses the physical fact that the pro-
duction of the final state hadrons is kinematically forbidden
for q2 < 4m2

π . In turn, the known location of the cut of
function Π(q2) in the complex q2 plane enables one to write
down the pertinent dispersion relation

ΔΠ(q2, q2
0 ) = (q2 − q2

0 )

∞∫

4m2
π

R(σ )

(σ − q2)(σ − q2
0 )

dσ, (2)

with the once-subtracted Cauchy integral formula being
employed. In Eq. (2) ΔΠ(q2, q2

0 ) = Π(q2) − Π(q2
0 ),

whereas R(s) stands for the discontinuity of the hadronic
vacuum polarization function across the physical cut

R(s) = 1

2π i
lim

ε→0+
ΔΠ(s + iε, s − iε). (3)

This function is commonly identified with the so-called R-
ratio of electron–positron annihilation into hadrons R(s) =
σ(e+e− → hadrons; s)/σ (e+e− → μ+μ−; s), with s =
q2 > 0 being the timelike kinematic variable, namely, the
center-of-mass energy squared.

In practice one deals with the Adler function D(Q2) [8],
which is defined as the logarithmic derivative of the hadronic
vacuum polarization function (1)

D(Q2) = −d Π(−Q2)

d ln Q2 , (4)

with Q2 = −q2 > 0 being the spacelike kinematic vari-
able. Note that the subtraction point q2

0 entering Eq. (2) does
not appear in Eqs. (3) and (4). The widely employed dis-
persion relation for the Adler function follows immediately
from Eqs. (2) and (4), specifically [8],

D(Q2) = Q2

∞∫

4m2
π

R(σ )

(σ + Q2)2 dσ. (5)

In particular, this dispersion relation enables one to extract the
experimental prediction for the Adler function by making use
of the corresponding experimental data on electron–positron
annihilation into hadrons. However, to obtain the theoretical
expression for the R-ratio itself, the relation inverse to Eq. (5)
is required. The latter can be obtained by integrating Eq. (4)
in finite limits, which yields [9–11]

R(s) = 1

2π i
lim

ε→0+

s−iε∫

s+iε

D(−ζ )
dζ

ζ
. (6)

Specifically, this equation relates the R-ratio to the theoret-
ically calculable Adler function and provides a native way
to properly account for the effects due to continuation of the
spacelike perturbative results into the timelike domain. The
integration contour in Eq. (6) lies in the region of analytic-
ity of the integrand; see Fig. 1. Note also that the relation
which expresses the hadronic vacuum polarization function
in terms of the Adler function can be obtained in a similar
way, namely [12]
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Fig. 1 The integration contour in Eq. (6). The physical cut ζ ≥ 4m2
π

of the Adler function D(−ζ ) (4) is shown along the positive semiaxis
of real ζ

ΔΠ(−Q2, −Q2
0) = −

Q2∫

Q2
0

D(ζ )
dζ

ζ
, (7)

where Q2 and Q2
0 stand for the spacelike kinematic variable

and the subtraction point, respectively. Basically, Eqs. (2)–
(7) constitute the complete set of relations, which express
the functions on hand in terms of each other. It is worth
mentioning here that, in general, the pattern of applications
of the dispersion relations in theoretical particle physics is
quite diverse. For example, among the latter are such issues
as the refinement of chiral perturbation theory [13–20], the
accurate determination of parameters of resonances [21–24],
the assessment of the hadronic light-by-light scattering [25–
30], as well as many others.

It is necessary to outline that the derivation of disper-
sion relations (2)–(7) is based only on the kinematics of
the process on hand and involves neither model-dependent
phenomenological assumptions nor additional approxima-
tions. In turn, the relations (2)–(7) impose a number of strict
physical inherently nonperturbative constraints on the func-
tions Π(q2), R(s), and D(Q2), which should definitely be
taken into account when one intends to go beyond the limits
of applicability of the QCD perturbation theory. It is worth-
while to note that these nonperturbative restrictions have
been merged with the corresponding perturbative input in
the framework of dispersively improved perturbation the-
ory (DPT) [31–34] (its preliminary formulation was dis-
cussed in Refs. [35–38]). In particular, the DPT enables one
to overcome some intrinsic difficulties of the QCD perturba-
tion theory and to extend its applicability range towards the
infrared domain; see Ref. [31] and the references therein for
the details.

In the framework of perturbation theory the Adler func-
tion (4) takes the form of the power series in the so-called
QCD couplant a(�)

s (Q2) = α
(�)
s (Q2) β0/(4π), namely

Table 1 Numerical values of the Adler function perturbative expansion
coefficients d j (8). In the last column the numerical estimation of the
five-loop coefficient d5 [42] is listed

n f d1 d2 d3 d4 d5

0 0.3636 0.2626 0.8772 2.3743 5.40

1 0.3871 0.2803 0.7946 2.1884 4.70

2 0.4138 0.3005 0.7137 2.1466 3.74

3 0.4444 0.3239 0.5593 1.9149 2.52

4 0.4800 0.3513 0.2868 1.3440 1.16

5 0.5217 0.3836 − 0.1021 0.6489 0.0256

6 0.5714 0.4225 − 0.7831 − 0.8952 0.267

D(�)
pert(Q

2) = 1 + d(�)
pert(Q

2),

d(�)
pert(Q

2) =
�∑

j=1

d j

[
a(�)

s (Q2)
] j

. (8)

In this equation � specifies the loop level, d1 = 4/β0,
β0 = 11 − 2n f /3, n f is the number of active flavors, and
the common prefactor Nc

∑n f
f =1 Q

2
f is omitted throughout,

where Nc = 3 denotes the number of colors and Q f stands
for the electric charge of f th quark. The QCD couplant
a(�)

s (Q2) entering Eq. (8) can be represented as the double
sum

a(�)
s (Q2) =

�∑
n=1

n−1∑
m=0

bmn
lnm(ln z)

lnn z
, (9)

where z = Q2/Λ2 and bmn (the integer superscript m is not
to be confused with respective power) stands for the combi-
nation of the β function perturbative expansion coefficients,
specifically, b0

1 = 1, b0
2 = 0, b1

2 = −β1/β
2
0 , etc. The Adler

function perturbative expansion coefficients d j were calcu-
lated up to the four-loop level (1 ≤ j ≤ 4); see Refs. [39–41]
and the references therein, whereas for the five-loop coeffi-
cientd5 only numerical estimation [42] is available so far. The
numerical values of the perturbative coefficients d j (8) are
listed in Table 1. In turn, the β function perturbative expan-
sion coefficients β j have been calculated up to the five-loop
level (0 ≤ j ≤ 4); see Refs. [43,44] and the references
therein for the details.

In what follows the nonperturbative aspects of the strong
interactions will be disregarded and a primary attention will
be given to the theoretical description of the R-ratio of
electron–positron annihilation into hadrons at moderate and
high energies. For this purpose the effects due to the masses
of the involved particles can be safely neglected (a discus-
sion of the impact of such effects1 on the low-energy behav-
ior of the functions Π(q2), R(s), and D(Q2) can be found

1 For example, in the limit mπ = 0 some of the aforementioned non-
perturbative constraints on the functions on hand appear to be lost.
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in, e.g., Refs. [31–34,45–53]). Additionally, for the scheme-
dependent perturbative coefficientsβ j andd j the MS-scheme
will be assumed and for the uncalculated yet five-loop coef-
ficient d5 its numerical estimation [42] will be employed.

Thus, in the massless limit the relation (6) can be repre-
sented as (see also Refs. [54,55])

R(�)(s) = 1 + r (�)(s), r (�)(s) =
∞∫

s

ρ(�)(σ )
dσ

σ
, (10)

where

ρ(�)(σ ) = 1

2π i
lim

ε→0+

[
d(�)(−σ − iε) − d(�)(−σ + iε)

]

(11)

stands for the spectral function and d(�)(Q2) denotes the �-
loop strong correction to the Adler function. As mentioned
above, only perturbative contributions will be retained in
Eq. (11) hereinafter, which makes Eq. (10) identical to that
of both the foregoing DPT [31–34] and the so-called ana-
lytic perturbation theory2 (APT) [54–57]. It has to be noted
that, in general, the perturbative spectral function at small
values of its argument may be altered by the terms of an
intrinsically nonperturbative nature. For instance, the non-
perturbative models discussed in Refs. [105–112] constitute
a superposition of the perturbative spectral function with the
so-called “flat” terms (which by definition do not affect the
corresponding perturbative results at high energies), whereas
the models [113,114] modify the low-energy behavior of the
perturbative spectral function proceeding from certain phe-
nomenological assumptions.

It is worthwhile to mention also that a “naive” approach to
continue the spacelike perturbative result (8) into the timelike
domain consists in merely identifying the timelike kinematic
variable (s = q2) with the spacelike one (Q2 = −q2), i.e.,

R(�)
naive(s) = D(�)

pert(|s|) = 1 +
�∑

j=1

d j

[
a(�)

s (|s|)
] j

. (12)

However, as thoroughly discussed in Refs. [115–117], this
prescription yields a misleading result, which differs from
the proper one (10) even in the deep ultraviolet asymptotic,
see also Refs. [42,118,119] as well as [31] and the references
therein.

3 R-ratio at the one-loop level

Let us address now the R-ratio of electron–positron anni-
hilation into hadrons at the one-loop level. As discussed in
the previous section, for this purpose the spectral function

2 The discussion of APT and its applications can be found in, e.g., Refs.
[54–104].

Fig. 2 The one-loop spectral function ρ̄
(1)
1 (σ ) (16)

ρ(σ) (11), which enters the pertinent integral representa-
tion (10), is required. Since the involved strong correction to
the Adler function (8) takes a simple form at the one-loop
level,

d(1)
pert(Q

2) = d1 a
(1)
s (Q2), a(1)

s (Q2) = 1

ln(Q2/Λ2)
, (13)

and

lim
ε→0+

ln(x ± iε) = ln |x | ± iπθ(−x), (14)

the calculation of ρ(1)(σ ) (11) appears to be quite straight-
forward. Specifically, the one-loop spectral function (11) for
the positive values of its argument reads

ρ(1)(σ ) = d1
1

2π i

[
1

ln(σ/Λ2) − iπ
− 1

ln(σ/Λ2) + iπ

]
,

(15)

which, in turn, can be represented as

ρ(1)(σ ) = d1ρ̄
(1)
1 (σ ), ρ̄

(1)
1 (σ ) = 1

y2 + π2 , y = ln
( σ

Λ2

)
.

(16)

In these equations θ(x) is the Heaviside unit step function
[i.e., θ(x) = 1 if x ≥ 0 and θ(x) = 0 otherwise], d1 = 4/β0,
and β0 = 11−2n f /3. The plot of the one-loop spectral func-

tion ρ̄
(1)
1 (σ ) (16) is displayed in Fig. 2. As one can infer from

this figure, the function on hand assumes the values in the
interval 0 ≤ ρ̄

(1)
1 (σ ) ≤ 1/π2 and decreases as 1/y2 in both

ultraviolet (y → ∞) and infrared (y → −∞) asymptotics.
Then the corresponding one-loop strong correction to the

R-ratio can also easily be obtained in an explicit form. Specif-
ically, the integration (10) of the one-loop spectral func-
tion (16) yields3

r (1)(s) = d1a
(1)
TL(s), a(1)

TL(s) = 1

2
− 1

π
arctan

(
ln w

π

)
,

(17)

3 It is assumed that arctan(x) is a monotone nondecreasing function of
its argument: −π/2 ≤ arctan(x) ≤ π/2 for −∞ < x < ∞.
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A B

Fig. 3 Plot A: The one-loop “timelike” effective couplant a(1)
TL (s)

[Eq. (17), solid curve] and the naive continuation of the one-loop per-
turbative couplant into the timelike domain a(1)

s (|s|) [Eq. (13), dashed
curve]. Plot B: The one-loop “timelike” effective couplant a(1)

TL (s)
[Eq. (17), solid curve] and its re-expansions at various energy inter-

vals: ln w < −π [Eq. (18), dotted curves], −π < ln w < π [Eq. (19),
dot-dashed curves], and ln w > π [Eq. (20), dashed curves]. Numerical
labels indicate the highest absolute value of the power of ln w retained
in the re-expansions on hand. The boundaries of the convergence ranges
of Eqs. (18)–(20) are marked by vertical solid lines

where w = s/Λ2. The function a(1)
TL(s) (17) constitutes the

one-loop couplant, which properly accounts for the effects
due to continuation of the spacelike perturbative expres-
sion (13) into the timelike domain. It is worthwhile to note
here that Eq. (17) has first appeared in Ref. [120] and only
afterwards was derived in Refs. [9,10,12,54,55].

Figure 3A displays the one-loop “timelike” effective cou-
plant a(1)

TL(s) (17) and the “naive” continuation of the one-

loop perturbative couplant a(1)
s (Q2) (13) into the timelike

domain (12). As one can infer from this figure, at high ener-
gies the two couplants approach each other. At the same time,
at moderate energies the deviation between the functions on
hand becomes significant, whereas in the infrared domain
their behavior turns out to be qualitatively different. Specifi-
cally, the function a(1)

s (|s|) (13) diverges at low energies due
to the infrared unphysical singularities, whereas a(1)

TL(s) (17)
is a smooth monotone decreasing function of its argument,
which contains no singularities for s>0.

A somewhat simpler but approximate form of the strong
correction to the R-ratio can be obtained by its further re-
expansion. Specifically, for this purpose one splits the entire
energy range 0 < s < ∞ into three intervals (namely, ln w <

−π , −π < ln w < π , and ln w > π ) and applies the Taylor
expansion to r(s) in each of those intervals. At the one-loop
level the implementation of these steps for the expression (17)
yields

a(1)
TL(s) � 1 + 1

ln w
− 1

3

π2

ln3 w
+ O

(
1

ln5 w

)
,

ln w < −π, (18)

a(1)
TL(s) � 1

2
− ln w

π2 + 1

3

ln3 w

π4 + O(ln5 w),

−π < ln w < π, (19)

a(1)
TL(s) � 1

ln w
− 1

3

π2

ln3 w
+ O

(
1

ln5 w

)
, ln w > π,

(20)

where w = s/Λ2. In particular, as one can infer from
Fig. 3B, the re-expansions (18)–(20) may provide an accu-
rate approximation of the function (17) in the aforementioned
energy intervals, if the number of retained terms is large
enough. However, as one can note, the convergence of the re-
expansions (18)–(20) becomes worse when the energy scale
approaches the delimiting values

√
s/Λ = exp(±π/2); see

also discussion of this issue in Sect. 6.
In fact, there is another equivalent way to obtain the re-

expansion of the strong correction to the R-ratio at high ener-
gies. Specifically, instead of following the lines described
above, one can expand the corresponding spectral func-
tion ρ(�)(σ ) (11) and then perform the integration in Eq. (10).
In particular, at the one-loop level the Taylor expansion of
ρ̄

(1)
1 (σ ) (16) for

√
σ/Λ > exp(π/2) reads

ρ̄
(1)
1 (σ ) � 1

y2 − π2

y4 + O
(

1

y6

)
, y = ln

( σ

Λ2

)
, (21)

which, after its integration in Eq. (10), yields the result iden-
tical to Eq. (20). It is the latter prescription that will be
employed in the next section for the derivation of an approxi-
mate expression for the R-ratio at high energies at an arbitrary
loop level.

4 Re-expansion of the R-ratio at high energies:
π2-terms

As outlined in Sect. 2, the strong correction to the R-ratio
of electron–positron annihilation into hadrons (10) can be
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represented as

r(s) =
∞∫

s

ρ(σ)
dσ

σ
=

∞∫

ln w

ρy(y) dy, w = s

Λ2 , (22)

where y = ln(σ/Λ2) and ρy(y) = ρ[Λ2 exp(y)] denotes the
corresponding spectral function (11)

ρy(y) = 1

2π i

[
dy(y − iπ) − dy(y + iπ)

]
, (23)

with Eq. (14) being employed. In Eq. (23) dy(y) =
d
[
Λ2 exp(y)

]
stands for the strong correction to the Adler

function being expressed in terms of y = ln(σ/Λ2). Apply-
ing to the latter the Taylor expansion

dy(y ± iπ) = dy(y) +
∞∑
n=1

(±iπ)n

n!
dn

dyn
dy(y), |y| > π,

(24)

one can approximate4 the spectral function (23) by

ρy(y) = − d

dy
dy(y) −

∞∑
n=1

(−1)nπ2n

(2n + 1)!
d2n+1

dy2n+1 dy(y). (25)

Therefore, for
√
s/Λ > exp(π/2) � 4.81 the strong correc-

tion to the R-ratio (22) acquires the following form:

r(s) = d(|s|) +
∞∑
n=1

(−1)nπ2n

(2n + 1)!
d2n

dy2n dy(y)

∣∣∣∣
y=ln w

. (26)

In particular, this equation implies that the strong correction
to the R-ratio, being re-expanded at high energies, reproduces
the naive continuation of the Adler function into the timelike
domain [the first term on the right-hand side of Eq. (26)]
and additionally produces an infinite number of the so-called
π2-terms.

Then at the �-loop level the perturbative expression for the
strong correction to the Adler function reads (8)

d(�)
y (y) =

�∑
j=1

d j

[
a(�)
y (y)

] j
, (27)

where a(�)
y (y) = a(�)

s
[
Λ2 exp(y)

]
is the �-loop perturbative

couplant being expressed in terms of y = ln(σ/Λ2). Since
the latter satisfies the renormalization group equation

d

dy
a(�)
y (y) = −

�−1∑
j=0

Bj

[
a(�)
y (y)

] j+2
, Bj = β j

β
j+1

0

, (28)

4 It has to be emphasized here that Eqs. (24) and (25) are only
valid for |y| > π , which eventually bounds the convergence range
of the resulting approximate expression for the R-ratio to

√
s/Λ >

exp(π/2) � 4.81.

the nth derivative of the j th power of the �-loop couplant
takes the form

dn

dyn

[
a(�)
y (y)

] j = (−1)n
�−1∑
k1=0

. . .

�−1∑
kn=0

[
a(�)
y (y)

] j+n+k1+···+kn

×
⎛
⎝ n∏

p=1

Bkp

⎞
⎠

[
n−1∏
t=0

( j + t + k1 + · · · + kt )

]
. (29)

Thus, at high energies the �-loop strong correction to the
R-ratio (22) can be approximated by (see also Ref. [121])

r (�)(s) =
�∑

j=1

d j

[
a(�)

s (|s|)
] j −

�∑
j=1

d j

∞∑
n=1

(−1)n+1π2n

(2n + 1)!

×
�−1∑
k1=0

· · ·
�−1∑
k2n=0

⎛
⎝ 2n∏

p=1

Bkp

⎞
⎠

×
[

2n−1∏
t=0

( j + t + k1 + k2 + · · · + kt )

]

×[a(�)
s (|s|)] j+2n+k1+k2+···+k2n ,

√
s

Λ
> exp

(π

2

)
. (30)

The obtained re-expansion of the strong correction to
the R-ratio (30) constitutes the sum of naive continuation of
the strong correction to the Adler function into the timelike
domain (12) and an infinite number of the π2-terms. Equa-
tion (30) explicitly proves the fact that at any given loop
level the re-expansion of the strong correction to the R-ratio
at high energies can be reduced to the form of power series
in the naive continuation of the perturbative couplant into
the timelike domain a(�)

s (|s|). As one can also note, in the
re-expansion (30) the coefficients d j corresponding to var-
ious orders of perturbation theory turn out to be all mixed
up, i.e., the �-loop contribution to Eq. (10) appears to be
re-distributed over the higher-order terms.

As discussed earlier, if the number of terms retained in
Eq. (30) is large enough, then it can provide a rather accurate
approximation of the strong correction to the R-ratio (10) for√
s/Λ > exp(π/2) � 4.81. However, one usually truncates

the re-expansion (30) at the order �, thereby neglecting all
the higher-order π2-terms,5 which results in the following
expression commonly employed in practical applications:

R(�)
appr(s) = 1 + r (�)

appr(s), r (�)
appr(s) =

�∑
j=1

r j
[
a(�)

s (|s|)
] j

,

(31)

where

r j = d j − δ j . (32)

5 Though the latter may not necessarily be negligible due to the rather
large values of the corresponding coefficients δ j (32).
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In this equation the d j stand for the Adler function perturba-
tive expansion coefficients (8), whereas the δ j embody the
contributions of the relevant π2-terms.

Equation (30) implies that the π2-terms do not appear in
the first and second orders of perturbation theory, namely,

δ1 = 0, δ2 = 0, (33)

that makes R(�)
appr(s) (31) identical to the naive expres-

sion R(�)
naive(s) (12) for � = 1 and � = 2. Starting from

the third order of perturbation theory (i.e., for � ≥ 3) the
coefficients δ j (32) are no longer vanishing and constitute a
combination of the pertinent perturbative expansion coeffi-
cients d j and β j of the first (� − 2) orders. Specifically, the
third-order and fourth-order coefficients read [42,118,119]

δ3 = π2

3
d1B

2
0 = π2

3
d1 (34)

and

δ4 = π2

3

(
5

2
d1B0B1 + 3d2B

2
0

)
= π2

3

(
5

2
d1B1 + 3d2

)
,

(35)

respectively. In these equations d j denote the Adler func-
tion perturbative expansion coefficients (8), whereas Bj =
β j/β

j+1
0 stands for the combination of perturbative coeffi-

cients of the renormalization group β function. In turn, at the
fifth and sixth orders the coefficients δ j (32) can be repre-
sented as [31,42,121]

δ5 = π2

3

[
3

2
d1(B

2
1 + 2B2) + 7d2B1 + 6d3

]
− π4

5
d1,

(36)

δ6 = π2

3

[
7

2
d1(B1B2 + B3) + 4d2(B

2
1 + 2B2)

+ 27

2
d3B1 + 10d4

]
− π4

5

(
77

12
d1B1 + 5d2

)
. (37)

The seventh- and eighth-order coefficients δ j (32) have
recently been calculated as well, specifically [31,121]

δ7 = π2

3

[
4d1

(
B1B3 + 1

2
B2

2 + B4

)
+ 9d2(B1B2 + B3)

+ 15

2
d3(B

2
1 + 2B2) + 22d4B1 + 15d5

]

− π4

5

[
5

6
d1(17B2

1 + 12B2) + 57

2
d2B1 + 15d3

]

+ π6

7
d1, (38)

δ8 = π2

3

[
9

2
d1(B1B4 + B2B3 + B5)

+ 10d2

(
B1B3 + 1

2
B2

2 + B4

)
+ 33

2
d3(B1B2 + B3)

+ 12d4(B
2
1 + 2B2) + 65

2
d5B1 + 21d6

]

− π4

5

[
15

8
d1(7B

3
1 + 22B1B2 + 8B3)

+ 5

12
d2(139B2

1 + 96B2) + 319

4
d3B1 + 35d4

]

+ π6

7

(
223

20
d1B1 + 7d2

)
. (39)

The explicit expressions for the coefficients δ j (32) at the
higher orders can be found in App. C of Ref. [31].

Table 2 presents the numerical values of the first seven
coefficients δ j (32), which embody the contributions of the
relevant π2-terms (30). Tables 1 and 2 make it evident that
in Eq. (31) the coefficients δ j can in no way be regarded as
small corrections to the Adler function perturbative expan-
sion coefficients d j (8) for j ≥ 3. On the contrary, the values
of coefficients δ j significantly exceed the values of respective
perturbative coefficients d j , thereby constituting the domi-
nant contribution to the coefficients r j (32); see also Tables 3
and 4. As will be discussed below, eventually this results
in an essential distortion of the re-expanded approximation
R(�)

appr(s) (31) with respect to the naive expression R(�)
naive(s)

(12). In particular, the higher-order terms of R(�)
appr(s) (31)

turn out to be substantially amplified and even sign-reversed
with respect to those of R(�)

naive(s) (12); see Tables 1 and
3. It is worthwhile to note also that, as one can infer from
Tables 2 and 4, the values of coefficients δ j rapidly increase
as the order j increases, which makes the loop convergence
of R(�)

appr(s) (31) worse than that of both R(�)(s) (10) and

R(�)
naive(s) (12); see Sect. 6 for the details.

5 Spectral function at the higher-loop levels

It is certainly desirable to leave the truncated re-expanded
approximation R(�)

appr(s) (31) aside and have the func-
tion R(�)(s) (10) calculated in a straightforward way beyond
the one-loop level. To achieve this objective, the corre-
sponding explicit expression for the involved spectral func-
tionρ(�)(σ ) (11) is required. Despite the latter becomes rather
cumbrous for � ≥ 2, the following method enables one to
calculate ρ(�)(σ ) explicitly at an arbitrary6 loop level.

Specifically, it proves to be convenient to express the spec-
tral function ρ(�)(σ ) (11) in terms of the so-called “partial”

6 It is assumed that the involved perturbative coefficients d j and β j are
known.
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Table 2 Numerical values of
the coefficients δ j (32)
embodying the contributions of
the relevant π2-terms (30).
The last column employs the
numerical estimation of the
Adler function perturbative
expansion coefficient d5 [42]

n f δ1 δ2 δ3 δ4 δ5 δ6 δ7

0 0.0000 0.0000 1.1963 5.1127 20.455 69.081 45.7

1 0.0000 0.0000 1.2735 5.4298 18.880 56.819 7.02

2 0.0000 0.0000 1.3613 5.7583 17.118 48.532 −35.7

3 0.0000 0.0000 1.4622 6.0851 13.519 30.365 −82.5

4 0.0000 0.0000 1.5791 6.3850 6.910 − 3.843 −115.7

5 0.0000 0.0000 1.7165 6.6090 − 3.187 − 45.692 −83.0

6 0.0000 0.0000 1.8799 6.6638 − 21.168 − 120.010 142.5

Table 3 Numerical values of
the coefficients r j of the
re-expanded approximate
R-ratio (31). The last column
employs the numerical
estimation of the Adler function
perturbative expansion
coefficient d5 [42]

n f r1 = d1 r2 = d2 r3 = d3 − δ3 r4 = d4 − δ4 r5 = d5 − δ5

0 0.3636 0.2626 −0.3191 −2.7383 −15.1

1 0.3871 0.2803 −0.4788 −3.2413 −14.2

2 0.4138 0.3005 −0.6476 −3.6116 −13.4

3 0.4444 0.3239 −0.9028 −4.1703 −11.0

4 0.4800 0.3513 −1.2923 −5.0409 −5.75

5 0.5217 0.3836 −1.8186 −5.9601 3.21

6 0.5714 0.4225 −2.6630 −7.5590 21.4

Table 4 The relative weight
(1 + |d j/δ j |)−1 × 100% of
the π2-terms in the
coefficients r j of the
re-expanded approximate
R-ratio (31). The last column
employs the numerical
estimation of the Adler function
perturbative expansion
coefficient d5 [42]

n f j = 1 j = 2 j = 3 j = 4 j = 5

0 0.00 0.00 57.7 68.3 79.1

1 0.00 0.00 61.6 71.3 80.1

2 0.00 0.00 65.6 72.8 82.1

3 0.00 0.00 72.3 76.1 84.3

4 0.00 0.00 84.6 82.6 85.6

5 0.00 0.00 94.4 91.1 99.2

6 0.00 0.00 70.6 88.2 98.8

spectral functions ρ̄
(�)
j (σ ) corresponding to the j th power of

the �-loop perturbative couplant (9), namely

ρ(�)(σ ) =
�∑

j=1

d j ρ̄
(�)
j (σ ), (40)

where

ρ̄
(�)
j (σ )

= 1

2π i
lim

ε→0+

{[
a(�)

s (−σ−iε)
] j −

[
a(�)

s (−σ+iε)
] j

}
.

(41)

To obtain the partial spectral function ρ̄
(�)
j (σ ) (41) for any

j ≥ 1 it appears to be enough to calculate only the real and
imaginary parts of the �-loop couplant a(�)

s (Q2) at the edges
of its cut:

lim
ε→0+

a(�)
s (−σ ± iε) = a(�)

Re(σ ) ∓ iπa(�)
Im(σ ). (42)

Here a(�)
Re(σ ) and a(�)

Im(σ ) are the real functions of their argu-
ments and σ ≥ 0 is assumed. For positive integer values of
j the following equation holds:

lim
ε→0+

[
a(�)

s (−σ ± iε)
] j =

j∑
k=0

(
j

k

)
(∓iπ)k

×
[
a(�)

Re(σ )
] j−k [

a(�)
Im(σ )

]k
, (43)

with
(
n

m

)
= n!

m! (n − m)! (44)

being the binomial coefficient. Then it is convenient to isolate
in Eq. (43) its real and imaginary parts, specifically

lim
ε→0+

[
a(�)

s (−σ ± iε)
] j =

K ( j+1)∑
k=0

(
j

2k

)
(−1)k(π)2k

×
[
a(�)

Re(σ )
] j−2k [

a(�)
Im(σ )

]2k
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∓ iπ
K ( j)∑
k=0

(
j

2k + 1

)
(−1)k(π)2k

×
[
a(�)

Re(σ )
] j−2k−1 [

a(�)
Im(σ )

]2k+1
, (45)

where

K ( j) = j − 2

2
+ j mod 2

2
(46)

and ( j mod n) denotes the remainder on division of j by n.
Therefore, the partial spectral function (41) reads (see also
Refs. [107,122,123])

ρ̄
(�)
j (σ ) =

K ( j)∑
k=0

(
j

2k + 1

)
(−1)k π2k

×
[
a(�)

Re(σ )
] j−2k−1 [

a(�)
Im(σ )

]2k+1
, (47)

with σ ≥ 0 and j ≥ 1 being assumed. In particular, the first
five relations (47) acquire a compact form

ρ̄
(�)
1 (σ ) = a(�)

Im(σ ), (48)

ρ̄
(�)
2 (σ ) = 2 a(�)

Im(σ ) a(�)
Re(σ ), (49)

ρ̄
(�)
3 (σ ) = a(�)

Im(σ )

{
3
[
a(�)

Re(σ )
]2 − π2

[
a(�)

Im(σ )
]2

}
, (50)

ρ̄
(�)
4 (σ ) = 4 a(�)

Im(σ ) a(�)
Re(σ )

{[
a(�)

Re(σ )
]2−π2

[
a(�)

Im(σ )
]2

}
,

(51)

ρ̄
(�)
5 (σ ) = a(�)

Im(σ )

{
5
[
a(�)

Re(σ )
]4 − 10π2

[
a(�)

Im(σ )a(�)
Re(σ )

]2

+π4
[
a(�)

Im(σ )
]4

}
. (52)

In turn, the �-loop functions a(�)
Re(σ ) and a(�)

Im(σ ) enter-
ing Eq. (47) can also be explicitly calculated in a simi-
lar way. Specifically, as mentioned in Sect. 2, the perturba-
tive QCD couplant a(�)

s (Q2) can be represented as the double
sum (9) comprised of the functions

āmn (Q2) = lnm(ln z)

lnn z
, z = Q2

Λ2 . (53)

It is worthwhile to decompose the function āmn (Q2) (53) at
the edges of its cut into the real and imaginary parts, namely

lim
ε→0+

āmn (−σ ± iε) = umn (σ ) ∓ iπvmn (σ ), (54)

where umn (σ ) and vmn (σ ) are the real functions of their argu-

ments andσ ≥ 0 is assumed. Therefore, the functionsa(�)
Re(σ )

and a(�)
Im(σ ) (42) take the following form:

a(�)
Re(σ ) =

�∑
n=1

n−1∑
m=0

bmn umn (σ ), (55)

a(�)
Im(σ ) =

�∑
n=1

n−1∑
m=0

bmn vmn (σ ). (56)

On the left-hand side of Eq. (53) and in Eqs. (54)–(56) the
integer superscripts m are not to be confused with respective
powers, whereas the coefficients bmn have been specified in
Eq. (9).

Then, to calculate the functions umn (σ ) and vmn (σ ) entering
Eqs. (55) and (56), it is convenient to split the left-hand side
of Eq. (54) into two factors:

lim
ε→0+

āmn (−σ ± iε) = lim
ε→0+

[
ā0
n(−σ ± iε) ām0 (−σ ± iε)

]
.

(57)

The first factor on the right-hand side of Eq. (57) reads

lim
ε→0+

ā0
n(−σ ± iε) = (y ∓ iπ)n

(y2 + π2)n
, y = ln

( σ

Λ2

)
. (58)

Proceeding along the same lines as earlier, one can cast the
numerator on the right-hand side of this equation into

(y ∓ iπ)n =
K (n+1)∑
k=0

(
n

2k

)
(−1)kπ2k yn−2k

∓ iπ
K (n)∑
k=0

(
n

2k + 1

)
(−1)kπ2k yn−2k−1, (59)

with K (n) being specified in Eq. (46). Hence, the functions
umn (σ ) and vmn (σ ) (54) for m = 0 read

u0
n(σ ) = 1

(y2 + π2)n

K (n+1)∑
k=0

(
n

2k

)
(−1)kπ2k yn−2k, (60)

v0
n(σ ) = 1

(y2 + π2)n

K (n)∑
k=0

(
n

2k + 1

)
(−1)kπ2k yn−2k−1,

(61)

with n ≥ 1 being assumed.
In turn, for m ≥ 1 the second factor on the right-hand side

of Eq. (57) takes the following form:

lim
ε→0+

ām0 (−σ ± iε) =
[
ln(y ± iπ)

]m
, (62)

where y = ln(σ/Λ2). Since for real a and b

ln(a ± ib) = ln
√
a2 + b2 ± iπ

[
1

2
− 1

π
arctan

(a
b

)]
,

b > 0, (63)
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Eq. (62) can be rewritten as

lim
ε→0+

ām0 (−σ ± iε)

=
m∑

k=0

(
m

k

)
(±iπ)k[L1(y)]m−k [L2(y)]k, (64)

where

L1(y)= ln
√
y2+π2, L2(y) = 1

2
− 1

π
arctan

( y

π

)
. (65)

Following the same steps as above, one can cast Eq. (64) into

lim
ε→0+

ām0 (−σ ± iε) = um0 (σ ) ∓ iπvm0 (σ ), (66)

where

um0 (σ ) =
K (m+1)∑
k=0

(
m

2k

)
(−1)kπ2k

×[L1(y)]m−2k [L2(y)]2k, (67)

vm0 (σ ) =
K (m)∑
k=0

(
m

2k + 1

)
(−1)k+1π2k

×[L1(y)]m−2k−1 [L2(y)]2k+1, (68)

K (m) is defined in Eq. (46), and m ≥ 1 is assumed.
Therefore, the functions umn (σ ) and vmn (σ ) (54) read

umn (σ )=
{
u0
n(σ ), if m = 0,

u0
n(σ )um0 (σ ) − π2v0

n(σ )vm0 (σ ), if m ≥ 1,
(69)

and

vmn (σ ) =
{

v0
n(σ ), if m = 0,

v0
n(σ )um0 (σ ) + u0

n(σ )vm0 (σ ), if m ≥ 1,
(70)

with n ≥ 1 being assumed. Thus, the explicit expression for
the �-loop spectral function ρ(�)(σ ) (40) takes the following
form:

ρ(�)(σ ) =
�∑

j=1

d j

K ( j)∑
k=0

(
j

2k + 1

)
(−1)k π2k

×
[

�∑
n=1

n−1∑
m=0

bmn umn (σ )

] j−2k−1

×
[

�∑
n=1

n−1∑
m=0

bmn vmn (σ )

]2k+1

, (71)

where the functions umn (σ ) and vmn (σ ) are specified in
Eqs. (69) and (70), respectively.

The higher-loop partial spectral functions ρ̄
(�)
j (σ ) (47),

which correspond to the j th power (1 ≤ j ≤ �) of the �-
loop (2 ≤ � ≤ 5) perturbative QCD couplant a(�)

s (Q2), are
displayed in Fig. 4. As one can infer from this figure, the func-
tions ρ̄

(�)
j (σ ) (47) vanish at both σ → ∞ and σ → 0, the

higher-order functions ρ̄
(�)
j (σ ) ( j ≥ 2) being substantially

suppressed with respect to those of the preceding orders.
For example, Fig. 4D implies that at the five-loop level the
maximum value of the fifth-order function ρ̄

(5)
5 (σ ) is about

three orders of magnitude less than the maximum value of
the first-order function ρ̄

(5)
1 (σ ). In turn, as it will be dis-

cussed in the next section, the fact that the function ρ̄
(�)
j+1(σ )

is subdominant to ρ̄
(�)
j (σ ) eventually results in an enhanced

higher-loop stability of the proper expression for the R-ratio
(10) at moderate and low energies with respect to both its
naive form (12) and the commonly employed truncated re-
expanded approximation (31).

The plots of the spectral function ρ(�)(σ ) (71) at the first
five loop levels (1 ≤ � ≤ 5) are displayed in Fig. 5A. As
one can infer from this figure, the function ρ(�)(σ ) vanishes
at both σ → ∞ and σ → 0. Specifically, at the higher-loop
levels (� ≥ 2)

ρ(�)(σ ) � d1

y2 + O
(

1

y3

)
, y = ln

( σ

Λ2

)
, y → ∞

(72)

and

ρ(�)(σ ) � d1(1 + B1)

y2 + O
(

1

y3

)
, y → −∞. (73)

Additionally, Fig. 5A implies that the range of y, where
the difference between ρ(�)(σ ) and ρ(�+1)(σ ) is sizable, is
located in the vicinity of y = 0 and becomes smaller at
larger �. This issue is also elucidated by Fig. 5B, which shows
the relative difference between the �-loop and (� + 1)-loop
spectral functions (71)

ρ
(�)
diff(σ ) =

[
1 − ρ(�)(σ )

ρ(�+1)(σ )

]
× 100% (74)

at various loop levels.

6 R-ratio at the higher-loop levels

The obtained in the previous section explicit expression for
the �-loop spectral function ρ(�)(σ ) (71) enables one to
calculate the R-ratio of electron–positron annihilation into
hadrons (10) at an arbitrary loop level (assuming that the
involved perturbative coefficients β j and d j are available).
The integration in Eq. (10) can be directly performed for the
function ρ(�)(σ ) (71) as a whole, though for the illustrative
purposes it is somewhat convenient to keep the contributions
of the partial spectral functions ρ̄

(�)
j (σ ) (47) to Eq. (40) sep-

arately from each other, which casts Eq. (10) into
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A B

C D

Fig. 4 The partial spectral functions ρ̄
(�)
j (σ ) (47) corresponding to

the j-th power (1 ≤ j ≤ �) of the �-loop (2 ≤ � ≤ 5) perturbative
QCD couplant a(�)

s (Q2). Plot A: two-loop level (� = 2, 1 ≤ j ≤ 2).
Plot B: three-loop level (� = 3, 1 ≤ j ≤ 3), the function ρ̄

(3)
3 (σ ) is

scaled by the factor of 10. Plot C: four-loop level (� = 4, 1 ≤ j ≤ 4), the

functions ρ̄
(4)
3 (σ ) and ρ̄

(4)
4 (σ ) are scaled by the factors of 10 and 102,

respectively. Plot D: five-loop level (� = 5, 1 ≤ j ≤ 5), the func-
tions ρ̄

(5)
3 (σ ), ρ̄(5)

4 (σ ), and ρ̄
(5)
5 (σ ) are scaled by the factors of 10, 102,

and 102, respectively

A B

Fig. 5 Plot A: The spectral function ρ(�)(σ ) (71) at the first five loop levels (1 ≤ � ≤ 5). Plot B: The relative difference ρ
(�)
diff(σ ) (74) between the

�-loop and (� + 1)-loop spectral functions (71) at various loop levels. The function ρ
(4)
diff(σ ) is scaled by the factor of 10
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R(�)(s) = 1 + r (�)(s), r (�)(s) =
�∑

j=1

d j A
(�)
TL, j (s). (75)

In this equation

A(�)
TL, j (s) =

∞∫

s

ρ̄
(�)
j (σ )

dσ

σ
(76)

stands for the j th-order �-loop “timelike” effective couplant,
which constitutes the proper continuation of the j th power of
�-loop QCD couplant [a(�)

s (Q2)] j into the timelike domain.
As discussed in Sect. 3, at the one-loop level the first-order

function (76) acquires a quite simple form, namely (17)

A(1)
TL,1(s) = a(1)

TL(s) = 1

2
− 1

π
arctan

(
ln w

π

)
, w = s

Λ2 .

(77)

Despite the fact that the partial spectral functions ρ̄
(�)
j (σ ) (47)

become rather cumbrous at the higher loop levels, it appears
that the integration in Eq. (76) can be performed explicitly
for � > 1, too. For example, the two-loop first-order func-
tion (76) reads [9,10]

A(2)
TL,1(s) = a(1)

TL(s) − B1

ln2 w + π2

×
[
W (s) − a(1)

TL(s) ln w + 1
]
,

(78)

whereas the second-order one can be represented as

A(2)
TL,2(s) = 1

ln2 w + π2
+ B1(

ln2 w + π2
)2

×
{
a(1)

TL(s)
(

ln2 w − π2
)

− ln w [2W (s) + 1]
}

+ B2
1

(ln2 w + π2)3

{(
ln2 w − π2

3

)

×
[(

W (s) + 1

3

)2

+ 1

9
− π2

[
a(1)

TL(s)
]2

]

− 2

3
a(1)

TL(s) ln w(ln2 w−3π2)

(
W (s)+1

3

)}
.

(79)

In these equations a(1)
TL(s) is given by Eq. (77), Bj =

β j/β
j+1

0 , and

W (s) = ln
√

ln2 w + π2, w = s

Λ2 . (80)

In turn, at the three-loop level the first-order function (76)
takes the form

A(3)
TL,1(s) = A(2)

TL,1(s) − B2
1(

ln2 w + π2
)2 [T1(s)T2(s) + ln w]

+ B2 ln w

(ln2 w + π2)2
, (81)

where A(2)
TL,1(s) is specified in Eq. (78) and

T1(s) = a(1)
TL(s) ln w − W (s), (82)

T2(s) = π2a(1)
TL(s) + W (s) ln w. (83)

As for the four-loop first-order function (76), it can be rep-
resented as

A(4)
TL,1(s) = A(3)

TL,1(s) + 1(
ln2 w + π2

)3

B3

2

(
ln2 w − π2

3

)

+ B1B2

(ln2 w + π2)3

{
π2

3
− 3T2(s) ln w + π2W (s)

+ ln2 w
[
a(1)

TL(s) ln w − 1
]}

− 1(
ln2 w + π2

)3

B3
1

2

×
{

2T2(s) ln w
[
W (s) − 3

]
− T 2

2 (s)
[
2T1(s) + 1

]

+π2T 2
1 (s)

[
2

3
T1(s) + 3

]
+ ln2 w

[
2 a(1)

TL(s) ln w − 1
]

+2W 2(s) ln2 w
[
T1(s) + W (s) − 2

]
+ π2

3

+2W (s)
[
1 − W (s)

][
π2 + a(1)

TL(s) ln3 w
]}

, (84)

where the functions A(3)
TL,1(s), W (s), T1(s), and T2(s) are

given by Eqs. (81), (80), (82), and (83), respectively. It is
worthwhile to note also that the functions A(�)

TL, j (s) (76)
entering Eq. (75) can be computed numerically by making
use of the routines included in the freely available program
packages [122,123] [which, being based on a less universal
method of calculation of the relevant spectral function (11)
than that of Eq. (71), is applicable at first four loop levels
only] and [124].

As discussed earlier, the π2-terms play a valuable role in
the studies of the strong interaction processes in the time-
like domain, and their ignorance (complete or partial) may
yield misleading results. In particular, this issue is illustrated
by Fig. 6, which displays the two-loop timelike effective
expansion function of the second order A(2)

TL,2(s) [Eq. (79),
solid curve] and the approximations (dashed and dot-dashed
curves) corresponding to various orders of its re-expansion
for

√
s/Λ > exp(π/2) � 4.81:

A(2)
TL,2(s) �

[
a(2)

s (|s|)
]2 − π2

ln4 w
+ π2

ln5 w
B1

(
4 ln ln w − 7

3

)

− π2

ln6 w

[
B2

1

3
(10 ln2 ln w − 9 ln ln w + 1) − π2

]

− π4

ln7 w

3B1

10
(20 ln ln w − 19) + O

(
1

ln8 w

)
.

(85)
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Fig. 6 Two-loop timelike effective expansion function of the second
order A(2)

TL,2(s) [Eq. (79), solid curve] and the approximations corre-
sponding to various orders of its re-expansion (85). The result of “naive”
continuation (12) [the first term on the right-hand side of Eq. (85)] is
shown by dashed curve. Numerical label next to a dot-dashed curve
indicates the highest absolute value of power of ln w retained on the
right-hand side of Eq. (85). The plotted functions are scaled by the fac-
tor of 10. Vertical solid line marks the boundary of convergence range
of the re-expansion (85) at

√
s/Λ = exp(π/2) � 4.81

Specifically, the dashed curve shows the result of naive con-
tinuation of the respective term of the Adler function per-
turbative expansion into the timelike domain (12) [the first
term on the right-hand side of Eq. (85)], whereas the dot-
dashed curves additionally include7 the lowest-order π2-
terms [numerical labels indicate the highest absolute value of
power of ln w retained in Eq. (85)]. Figure 6 implies that the
re-expansion (85) converges rather slowly at low and mod-
erate energies. Furthermore, even at relatively high energies
A(2)

TL,2(s) (79) considerably differs from [a(2)
s (|s|)]2, the lat-

ter being the only part of the function (79), which is retained
in the two-loop approximation of the R-ratio (31). For exam-
ple, as one can infer from Fig. 6, for

√
s/Λ = 20 the function

[a(2)
s (|s|)]2 exceeds A(2)

TL,2(s) by about 21%, and to securely
achieve 10% accuracy in the re-expansion (85) the inclusion
of the π2-terms up to the order of ln−7 w is required.

The issue of the higher-loop stability of the R-ratio of
electron–positron annihilation into hadrons is also elucidated
by Fig. 7. In particular, this figure displays the proper expres-
sion R(�)(s) [Eq. (10), solid curves], its naive form R(�)

naive(s)
[Eq. (12), dot-dashed curves], and the truncated re-expanded
approximation R(�)

appr(s) [Eq. (31), dashed curves] at various
loop levels (1 ≤ � ≤ 5). Figure 7 makes it evident that the
loop convergence of the commonly employed approximation
R(�)

appr(s) (31) is worse than that of both the proper expression

7 Note that all the terms of the re-expansion (85) (except for the
naive one) appear to be discarded in the two-loop approximate expres-
sion R(2)

appr(s) (31).

Fig. 7 The function R(�)(s) [Eq. (10), solid curves], its naive form
[Eq. (12), dot-dashed curves], and the re-expanded approximation
[Eq. (31), dashed curves] at various loop levels (1 ≤ � ≤ 5). Ver-
tical solid line marks the boundary of convergence range of the re-
expansion (31) at

√
s/Λ = exp(π/2) � 4.81. Numerical labels specify

the loop level

R(�)(s) (10) and the naive one R(�)
naive(s) (12). As discussed

earlier, this is primarily caused by the fact that the conver-
gence range of the re-expanded approximation (31) is strictly
limited to

√
s/Λ > exp(π/2) � 4.81, which, in turn, results

in rather large values of the higher-order coefficients δ j (32)
embodying the contributions of the corresponding π2-terms
(30). In particular, as one can infer from Fig. 7, beyond the
two-loop level (i.e., for � ≥ 3) the curves corresponding to
R(�)(s) (10) are nearly indistinguishable from each other,
whereas the curves corresponding to R(�)

appr(s) (31) start to
swerve quite above the boundary of its convergence range.
For example, at

√
s/Λ = 2 exp(π/2) � 9.62 the relative

difference between the �-loop and (� + 1)-loop strong cor-
rections to the proper expression R(�)(s) (10) is 0.4% for
� = 3 and 0.003% for � = 4, whereas for the case of the
commonly employed approximation R(�)

appr(s) (31) these val-
ues increase up to 4.4% for � = 3 and 2.5% for � = 4.

To expound the accuracy of approximation of the R-ratio
(10) by its truncated re-expansion R(�)

appr(s) (31), it is worth-
while to mention also the following. At a moderate energy
scale of the mass of τ lepton

√
s = Mτ the relative differ-

ence between the �-loop strong corrections r (�)(s) (10) and
r (�)

appr(s) (31) turns out to be as high as 26%, 28%, 14%, 2%,
and 7% at the one-, two-, three-, four-, and five-loop levels,
respectively. Moreover, it appears that even at high energies
the ignorance of the higher-order π2-terms in the truncated
re-expanded approximation (31) may produce a considerable
effect. In particular, this issue is illustrated by Fig. 8, which
displays the quantity
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Fig. 8 The function R(�)
diff(s) (86) in the energy range planned for the

future CLIC experiment [4] at various loop levels

R(�)
diff(s) =

∣∣∣∣∣
R(�)

appr(s) − R(�)(s)

R(�)
appr(s) − R(�+1)

appr (s)

∣∣∣∣∣ × 100% (86)

at various loop levels. Specifically, as one can infer from
Fig. 8, in the energy range planned for the future CLIC exper-
iment [4] the effect of inclusion of the π2-terms discarded
in the approximate expression R(�)

appr(s) (31) is either com-
parable to or prevailing over the effect of inclusion of the
next-order perturbative correction.

7 Conclusions

The strong corrections to the R-ratio of electron–positron
annihilation into hadrons are studied at the higher-loop lev-
els. In particular, the derivation of a general form of the
commonly employed approximate expression for the R-ratio
(which constitutes its truncated re-expansion at high ener-
gies) is delineated, the appearance of the pertinent π2-terms
is expounded, and their basic features are examined. It is
demonstrated that the validity range of such approximation
is strictly limited to

√
s/Λ > exp(π/2) � 4.81 and that

it converges rather slowly when the energy scale approaches
this value. The spectral function required for the proper calcu-
lation of the R-ratio is explicitly derived and its properties at
the higher-loop levels are studied. The developed method of
calculation of the spectral function enables one to obtain the
explicit expression for the latter at an arbitrary loop level. By
making use of the derived spectral function the proper expres-
sion for the R-ratio is calculated up to the five-loop level and
its properties are examined. In particular, it is shown that the
loop convergence of the proper expression for the R-ratio
is better than that of its commonly employed approximation

and that the omitted higher-order π2-terms in the latter may
produce a considerable effect.
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