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Abstract Starting from an analytical expression for the
Helmholtz free energy we calculate the thermal corrections
to the Casimir energy density and entropy within nearby
ideal parallel plates in the vacuum of a massless scalar field.
Our framework is the Kerr spacetime in the presence of
quintessence and massive gravitons. The high and low tem-
perature regimes are especially analyzed in order to distin-
guish the main contributions. For instance, in the high tem-
perature regime, we show that the force between the plates is
repulsive and grows with both the quintessence and the mas-
sive gravitons. Regarding the Casimir entropy, our results
are in agreement with the Nernst heat theorem and there-
fore confirm the third law of thermodynamics in the present
scenario.

1 Introduction

The Casimir effect is, at its roots, the negative pressure acting
between extremely close neutral ideal metallic plates in a per-
fect air void [1]. From the point of view of classical electrody-
namics, there is no force acting between them; thus, the only
possible explanation is that it results from the modifications
of the quantum vacuum oscillations of the (zero-point) elec-
tromagnetic field determined by the plates boundaries. The
effect is also found in strong gravitational field backgrounds
in spacetimes with non-Minkowskian topology [2,3]. In such
cases, there are in principle no material boundaries, but there
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exist some identification conditions imposed on the quan-
tum fields which play the same role. Nowadays, we know
that this phenomenon is not just inherent to the electromag-
netic field but also to other vacua, such as the scalar, fermion,
and tensor zero-point fields, and that it takes place between
generic surfaces of real materials. See [4–6] for a compre-
hensive review on the Casimir effect. Among recent related
work, we mention [7–11].

Intensive research has also been devoted to the Casimir
effect in cosmological models with non-trivial geometries
and topologies (see e.g [6]). In this scenario, it is crucial
to take into account the thermal corrections to the Casimir
energy which will contribute to the energy-momentum ten-
sor. This is mandatory for an appropriate description of the
Universe at early stages, when the temperature was extremely
high. Along this line of research, the total thermal stress-
energy tensor of the scalar field was considered [12] in the
Einstein cosmological model. The neutrino and electromag-
netic fields were also considered in the Einstein and closed
Friedmann cosmological models [13], in which cases the
total and Casimir free energy and the Casimir contributions
to the stress-energy tensor were obtained, as well as their
asymptotic behaviours at low and high temperatures.

For othes work on this subject devoted to the study of
the thermal correction to the Casimir effect in the Einstein
Universe, we can mention [14–16], as well as [17], where
more involved topologies were taken into account.

Likewise, in astrophysical scenarios, particularly those
containing black holes and dark energy, it is important to cal-
culate the thermal corrections to the Casimir energy and other
thermodynamic quantities to understand the role played by
the gravitational field, the boundaries, the spacetime topol-
ogy and temperature on the behaviour of the different quan-
tum fields.
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In the last two decades investigations report on the possi-
ble existence of a kind of cosmic dark energy which should be
the principal substance of the Universe and the source of an
accelerated global expansion. Although its origins and nature
are still unknown its effect has been measured with accu-
racy [18]. There are theoretical models such as the �CDM,
based on a cosmological constant, where dark energy has a
constant density throughout the Universe. Others consider a
space and time variable dark density modelled by physical
fields dubbed quintessence (see e.g [19,20] and the refer-
ences therein). At astrophysical scales, we can conjecture the
existence of quintessential matter concentrated around stellar
objects producing an additional gravitational shift of the light
coming from distant stars [21]. Such effects may be under-
stood by means of particular analytical solutions of general
relativity where quintessence matter surrounds static [22] or
rotating black holes [23,24]. It has been shown that for an
appropriate choice of some quintessential state parameters
one can add other ingredients such as the source’s electric
charge. In the present paper, we will introduce quintessence
together with massive gravitons according to the proposal of
de Rham, Gabadadze and Tolley (dRGT) [25,26].

It is opportune to mention that the inclusion of massive
mediators of gravity into general relativity has been a diffi-
cult task for it is not just enough to introduce a term with
the right momentum dimension obeying general covariance.
Since the first attempts, in 1939 [27], several corrections
have been made along the years. Among these, significant
progress took place in the early 1970s. Particularly, the dis-
covery and treatment of the van Dam–Veltman–Zakharov
discontinuity arising in the linear approximation [28–30] the
origin of which is related to the validity of predictions inside
the Vainshtein radius. Fortunately, the usual general relativ-
ity predictions can be recovered with a specific procedure of
non-linear massive gravity [31]. However, ghost instabilities
were soon found [32] for such non-linearity generates higher
derivative terms in the equations of motion. It took 30 years to
show that this issue could be circumvented by using the well
known Stuckelberg mechanism [33]. In order to avoid reap-
pearance of ghosts in massive gravity, the set of allowed mass
terms was restricted and built perturbatively in the dRGT
model. The dRGT massive gravity is thus constructed so that
the equations of motion have no higher derivative terms and
the ghost field disappears. Despite these advances, the model
is difficult to handle and analytical solutions can be hardly
found.

Is gravity massive or not? If it is, which are the implica-
tions, local and cosmological? The central one is to change
the behaviour of gravity at cosmological (huge) extents
while keeping that of ordinary (massless) general relativity
at shorter distances. In a sense, this can be faced as a bimetric
model which may answer the dilemma of accelerated expan-
sion of the Universe, viz. the dark energy or quintessence

problem. Its connection with the Casimir effect can certainly
shed some light on this puzzle (see for instance [34] where
it has been considered in the perspective of dealing with the
cosmological constant problem).

With this idea in mind, here we calculate the Casimir
energy at finite temperature in the quantum vacuum of a
scalar field in a cavity orbiting a rotating spherical body sur-
rounded by quintessence. Furthermore, we will assume the
presence of gravitons with non-zero mass in such a scenario.
This setup is chosen in order to investigate the effects of both
the relativistic gravitational attraction and dragging of space-
time around the body, and the implications of quintessence
and massive gravitons on the regularized vacuum energy of
a massless scalar field. Our study follows that in [35] which
analyzed the gravitational and rotational effects due to Kerr
spacetime on that energy. At the same time, we generalize
very recent outcomes [36] where thermal effects are consid-
ered. In Sect. 2 we present general considerations on the
Casimir effect in the Kerr black hole in the presence of
quintessence and massive gravitons. Section 3 is devoted to a
discussion of the thermal corrections to the Casimir effect and
present the results concerning Casimir energy and entropy.
In Sect. 4 we present our conclusions.

2 Casimir effect in the Kerr black hole surrounded by
quintessence and massive gravitons

The spacetime generated by an axisymmetric gravitational
source of mass M and angular momentum J , surrounded by
quintessence, can be described by an extension of a met-
ric recently found by Ghosh [23] obtained by means of
Newman–Janis complex transformations made on the static
counterpart of a black hole with quintessence as solved by
Kiselev [22]. Here, the quintessence and the graviton mass
are characterized by a set of state parameters �i and αi . In
Boyer–Linquidist coordinates, the extended metric results in

ds2 =
(

�̃ − a2 sin2 θ

�

)
dt2

+ 2a

(
1 − �̃ − a2 sin2 θ

�

)
sin2 θdtdφ

− �

�̃
dr2 − �dθ2 − Ã

�
sin2 θdφ2, (1)

where

a = J/M, � = r2 + a2 cos2θ,

�̃ = r2 + a2 − 2Ma r −
∑

i=o,1,2,3

αi�
(1−3�i )/2,

Ã = �2 + a2 sin2 θ
(

2� − �̃ + a2 sin2 θ
)
, (2)
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and we use units such that c = h̄ = G = 1. The first
of the new parameters, �o, describes the state of infla-
tional quintessence which, considering the actual acceler-
ated expansion of the Universe pushed by dark energy (de
Sitter outer horizon) obeys �o ∈ (−1,−1/3). The inter-
val �o ∈ (−1/3, 0) corresponds to a flat inner horizon; the
special values �o = 1/3, �o = 0, and �o = −1 corre-
spond, respectively, to a Universe with dominance of rela-
tivistic matter, dust matter, or a cosmological constant; the
values �o < −1 lead to the so-called phantom energy [37].

The parameter αo is such that the state equation for the
quintessential mass density is given by ρq = �o pq where

pq = − 3αo

2r3(�o+1)
. (3)

is the quintessence pressure [22]. The other state parame-
ters in Eq. (2), �1,�2,�3, describe entities identified with
elements of the dRGT model of massive gravity in which
the gravitons have mass mg [23] which we associate with
the corresponding αi . Thus, �1 = −1/3 and α1 = ζm2

g
are identified with a global monopole-like potential term
which appears as a constant correcting the Newtonian one;
�2 = −2/3 and α2 = γm2

g are associated with a potential
term linear in r ; and �3 = −1, α3 = λm2

g are linked to
a cosmological constant-like term [38], which overlap with
�o = −1 state parameter of the quintessence itself. The
parameters ζ , γ and λ are proportionality constants, with
units of (length)2, (length) and being dimensionless, respec-
tively. It is worth to notice that for αo,1,2,3 = 0, Eq. (1)
reduces to the standard Kerr black hole where �̃ = � and
Ã = A. In the particular case a = 0, the metric yields
the Schwarzschild solution surrounded by several kinds of
quintessential matter according to the Kiselev description
[22].

Here, we also extend the work of Sorge [35] which stud-
ied the vacuum energy of a scalar massless field confined
in a Casimir cavity moving in a circular equatorial orbit
in the exact Kerr spacetime geometry. The cavity is in a
locally co-moving referential frame where Cartesian coor-
dinates (x, y, z) are centred on one of the plates so that the
z axis is tangential to the path of the circular orbit. Thus,
the relation between the spherical coordinates centred in the
source and the Cartesian axes of the orbiting system with
angular velocity , is dy = dr , dz = r dφ′ and dx = −r dθ ,
where φ′ = φ − t . Therefore, in the orbiting Cartesian
frame the metric becomes

ds2 = C̃−2 ()dt2 − Ã

r�
sin2θ (ω̃d − ) dtdz

− �

�̃
dy2 − �

r2 dx2 − Ã

r2�
sin2θdz2, (4)

where ω̃d is the angular velocity of the dragging of the space-
time around the gravitational source

ω̃d = − gtφ
gφφ

= 2Mar

Ã
, (5)

and

C̃−2 () = ��̃

Ã

[
1 − Ã2

�̃�2
sin2 θ ( − ω̃d)

2
]

. (6)

With these equations, we can calculate the normal modes, ωn ,
and the Casimir energy. Note that considering α = 0 (viz.
no quintessence) removes the tilde in the above expressions,
and further specializing θ = π/2 retrieves the results in [35].

The massless scalar field obeys the covariant Klein–
Gordon equation, given by

[
1√−ĝ

∂μ

(√
−ĝĝμν∂ν

)
+ ξ R

]
φ (t, x) = 0, (7)

where ĝμν is the metric given by the inverse matrix of Eq. (4)
which can be considered almost constant inside the cavity
since L � r . Assuming minimal coupling (ξ = 0) for sim-
plicity leads to

ĝμν ∂μ∂ν φ(t, r) = 0. (8)

The eigenfunctions of the scalar field confined to a cavity
limited by parallel plates orbiting the black hole, φn , read
[36]

φn (t, x, y, z) = Nne
i(kx x+ky y−ωn t)eiβn z sin

(nπ

L
z
)
, (9)

where

βn = Ã ( − ω̃d) sin2 θC̃2


r�
ωn, (10)

and Nn is the normalization constant, given by

N 2
n = r3

(2π)2 Lωn�2 sin θ

√
Ã

�̃
C̃−3

 . (11)

The eigen frequencies of the confined field are

ωn = r√
�̃ sin(θ) C̃2



[(nπ

L

)2+ �̃ sin2 θC̃2


�

(
k2
x+ �̃

r2 k
2
y

)] 1
2

.

(12)

Since the proper length of the cavity is

L p = C̃

sin θ
√

�̃

r
L , (13)
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the regularized Casimir energy density in a cavity orbiting a
massive spherical rotating body surrounded by quintessence
reads

〈εvac〉(ren) =− π2

1440L4
p

√
�

r2

[
1− Ã2

�̃�2
sin2 θ ( − ω̃d)

2
] 1

2

.

(14)

It is easy to verify that when the cavity is at the north pole
the Casimir energy density is simply

〈εvac〉(ren) = − π2

1440L4
p

√
r2 + a2

r2 , (15)

which depends just on the angular momentum of the source
and have no traces of the quintessential matter. In the equa-
torial plane (θ = π

2 ) the result found in [35] is recovered for
α = 0. It is worth noting that turning off the rotation of the
source (a = 0) retrieves the Casimir energy of the massless
scalar field in the Minkowski space vacuum. Notice also that
the expressions (14) and (15) also correct Eqs. (34) and (35)
in Ref. [36] which had both a (wrong) inversion in the rooted
factor.

3 Thermal corrections to the Casimir energy

The renormalized Helmholtz free energy associated with the
vacuum in a finite volume V is given by [6]

F̃0 = E (ren)
0 + �T F0 − O(T 2) − O(T 3) − V fbb, (16)

where E (ren)
0 = Vp 〈εvac〉(ren) is the temperature-independent

renormalized vacuum energy, Vp being the proper volume of
the cavity. The other terms are

�T F0 = S0kBT
∫

d2k
(2π)2

∞∑
j

ln

(
1 − e

− ω j
kB T

)
and

fbb = kBT
∫

d3k
(2π)3 ln

(
1 − e

− ω(k)
kB T

)
, (17)

where S0 is the area of the plates, kB is the Boltzmann con-
stant, ω j are the frequencies of the normal modes φ j (r, t)
and k is the modulus of the wave vector k. The term V fbb
is the usual black body free energy, and O(T 2), O(T 3) are
obtained from expansion of the free energy for high tem-
peratures. These terms, associated with the black body free
energy of lines, surfaces and volumes, are subtracted from
�T F0 in order to renormalize the thermal vacuum energy
[6]. In fact, we will see that there is no O(T 2) term.

Our aim here is obtaining the thermal energy as well
as other thermodynamic variables, as pressure and entropy,

associated with the vacuum between the plates, which has
proper volumeVp = Sp L p, with Sp = ∫ ∫ √

gxx gyydxdy =
(�/

√
�̃r)S0.

Replacing the normal frequencies given by Eq. (12) into
the first of Eq. (17) we get

�T F0 = S0kBT

(2π)2

∞∑
n=0

∫ ∞
0

∫ ∞
0

dkxdky

× ln

⎧⎨
⎩1 − exp

[
−C̃−1 (, θ)

kBT

×
√

r2

sin2 θ�̃C̃2(, θ)

(nπ

L

)2 + r2

�
k2
x + �̃

�
k2
y

⎤
⎦

⎫⎬
⎭ ,

(18)

since the wave vector has two continuous components par-
allel to the plates (kx , ky) and one discrete perpendicular to
them (kz).

Making the transformations r√
�
kx = k̃x ,

√
�̃
�
ky = k̃y ,

and expanding the logarithm one obtains

�T F0 = − S0�kBT

2πr
√

�̃

∞∑
n=0

∞∑
s=1

1

s

×
∫ ∞

0
k̃|| e

− sC̃−1(,θ)
kB T

[
r2

�̃ sin2 θC̃2(,θ)
( nπ

L )
2+k̃2||

] 1
2

dk̃||,

(19)

where, on the parallel plates, 2π k̃||dk̃|| = dk̃xdk̃y . Changing

the integration variable in the form r2

�̃ sin2 θC̃2(,θ)

( nπ
L

)2 +
k2‖ = r2

�̃ sin2 θC̃2(,θ)

( nπ
L

)2
u2, we get

�T F0 = − S0kBT

2L2

π�r

sin2 θ
√

�̃3C̃2(, θ)

∞∑
n=0

∞∑
s=1

n2

s

×
∫ ∞

1
e
− snπrC̃−2(,θ)

kB T sin θ
√

�̃L
u
udu. (20)

The free energy density of the black body is given by the
second of Eq. (17), and can be directly solved:

fbb = − sin θ�C̃4(, θ)

r2

π2(kBT )4

90
. (21)

Thus, the total free energy (16) is

F̃0 = E (ren)
0 − Vp

∞∑
n=0

∞∑
s=1

×
[
n

s2

C̃(, θ)(kBT )2

2L2
p

+ 1

s3

C̃2(, θ)(kBT )3

2πL p

]

× exp

(
−snπ

C̃(, θ)L pkBT

)

123



Eur. Phys. J. C (2017) 77 :787 Page 5 of 7 787

−O(T 2) − O(T 3) + Vp
C̃3(, θ)π2(kBT )4

90
, (22)

where the integral in Eq. (20) has been exactly solved and we
have used its value for both the proper length and the plate
area.

3.1 Thermal Casimir energy

Defining the free energy density, f̃0 = F̃0
Vp

, and considering
that the density of Casimir energy with thermal corrections
is given by

u(ren)
0 = 〈εvac〉(ren)− T 2 ∂

∂T

(
f̃0
T

)
, (23)

with the aid of Eq. (14) we arrive at

u(ren)
0 = − π2

1440L4
p

√
�

r2

[
1 − Ã2

�̃�2
sin2 θ ( − ω̃d)

2
] 1

2

− C̃3(, θ)π2(kBT )4

30

+
∞∑

n,s=1

[
n2π(kBT )

2sL3
p

+ nC̃(, θ) (kBT )2

s2L2
p

+ C̃2(, θ) (kBT )3

s3πL p

]
e
− snπ

kB T C̃(,θ)L p , (24)

minus a renormalization term proportional to T 3 about which
we will comment below. Notice that the thermal correction
to the Casimir energy depends on the quintessence as well
as on the graviton mass even at the north pole, in contrast to
the T = 0 case where both disappear.

Looking at Eq. (24), we see that the terms dominating
u(ren)

0 at high temperatures are a T 3/L p term and the black
body subtraction. The former is not only of lower degree but
is also irrelevant for the thermal Casimir energy, obtained by
multiplying the energy density by the proper volume, will
no longer depend on L p. Thus, the purely quantum thermal
Casimir energy is given by

U (ren)
0 (T ) ≈ −SpL p

C̃3(, θ)π2(kBT )4

30
. (25)

The black body contribution to the regularized vacuum
energy therefore corresponds to a constant repulsive force
between the plates.

Applying this result to a system with weak gravity and
weak effects of rotation (a2 → 0), considering also  = ω̃d ,
we obtain from Eqs. (2) and (6)

C̃3 ≈ 1 + 3M/r + (r/Rq)
−(1+3�o) + (3/2)γm2

g r, (26)

where we have assumed γ � 0 and made λ = ζ = 0 for
simplicity [38]. Here, Rq is a characteristic length or scale in
which the quintessence yields measurable effects [22]. Thus,
Eqs. (25) and (26) show that at high temperatures the Casimir
effect is destroyed. In fact, the positive value of the Casimir
pressure,

−∂U (ren)
0 (T )/∂Vp ≈

C̃3(, θ)π2(kBT )4

30
, (27)

indicates a repulsion between the plates that gets even
larger with the presence of quintessence. From the details of
Eq. (26) we see that the massive gravity term also gives rise
to repulsive forces at high temperatures, instead of expected.

By taking into account the low temperature regime,
Eq. (24) yields a Casimir energy density given by

u(ren)
0 ≈ − π2

1440L4
p

√
�

r2

[
1 − Ã2

�̃�2
sin2 θ ( − ω̃d)

2
] 1

2

− C̃3(, θ)π2(kBT )4

30

+
(
πkBT

2L3
p

)
e
− π

kB T C̃(,θ)L p + · · · (28)

For T � 0, the force resulting from the first term is in prin-
ciple attractive, as expected, but the second is repulsive. The
following terms have both kinds of components but are heav-
ily smashed by the exponential at low T . In fact, the resulting
sign of the force depends non-trivially on several parame-
ters. Therefore, at low temperature quintessential matter and
graviton mass can intensify or attenuate the force between
the plates and it can be either attractive or repulsive depend-
ing also on the distance, the temperature and the rotational
parameters; see Figs. 1 and 2.

3.2 Casimir entropy

The Casimir entropy, S(C) = − ∂ F̃0
∂T , can be computed from

the Helmholtz free energy given by Eq. (22). In the high
temperature approximation it is given by

S(C) ≈ −Vp
2C̃3(, θ)π2k4

BT
3

45
. (29)

It is worth pointing out that such negative contribution here
arises from the fact that we are dealing with an open system
(namely, just part of a closed system).

We see that the presence of quintessential matter, as
included in C̃3, contributes to diminish the entropy of the
system, while the massive gravitons contribute to increase
the entropy.
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Fig. 1 u0(mg, T ) and u0(mg, 0) depicted at the equator (multiplied by 103) for a set of parameters: r = 10,  = 2ωd , θ = π/2, αo = 0.001,
�o = −1/3, �2 = −2/3, α2 = γm2

g , γ = 10−3, L p = kB = 1
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Fig. 2 u0(�o, T ) and u0(�0, 0) depicted at the equator (multiplied by 103) for a set of parameters: r = 10,  = 2ωd , θ = π/2, αo = 0.001,
�2 = −2/3 , α2 = γm2

g , γ = 10−3, mg = 1, L p = kB = 1

At low temperatures, we find that the leading terms are

S(C) ≈ S0 ζ(0)ζ(3)
C̃2 k3

BT
2

2π
+2S0 C̃

k2
BT

2L p
e
− π

C̃ L pkB T , (30)

where ζ(0) = −1/2 and ζ(3) ≈ 1.202. From the expression
above, we conclude that the Casimir entropy is always grow-
ing as expected, and we verify that limT→0 S(C) = 0 i.e. the
third law of thermodynamics is satisfied.

4 Concluding remarks

We have obtained the thermal corrections to the Casimir
energy of a massless scalar vacuum within parallel plates in
a Kerr spacetime filled with quintessence and dRGT massive
gravitons. This generalization has been performed follow-
ing the procedure developed in the papers of Kiselev [22]

and Ghosh et al. [38]. Our work extends Ref. [36] where
quintessence was considered in massless gravity at zero tem-
perature. We have also extended the results of Zhang [39]
in which thermal corrections were computed although, con-
versely, in the absence of both quintessence or massive gravi-
tons. Furthermore, we have obtained expressions which hold
for arbitrary angles, not just restricted to the equatorial plane
as in recent attempts [35,39].

Indeed, we have shown that both massive gravitons and
quintessence contribute to the regularized vacuum energy,
even when the plates are at the north pole and this is different
from what happens at zero temperature. At very high tem-
peratures we have shown that the cavity effectively behaves
as a black body radiator with a repulsive force between the
plates. Thus, by considering a gravitational source endowed
with a weak field and low rotation, we have also inferred that
such a repulsive force grows with the presence of both the
quintessential matter and the massive gravitons.

123



Eur. Phys. J. C (2017) 77 :787 Page 7 of 7 787

At low temperatures, we have distinguished two main con-
tributions to the pressure in the cavity. One is independent
from the temperature and, as expected, produce an attrac-
tive force. We observe an inverse fourth-order dependence
on the distance, L p, and a more involved dependence on
quintessence and the gravitonic mass. The second term is the
above-mentioned T 4 repulsive contribution which although
less significant in this regime is a new feature to be consid-
ered. The dependence of the Casimir force on the mass of the
graviton and the quintessence matter is in fact quite involved.
It can be appreciated in detail in the figures as a function of
the temperature. We see that even the sign of the force can
flip for different values of the parameters.
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