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Abstract We analyse, in NLO, the physical properties of
the discrete eigenvalue solution for the BFKL equation. We
show that a set of eigenfunctions with positive eigenvalues, ω,
together with a small contribution from a continuum of eigen-
functions with negative ω, provide an excellent description
of high-precision HERA F2 data in the region, x < 0.001,
Q2 > 6 GeV2. The phases of the eigenfunctions can be
obtained from a simple parametrisation of the pomeron spec-
trum, which has a natural motivation within BFKL. The data
analysis shows that the first eigenfunction decouples com-
pletely or almost completely from the proton. This suggests
that there exists an additional ground state, which is naturally
saturated and may have the properties of the soft pomeron.

1 Introduction

The aim of this paper is to apply, for the first time, the com-
plex BFKL Green function approach developed in our two
previous papers [1,2] to the analysis of HERA data. The
new approach, although seemingly equivalent to the discrete
BFKL solution developed in Refs. [3–5], exhibits some dif-
ferences. The most important is that the normalisation of
the eigenfunctions is now determined analytically instead
of being determined only numerically, as was the case in
Refs. [3–5]. As shown in [2], this seemingly minor technical
difference has an important consequence: the convergence of
the eigenfunctions is now much more rapid than previously.
Instead of using O(100) eigenfunctions, as in Refs. [3–5],
we need to use only O(10) eigenfunctions to properly repre-
sent the Green function. This constrains substantially the new
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BFKL solution, exhibits more clearly its physical properties,
and leads to new results.

To obtain a good description of the HERA F2 data it is
necessary to define a non-perturbative boundary condition
defined in terms of phases of eigenfunctions at low gluon
transverse momenta k, close to k ∼ �QCD. Since in [3–5] we
were using a large number of eigenfunctions, O(100), it was
easy to find a simple, ad hoc, parametrisation for these phases.
However, this parametrisation had no physical interpretation.

The first task of this paper is to find a simple parametrisa-
tion for the phases of much fewer eigenfunctions, O(10). In
the search for such a condition we are guided by the princi-
ple of simplicity and some analogy with the Balmer series.
In the QCD version of Regge theory developed in our papers,
the BFKL equation is considered to be analogous to the
Schrödinger equation for the wave function of the pomeron.
The BFKL kernel corresponds to the Hamiltonian and the
eigenvalues ω to the energy eigenvalues. In this paper, we
find that we can specify the boundary condition in terms of
a relation between the eigenvalues ωn of the BFKL opera-
tor and the principal quantum number n. This relation then
determines the boundary condition in terms of the phases ηn
of the eigenfunctions, close to the non-perturbative region,
k ∼ �QCD. In addition, the relation between ω and n is very
simple and, for large n, has a good physical motivation within
the context of the BFKL formalism.

We show in this paper that this new approach leads to
unexpected results and gives a new insight into the role of
gluon density. We recall that the BFKL Green function is
directly related to the gluon density (see below). The proper-
ties of this gluon density are very interesting for the LHC and
cosmic ray physics. They are also interesting in themselves,
because in contrast to the DGLAP evolution [6–8], the BFKL
equation describes a system of quasi-bound self-interacting
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gluons. Such a system is sensitive to confinement effects and
also has some sensitivity to supersymmetry effects (in the
gluon sector), as was first observed in Refs. [3–5] and is also
valid in the present approach.

The paper is organised as follows: In Sect. 2 we recall
the main properties of the BFKL Green function and of
their eigenfunctions, determined in our last papers [1,2]. We
also indicate here the differences between the approach of
Refs. [3–5] and our present approach. In Sect. 3 we introduce
the NLO corrections to BFKL and evaluate the properties of
eigenvalues and eigenfunctions at NLO. In Sect. 4 we apply
this formalism to HERA data and describe the search for a
proper boundary condition and the new results. Finally, in
Sect. 5 we summarise the results and conclude.

2 BFKL Green function

The Green function approach considered here is highly
appropriate since it does not require any cutoff on the BFKL
dynamics and provides a direct relation to the measure-
ments at low-x . Thus, the deep inelastic structure function
F2(x, Q2) can be directly calculated as a convolution of the
Green function with impact factors that encode the coupling
of the Green function to the external particles that participate
in that process. We have

F2(x, Q
2) =

∫
dtdt ′�γ (Q2, t)G(t, t ′,Y )�P (t ′), (2.1)

where Y = ln(1/x), t = ln(k2/�2
QCD), t ′ = ln(k′ 2/�2

QCD);
k, k′ being the transverse momenta of the gluons entering the
BFKL amplitude. �γ (Q2, t) describes the (perturbatively
calculable) coupling of the gluon with transverse momen-
tum k to a photon of virtuality Q2 and �P (t ′) describes the
coupling of a gluon of transverse momentum k′ to the target
proton; see Fig. 1.1

In [1] we determined the BFKL Green function Gω(t, t ′)
(in Mellin space) from the equation

(ω − �̂(t, ν̂))Gω(t, t ′) = δ(t − t ′), (2.2)

where �̂ denotes the BFKL operator, which was given in
terms of the LO characteristic function, χ(αs(t), ν), by

�̂ = √
αs(t)

(
2�(1) − �

(
1

2
+ ∂

∂t

)
− �

(
1

2
− ∂

∂t

))

×√
αs(t), (2.3)

with αs ≡ CAαs/π . By placing
√

αs(t) on either side of the
differential operator we ensured the hermiticity of the whole
operator.

1 The variable t is more appropriate for theoretical analysis, whereas
k is more appropriate for comparison with data. To translate t to k we
assumed that �QCD = 275 MeV.
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Fig. 1 Evaluation of F2 in γ ∗ p scattering using the BFKL Green
function

We have shown in [1,2] that the Green function deter-
mined in this way has poles on the positive real axis of the ω

plane and a cut along the negative ω axis. Therefore it can be
constructed from the complete set of eigenfunctions of the
BFKL operator in the usual way

G(t, t ′,Y ) =
∞∑
n=1

x−ωn fωn ((t) f
∗
ωn

(t ′)

+ lim
ωmin→−∞

∫ 0

ωmin

dωx−ω f−|ω|(t) f−|ω|(t ′).

(2.4)

The spectrum of the eigenvalues ωn was found to be dis-
crete for positive values of ω and continuous for negative
value of ω. The complete set of eigenfunctions with positive
and negative eigenvalues ω was found to satisfy the closure
relation and the orthonormality condition. In addition, the
Green function converges rapidly so it was sufficient to use
only O(10) discrete eigenfunctions (see the discussion below
Eq. (2.17)) to describe properly the gluon density, as com-
pared to our previous work [3–5], where we needed more
than 100 eigenfunctions.

2.1 Eigenvalues and eigenfunctions

In LO BFKL [9–11], with fixed QCD coupling constant αS ,
the eigenfunctions have a simple oscillatory behaviour in
terms of the gluon transverse variable t ,

fω(k) ∼ exp(±iνt), (2.5)

The frequency ν of these oscillations is connected to the
eigenvalue ω by the characteristic equation

ω = αS χ0(ν), (2.6)
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with

χ0(ν) ≡ 2�(1) − �

(
1

2
+ iν

)
− �

(
1

2
− iν

)
. (2.7)

With fixed αS the frequency ν is a one-to-one function of
ω. However, when αS is running ν becomes a function of
t , νω(t), in order to compensate the t variation of αS . For
sufficiently large values of t there is no real solution for νω(t)
of Eq. (2.6). The transition from the real to imaginary values
of νω(t) singles out a special value of t = tc for which

νω(tc) = 0. (2.8)

For values of t below the critical point tc the behaviour of
the eigenfunction remains oscillatory, but above it becomes
exponentially attenuated. This fixes the phase of the eigen-
function at t = tc and together with some fixed non-
perturbative phase ηnp leads to quantisation, i.e. to a discrete
set of eigenfunctions.

To analyse the behaviour of the BFKL equation in the
neighbourhood of the turning point, tc, it is convenient to
define first two related variables, sω(t) and z(t). The variable
sω(t) gives the phase shift from the turning point tc to the
point t and corresponds to the argument of the wave function
of Eq. (2.5). It is defined as

sω(t) =
∫ tc

t
dt ′ νω(t ′) (2.9)

and the (ω dependent) variable z(t) is defined as

z(t) = −
(

3

2
sω(t)

) 2
3

. (2.10)

Using these variables we have shown in [1] that the BFKL
operator, �̂, can be related to the “generalized Airy operator”
as(

ω − �̂

(
t,−i

∂

∂t

))
≈ 1

Nω(t)

(
żz − ∂

∂t

1

ż

∂

∂t

)
1

Nω(t)
.

(2.11)

In this derivation the diffusion approximation was used in the
vicinity of the turning point and the semi-classical approxi-
mation far away from it. Using these approximations we have
shown [1,2] that the most general solution to Eq. (2.11) is
given by the Green function

Gω(t, t ′) = πNω(t)Nω(t ′)
× [

Ai(z(t))Bi(z(t ′)θ(t − t ′) + t ↔ t ′
]
, (2.12)

with

Bi(z(t)) = Bi(z(t)) + cot (φ(ω)) Ai(z(t)). (2.13)

Here Ai(z) and Bi(z) denote the two independent Airy func-
tions. The function φ(ω) is defined as

φ(ω) = sω(t0) + π

4
− ηnp(ω, t0) (2.14)

with ηnp(ω) being a non-perturbative phase, fixed at some
small t0. From (2.12) and (2.13) it follows, as discussed in
Ref. [1], that the BFKL Green function has poles when

φ(ω) = nπ, n = 0, 1, 2, 3 . . . . (2.15)

Equations (2.15) and (2.14) define the eigenvalues ωn , which
are a function of the non-perturbative boundary condition
ηnp(n).

Furthermore, in [1] we have shown that, in the case of
positive ωn , the eigenfunctions of the BFKL operator are
given by

fωn (t) =
√

π

φ′(ωn)
Nωn (t)Ai(z(t)), (2.16)

with Nωn (t) being the normalisation factor, which is given
by

Nωn (t) = |z(t)|1/4√
1
2αs(t)χ ′ (νωn (t)

) . (2.17)

Here χ denotes the BFKL characteristic function which in
LO is simply equal to χ0 but is more complicated in NLO.

The above expression is similar to the eigenfunctions used
in Refs. [3–5] with the difference that the normalisation fac-
tor, Nωn , was not t dependent and was determined by numer-
ical integration. In the first paper, in which we developed our
new approach [1], we argued that this difference is not very
important because the t dependence of the normalisation fac-
tor is very slow and would not sizeably change the shape of
the eigenfunctions. Whereas this is correct for the shapes
in the physical region, it is not true for the normalisation.
The numerical integration, which determines the normali-
sation factor, extends to very large t regions (given by tc;
see Fig. 3), much above the physical region. Therefore, an
enhanced t dependence in [3–5] has a substantial effect when
integrated over large t regions. As explained in [2] the eigen-
function of Eq. (2.16) converges as 1/n2, whereas those of
Refs. [3–5] converge in a much slower pace, as 1/n.

To understand the physical meaning of the function φ

it is useful to asymptotically expand the Airy function of
Eq. (2.16), around t = t0 (but far away from tc),

fωn (t0) ∝ Ai(z(t0)) ≈ 1√
π |z(t)|1/4

sin
(
sω(t0) + π

4

)
.

(2.18)

This means that the function φ is the difference between the
perturbative and non-perturbative phases of the wave func-
tion, which should not depend on t0.2

2 Although we call this phase non-perturbative we fix it in the pertur-
bative region, at t0 equivalent to k0 = 1 GeV, close to �QCD. At this k0
the value of αs is 0.50.
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For negative values of ω Eq. (2.8) has no solution, i.e.
there is no critical point and no quantisation of eigenvalues.
The negative ω eigenfunctions were derived in [2] and are
given by

f−|ω|(t) =
√

2

π

1√
αs(t)χ ′ (νω(t))

× sin

(∫ t

t0
νω(t ′)dt ′ + ηnp

)
. (2.19)

The eigenfunctions defined by Eqs. (2.16) and (2.19) fulfil
the completeness relation

lim
ωmin→−∞

∫ 0

ωmin

dω f−|ω|(t) f ∗−|ω|(t ′)

+
∞∑
n=1

fωn (t) fωn (t
′) = δ(t − t ′) (2.20)

and are orthonormal, as shown in [2].

3 NLO evaluation

To obtain the eigenfunctions of the BFKL equation in NLO
we just need to replace Eq. (2.6) by its NLO counterpart

ω = αsχ0(ν) + α2
sχ1(ν) + O(α3

s ) (3.1)

where χ0(ν) and χ1(ν) are the LO and NLO characteris-
tic functions, respectively. The NLO value of αs was fixed
by measurement at Z0 pole. In our numerical analysis, we
modify χ1 following the method of Salam [12] in which
the collinear contributions are resummed, leaving a remnant
which is accessible to a perturbative analysis. For the analysis
of this paper we use Scheme 3 of Ref. [12] (see Appendix A).

To create the eigenfunctions we have chosen the value of
t0 equivalent to k0 = 1 GeV, close to �QCD but still in the per-
turbative region, with αs(k0) = 0.50. To be able to describe
the measured structure function F2, which has a changing
slope λ, ηnp should vary with n and the value of the non-
perturbative phase ηnp for the leading eigenfunctions should
be close to zero (see the discussion in Sects. 4.1 and 4.3). We
have therefore adopted the convention that n in Eq. (2.15)
should be counted from 1 and ηnp should be confined to the
interval between +π/4 and −3π/4.3 The values of ηn and
the corresponding eigenfunctions, used later in the fit, are not
limited to this interval. They are obtained from the period-
icity of ηn , i.e. by adding (or subtracting) multiples of π on
both sides of Eq. (2.14). In the following we will label the

3 Note that with n = 1 and ηnp = 0 the Eq. (2.14) is well satisfied,
however, it is not satisfied with n = 0 and ηnp = 0, since sω(t0) is
always positive. The periodicity of Eq. (2.14) ensures that the same
eigenfunction is obtained with n = 1 and ηnp = 0 as with n = 0 and
ηnp = π .

η= 0.
η= +π/4

η= -π/4

n

ω

0

0.05

0.1

0.15

0.2

0.25

0 2 4 6 8 10 12 14 16 18 20

Fig. 2 Eigenvalues ωn determined in NLO for three fixed non-
perturbative phases, ηn . The dotted line shows a simple parametrisation
described in the text

eigenvalues and eigenfunctions with n ≥ 1 and denote the n
dependent phase ηnp(n) simply by ηn .

In Fig. 2 we display the eigenvalues ωn obtained from
Eq. (3.1), using three different non-perturbative phases, ηn =
0, π/4,−π/4. The dotted line shows, by the example of the
ηn = 0 case, that the dependence of ωn values from n (for
n > 1) can be simply parametrised by

ω = A

n + B
, (3.2)

as noticed already in [13]. For ηn = 0 we found, in NLO, that
A = 0.52223, B = 1.62001. Since we apply this parametri-
sation below to describe data we recall its derivation given
in Ref. [13]. In LO we can integrate sω(t0) by parts

sω(t0) =
∫ tc

t0
νω(t ′)dt ′

= −νω(t0)t0 + 1

β̄0ω

∫ νω(t0)

0
χ0(ν

′)dν′, (3.3)

where in the last step we used the LO relation t = χ0(ν)/β̄0ω.
For ω values approaching 0, we have

χ0 (νω(t)) = ω

αs(t)
→ 0. (3.4)

Therefore, for small ω and small t0, νω is quickly approach-
ing its asymptotic value, ν0, with χ0(ν0) = 0. In this limit∫ νω(t0)

0 χ0(ν
′)dν′ and νω(t0) become independent of ω and

Eq. (2.14) implies that

nπ = a + b

β̄0ω
+ π

4
− ηn, (3.5)
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Fig. 3 The critical momenta tc determined in NLO for three fixed non-
perturbative phases, ηn . tc = ln k2

c /�
2
QCD with �QCD = 275 MeV

where a, b are constants independent of ω. This leads to the
relation (3.2). In NLO this relation is satisfied already for
n ≥ 2, since νω(t0) is less dependent on ω than in LO. Equa-
tion (3.2) indicates also that for large n, tc = χ0(0)/β̄0ωn

should grow almost linearly with n. This is also a feature of
the NLO computation; see Fig. 3. The value of tc is related
to the value of the critical momenta kc by tc = ln k2

c/�
2
QCD

with �QCD = 275 MeV.
In Fig. 4 we show as example the first three different eigen-

functions 1,2 and 3, computed from Eqs. (2.16) and (3.1), at
phases ηn = 0, π/4,−π/4.

4 Application to data

To apply the BFKL Green function to data, we express the
low-x structure function of the proton, F2(x, Q2), in terms
of the discrete BFKL eigenfunctions by

F2(x, Q
2) =

∫ 1

x
dζ

∫
dk

k
�γ (ζ, Q, k)xg

(
x

ζ
, k

)
, (4.1)

where xg
(
x
ζ
, k

)
denotes the unintegrated gluon density

xg(x, k) =
∫

dk′

k′ �p(k
′)

(
k′ x
k

)−ωn

×k2

(∑
n

f ∗
ωn

(k′) fωn (k)

+
∫ 0

−∞
dωx−ω f−|ω|(t) f−|ω|(t ′)

)
(4.2)

and �p(k) denotes the impact factor that describes how the
proton couples to the BFKL amplitudes at zero momentum
transfer. The impact factor, �γ (ζ, Q, k), which describes the
coupling of the virtual photon to the eigenfunctions, is given
in [14]; the dependence on ζ reflects the fact that beyond the
leading logarithm approximation, the longitudinal momen-
tum fraction, x , of the gluon differs from the Bjorken value,
determined by Q2. �γ (ζ, Q, k) of Ref. [14] is determined
taking into account kinematical constraints allowing for non-
zero quark masses. The (k′/k)ωn factor arises from a mis-
match between the “rapidity”, Y , of the forward gluon–gluon

η=  0.0
η= -π/4
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f n
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Fig. 4 The first three eigenfunctions computed for three fixed non-perturbative phases, ηn
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scattering amplitude used in the BFKL approach,

Y = ln
( s

kk′
)

,

and the logarithm of the Bjorken variable x , which is given
by

ln

(
1

x

)
= ln

( s

k2

)
.

This ambiguity has no effect in LO but in NLO it can be com-
pensated by replacing the LO characteristic function χ0(ν)

by χ0(ω/2, ν), which modifies the NLO characteristic func-
tion χ1 (see Appendix A).

The proton impact factor is determined by the confining
forces. It is therefore barely known, besides the fact that it
should be concentrated at the values of k < O(1) GeV. We
use here a simple parametrisation in the form

�p(k) = A k2e−bk2
, (4.3)

which vanishes as k2 → 0, as a consequence of colour trans-
parency and is everywhere positive. The value of b should
be around 13 GeV−2, i.e. of the inverse square of �QCD =
275 MeV. This is much higher than the value of b determined
from data for the proton form factor, b ≈ 4 GeV−2. Since
the range of the proton impact factor is much smaller than
the oscillation period of the BFKL eigenfunctions we do not
expect that the results should have substantial sensitivity to a
value of b. Therefore we performed the investigation assum-
ing two very different values of the impact factor, b = 10 and
b = 20 GeV−2, corresponding to �QCD ≈ 320 or 220 MeV.
We also used, as a check, an extreme proton impact factor,
�p(k) = A δ(k − k0).

4.1 Properties of HERA data

The HERA F2 data in the low x region can be simply
parametrised by F2 = c (1/x)λ, with the constants c and
λ being functions of Q2; see e.g. [15]. As Q2 increases from
4 to 100 GeV2 λ changes from about 0.15 to 0.3. The BFKL
evaluation of F2, which assumes that ηn is independent of n,
would predict that λ is a constant, independent of Q2 with
λ ≈ ω1, since it is the first pole which dominates F2, when
the value of ηn is fixed. Therefore, the only way that λ can
depend on Q2 is if the infrared phases, ηn , depend on n.
Otherwise, the predicted value of λ will be about 0.25, inde-
pendent of Q2 (see Fig. 2), in clear contradiction with HERA
data.

The fits utilise the highest precision HERA data [16] given
in terms of reduced cross sections from which we extracted
the F2 values, using the assumption that FL is proportional
to F2. We also limit the y range in order to avoid possi-
ble complications of a larger contribution from FL (see e.g.
[15]). Since we are focussing on the comparison with the F2

measurements, we only use the 920 GeV data set of [16]. We
also limited the comparison with data to the region x < 0.001
and Q2 > 6 GeV2 since the BFKL equation is valid at very
low x only. The Q2 cut was chosen to be relatively high to
avoid any complications due to possible saturation correc-
tions [17]. The number of experimental points used for fits
was then Np = 51. (It represents around 1/3 of the whole
low x data sample, defined as x < 0.01, Q2 > 3 GeV2.)

For this investigation we have taken the uncorrelated
errors, obtained by adding in quadrature all the correlated
errors of Ref. [16]. From the data analysis of Ref. [17] we
know that the uncorrelated errors overestimate the error size-
ably, so that the χ2/Nd f of a good fit should be around
0.7, instead of about 1 as in case of correlated errors (see
also [18]).

4.2 Boundary condition

The major challenge in confronting the BFKL predictions
with data is the determination of the infrared boundary con-
dition. For instance, one would wish to find the relation
between the infrared phases, ηn , and the eigenfunction num-
ber, n, which generates a precise description of the data.
At the beginning we tried to parametrise η as a function of
n, using polynomial or other functional dependences. This
failed because we were not able to find any functional depen-
dence which would lead to χ2 < O(500). In the next step
we tried to find a set of ηn (with n = 1, 2, 3 . . . 10) values
using only some assumptions of local continuity. This was
essentially a 10 parameter fit, with some limitations. After a
longer search, using permutation methods to avoid any pre-
conceptional bias on the form of the η−n relation, we found
a set of 10 ηn values which gave an acceptable χ2 ≈ 40.
Studying this set we noticed that it can be well parametrised
by an ω−n relation, similar to Eq. (3.2),

ω = A

n + B
+ C, (4.4)

with a value of C which is very small, but nevertheless non-
zero. The ηn values were then obtained from Eqs. (2.14) and
(2.15), by

ηn = sωn (t0) + π

4
− nπ. (4.5)

The parameters A, B and C , together with ηneg, the phase
of the negative omega contribution, were considered as free
parameters of the fit, which we call in the following the ABC
fit. In addition to these four parameters the overall normali-
sation was also fitted to data.

As we observed that the system was exhibiting a multi-
tude of local optima, we used the Bayesian Analysis Toolkit
(BAT) [19] to find the global optimum. BAT generates sam-
ples in parameter space via Markov chain Monte Carlo
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Fig. 5 Probability density of the ABC fit as a function of the B and C parameters. The legend shows the probability scale in arbitrary units

Table 1 Results of the ABC fit to 51 data points with x < 0.001 and
Q2 > 6 GeV2

b (GeV−2) 10 20

A 0.48771 0.47905

B 1.37933 1.34020

C 0.001578 0.002424

ηneg − 0.0754 − 0.0518

χ2 32.9 33.1

(MCMC), distributed according to the posterior probabil-
ity of the parameters. The best fit value is the parameter set
with the highest posterior probability, corresponding to the
lowest χ2-value. Figure 5 shows a marginalised distribution
of the ABC fit, for the variables B and C . The regions of
higher probability are shown as coloured areas, with proba-
bility increasing as the colour changes from blue over green
to yellow. The small circle shows the position of the best fit,
given in Table 1. The complicated structure of the probability
distribution is also seen as a function of A and B variables
(see Fig. 6).

Figures 5 and 6 show that the probability distribution has
a complicated structure; there are several extended regions
of higher probability, which are completely disconnected. In
this situation the usual fitting methods, based on MINUIT,
work poorly, since they assume a smooth increase in proba-
bility towards the real minimum.

Using the BAT together with the above parametrisation we
found an excellent agreement with data, χ2/Nd f ≈ 33/46.

We performed this fit for several specific values of the param-
eters b of �p and found that the χ2 values were the same,
within the computational precision of the fit, �χ2 = ±1. For
each value of b the values of the fit parameters, A, B,C and
ηneg, were somewhat different and compensated the change
of b (see for example Table 1). The values of the A and B
parameters are in the usual range, A ≈ 0.5, B ≈ 1.5, similar
to the values at fixed phase, η, (see Eq. (3.2) and below). The
third parameter, C , is very small, O(10−3), i.e. much smaller
than the value of the smallest eigenvalue, ω20 ≈ 0.025, used
in the fit.

In spite of the fact that C is very small, it is impossible to
put its value to zero without seriously deteriorating the qual-
ity of the ABC fit (to χ2 ≈ 150). In standard QCD we should
expect C to be zero so that ωn → 0 when n → ∞, as in the
LO calculation discussed above. However, we noticed that
the parameter C can to be set to zero if we let η1, the phase
of the first eigenfunction, to be a free parameter, instead of
C . The fits obtained in this way are of the same quality as the
ABC fits, they have, however, an unexpected property; the
value of the η1 parameter is always chosen such that the first
eigenfunction decouples (or nearly decouples) from the pro-
ton. This means that its overlap with the proton form-factor
becomes zero (or nearly zero), independent of the choice of
b. Therefore, we determined the phase η1 solely from the
requirement that the first eigenfunction should be orthogo-
nal to the proton impact factor (in this way the parameters A
and B are correlated, for a given impact factor, with the value
of the phase η1). We call this fit the AB fit and give its results
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Fig. 6 Probability density of the ABC fit as a function of the B and A parameters. The legend shows the probability scale in arbitrary units

Table 2 Results of the AB fit to 51 data points with x < 0.001 and
Q2 > 6 GeV2

b (GeV−2) 10 20

A 0.51844 0.51913

B 1.58697 1.58657

ηneg − 0.0911 − 0.0550

χ2 33.9 33.3

in Table 2, for two values of b as example.4 In the AB fit the
first eigenfunction is not used since it is decoupling from the
proton. In addition, we note that an approximate decoupling
happens also in the ABC fit, where the contribution of the
first pole is much smaller than that of the second one, by more
than a factor of 10. Finally we note that in fits of Tables 1
and 2 we used 20 eigenfunctions, to see the convergence (see
below).

The assumption of the decoupling of the first eigenfunc-
tion, together with the AB-relation of Eq. (3.2), leads to a
much simpler probability structure (see Fig. 7), with a steady
increase of probability towards one minimum, i.e., without a
multitude of local minima.

In Fig. 8 we show the η−n relation as computed from the
parameters A, B of the AB fit for two values of b. Note that
η−n relation is visibly different in the two cases, although
the parameters A, B differ by a fraction of per mill only.

4 The values of η1 at the decoupling point, in the AB fit, are η1 =
0.0707 for the b = 10 and η1 = 0.0503 for the b = 20 GeV2 case.

In Fig. 9 we show the same relation as computed from the
parameters A, B,C of the ABC fit for the same two values
of b. Note that the η−n relation is simpler in the AB fit than
in the ABC fit.

In general, we observe that the AB and ABC parameteri-
sations are characterised by a high sensitivity to the values of
ω. The values of the parameters A, B for the case of constant
η, given below Eq. (3.2), differ only by about a percent from
the values in Table 2, and yet produce a very different η−n
relation. A fit to data with constant η would give χ2 ≈ 3000!

4.3 Fit results

In Fig. 10 we show the comparison of the AB fit results with
data (with b = 10 GeV2). Figure 10 shows a very good agree-
ment, corresponding to the excellent χ2 value. The results
obtained with different choices of parameter b, or with ABC
fit, would look the same in this figure.

The BFKL Green function, determined in our approach, is
able to describe the Q2 dependence of the data, given by the
F2 values or by the slope λ, although neither the eigenvalues
nor the AB(C)-parameters are Q2 dependent. In Fig. 11 we
show the comparison of the λ parameter obtained from the
AB fit with data. The λ parameter was determined in the very
low x < 0.001 region and in the Q2 range between 6.5 and
35 GeV2. The Q2 dependence enters indirectly because the
eigenfunctions depend on the transverse momentum k, which
in the convolution with the photon impact factor, leads to a
Q2 dependence.
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Fig. 8 η−n relation as computed from the parameters A, B of the AB
fit

4.4 Discussion of the phase tuning mechanism

The choice of the ω−n relation determines the set of phases
ηn which tune the contributions of the individual eigenfunc-
tions to describe the data. To see how this happens we display
in Fig. 12 the eigenfunctions 1, 2, 3, and as an example of
subleading ones the eigenfunctions 7, 8, 9, as a function of k.
The eigenfunctions are plotted with the ηn phases, for n ≥ 2,
given by the AB fit. The first eigenfunction has the phase η1,
which suppresses its overlap with the proton impact factor.
The figure shows that the leading eigenfunctions 2 and 3 have

b= 10 GeV2
b= 20 GeV2

n

η
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-0.5

0

0.5

1

0 2 4 6 8 10 12 14 16 18 20

Fig. 9 η−n relation as computed from the parameters A, B,C of the
ABC fit

the values fn(k0) ≈ 0, whereas the eigenfunctions 7, 8 and
9, have the values at k0 which are substantially different from
zero.

To see more precisely how the phases determine the over-
laps, we display in Fig. 13 the eigenfunctions 1, 2 and 3 in the
region close to k0, for the fits with b = 10 (full lines) and 20
(dotted lines) GeV2. We see that, in both cases, the eigen-
function 1 starts negative at k0 = 1 GeV but then crosses
zero at k0 ≈ 1.05 and becomes positive. This small negative
region is sufficient to suppress the overlap with the proton
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Fig. 10 Comparison of the AB fit results with data

Fig. 11 Comparison of the λ parameter, obtained in the AB fit, with
data

impact factor and effectively cancel its contribution to F2.
The eigenfunction 2 and 3 do not cross zero, and in both cases
the overlap with the proton and DIS impact factors have the
same signs. They give, therefore, large contributions to F2.
The contributions of the subleading eigenfunctions 7, 8 and 9
are also significant because ηn values are substantially differ-
ent from 0, η7 = 0.23, η8 = 0.32 and η9 = 0.42. This leads
to large overlaps with the proton and photon impact factor,
but in this case they have opposite signs. Their contributions
to F2 are therefore relatively large and have negative sign so
that they can generate a Q2 dependence in the slope λ.

Figure 14 shows the contributions to F2 from individ-
ual eigenfunctions, on the samples of results at Q2 = 6.5
and 35 GeV2. The larger dots show the measured points, the
full blue lines show the BFKL prediction for F2, similar to
Fig. 10. Other lines show the contributions of eigenfunctions
specified in the legend, i.e. the terms

F(n)
2 (x, Q2) =

∫ 1

x
dζ

∫
dk

k
�γ (ζ, Q, k)

×
∫

dk′
k′ �p(k

′)
(
k′ x
k

)−ωn

k2 f ∗
ωn

(k′) fωn (k)

(4.6)

With exception of the contributions of the second and of
the continuous negative ω terms, the contributions of other
eigenfunctions are displayed as a sum of two eigenfunctions,
(3 + 4), (5 + 6), . . . (19 + 20), to simplify the picture. The
black full line shows the contribution of the second, leading
eigenfunction, which is substantially larger than F2.

The contribution of the second eigenfunction, together
with the contribution (3 + 4) and the contribution from the
continuum with negative ω, is positive. The contributions of
the eigenfunctions 5 to 20 are all negative. The negative con-
tributions correct the positive one to reproduce precisely the
measured F2. In this way the effective slope is also changed;
the contribution of the dominating, second term, which has
ω2 = 0.144, is modified to λ = 0.176 at Q2 = 6.5 GeV2 and
λ = 0.265 at Q2 = 35 GeV2, in agreement with data. Note
that the contributions from the subleading eigenfunctions are
much larger at Q2 = 35 GeV2 than at Q2 = 6.5 GeV2 due
to the increased overlap with the photon impact factor. Note
also that the variation of the non-perturbative phases leads
to a slower convergence of the subleading terms than in the
case of a constant η, studied in Ref. [2]. This is expected
because the contribution of the subleading terms has to be
large enough to substantially correct the leading terms in
order to reproduce the data. Nevertheless, we see from Fig. 14
that the contributions of eigenfunctions with n > 16 start to
approach zero., i.e. show convergence.

Summarising we can confirm that an excellent description
of data is achieved by a fine tune of the non-perturbative
phases ηn . This phase tune is a result of a simple ω−n relation
which is well motivated in BFKL and is determined by only
two or three parameters.

4.5 Decoupling of the first eigenfunction and its
consequences

The decoupling or near decoupling of the first eigenfunction
is an unexpected and puzzling feature of this investigation.
The decoupling is not connected to a particular value of the
proton impact factor or to its form. The fits of Tables 1 and 2
together with the example of Fig. 13 show that when we sub-
stantially change the value of the proton impact factor, from
b = 10 GeV2 tob = 20 GeV2, the values of the fit parameters
are re-tuned such that the resulting phases, although sightly
changed, reproduce the data very well and again lead to the
decoupling of the leading eigenfunction. Note that these re-
tunes hardly change the physical properties of the solution,
i.e. the position of the poles, owing to the interplay between
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Fig. 12 Eigenfunctions 1, 2, 3, and 7, 8 and 9 in the k region accessible
to experiments. The eigenfunctions are plotted with the ηn phases given
by the AB fit, performed with the b value of the proton impact factor

equal to 10 GeV−2. The first eigenfunction is plotted with the phase
which decouples it from the proton

Eigenfunctions

k GeV

f n

-0.1

-0.05

0

0.05

0.1

0.15

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5

Fig. 13 Eigenfunctions 1, 2, 3, in the k region close to k0. The eigen-
functions are plotted with the ηn phases given by the AB fit. The first
eigenfunction is plotted with the phase which gives zero overlap with
the proton impact factor. The fits were performed with the b-value of
the proton impact factor given by 10 GeV2 (full lines) and 20 GeV2

(dotted lines)

the phases eigenfunctions and the parameters AB(C). A sim-
ilar result is obtained when we choose a completely different
impact factor, given by a delta function, �p = A δ(k − k0).
Although this is not a realistic impact factor, the results are
similar; the fit selects the phase of the first eigenfunction such
that fω1(k0) = 0. The other parameters are re-tuned so that
the fit reproduces the data with a χ2 value close to 33, as in
the fits of Tables 1 and 2.

From the technical point of view this decoupling occurs
because the position of the critical point of the first eigenfunc-
tion is relatively close to the physical region, kc(1) ≈ 50 GeV,
whereas the critical point of the subsequent eigenfunctions
is far away from it, kc(2) ≈ 3, 3 TeV, kc(3) ≈ 270 TeV,
kc(4) ≈ 20,000 TeV, etc. Therefore, the first eigenfunction
varies more quickly near k0 than the subsequent ones, so that
a very small change in the phase, η1, leads to a large change
of the first contribution.

We have also checked that the results do not depend on
the number of eigenfunction used in the fit, provided this
number exceeds 10. In Table 3 we show the results of fits
made with the first 20, 16, 12 and 10 eigenfunctions. All the
fits were made with the ABC relation and in all cases the fit
has chosen a phase which decouples the first eigenfunction
from the proton.

We conclude therefore that the decoupling or near decou-
pling of the first eigenfunction is a genuine property of this
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Fig. 14 Contributions to F2 of individual eigenfunctions. The dots
show the measured points at Q2 = 6.5 and 35 GeV2, The full blue line
shows the BFKL prediction at these Q2’s, other lines show the con-
tributions of eigenfunctions specified in the legend. With exception of

the second eigenfunction and the continuous negative ω contributions,
the contributions of the eigenfunctions are displayed as a sum of two
eigenfunctions, (3 + 4), (5 + 6), . . . (19 + 20)

Table 3 Results of the ABC fit performed with different number of
eigenfunctions, Nef . All fits were using the same 51 data points, with
x < 0.001 and Q2 > 6 GeV2. The value of the proton impact factor
was b = 10 GeV2

Nef 20 16 12 10

A 0.51768 0.47904 0.44987 0.42753

B 1.58209 1.32672 1.16597 1.95858

C 0.000037 0.002092 0.00431 0.00586

ηneg − 0.0895 − 0.0723 − 0.0738 − 0.0770

χ2 33.4 34.0 34.4 34.7

analysis, independent of the choice of the proton impact fac-
tor or the number of eigenfunctions used in the fit.

It is obvious that this decoupling can only happen because
the leading eigenfunction makes a transition from the nega-
tive to positive values in a region close to the starting point k0.
Such a transition is an indication that the first eigenfunction,
as chosen by the fit, cannot be a wave function of a ground
state because the ground state has to be completely posi-
tive; see Appendix B. Therefore, the decoupling of the first
eigenfunction should be interpreted as an indication that there
exists an additional ground state, corresponding to n = 0.

Our computation gives us some hints about the properties
of such a state. From the values of the turning points, tc(n),
which grows almost linearly with n, Fig. 3, we can estimate
the kc value of the ground state, n = 0, as being around

700 MeV,5 just below our starting value of k0 = 1 GeV.
Such a state would have a high intercept, ω0 ≈ 0.3, and
would not have any oscillations above k0, it would just decay
exponentially with increasing ln(k).

As an example of such a state we show in Fig. 15 the
momentum distribution of a state which could be similar to
the real ground state and which exists in our computation.6

It has kc = 1.05 GeV, ω = 0.37 and η = −2.35.
Indeed, the kc value of the additional ground state, of

around 700 MeV, lays right in the middle of the saturation
region [20–30], where multiple pomeron exchanges should
dominate [31,32]. In our approach, these exchanges would
almost entirely involve the interaction of the low kc ground
state with itself, since its size is much larger than the size of
higher eigenfunctions and the eigenfunctions are orthogonal
to each other. This will lead to unitarisation (saturation) cor-
rections which would substantially affect the properties of
the ground state. The momentum distribution will be shifted
towards the lower k values and therefore its overlap with the

5 Taking as example the b = 10 GeV−2 fit, the tc values of the first
five eigenstates are tc(1) = 10.332, tc(2) = 18.838, tc(3) = 27.429,
tc(4) = 36, 306, which correspond to the characteristic momenta of
kc(1) ≈ 50 GeV, kc(2) ≈ 3, 3 TeV, kc(3) ≈ 260 TeV, kc(4) ≈
21,000 TeV. Taking as �t = tc(2) − tc(1) ≈ 8.5 we obtain from
tc(0) = tc(1)−�t a value kc ≈ 700 MeV. Other values of kc(0) can be
obtained by noting that the increment �t varies slightly with increasing
n.
6 The present numerical setup of the computation does not allow one
to modify k0 easily.
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Fig. 15 Momentum distribution of a state similar to the real ground
state, with kc = 1.05 GeV, ω = 0.37 and η = −2.35

photon impact factor should diminish quickly with increas-
ing Q2. In addition, the saturation correction will damp the
effective exponent of the first eigenfunction, ω ≈ 0.3, to a
value which is compatible with the non-perturbative pomeron
state, λ ≈ 0.1.7

It was already pointed out by Gribov [33], in the frame-
work of the reggeon calculus, that the soft pomeron could
be given by the renormalised, bare pomeron. The renor-
malisation procedure should take into account the correc-
tions due to multiple interactions. This is somewhat similar
to the picture emerging from our analysis. Of course, the
soft pomeron discussed by Gribov, was essentially a non-
perturbative state, determined mostly by nuclear forces.8 In
our case, the bare ground state is, however, a perturbative
state and its multiple interaction are also of perturbative ori-
gin. Its properties are thought determined, to large extent,
by the non-perturbative, nuclear forces which enter into our
analysis through the choice of the non-perturbative phase η.

4.6 Q2 dependence

In Table 4 we show the AB fit results for different Q2 regions,
Q2 > 4, 6 and 9 GeV2, for b = 10 GeV−2 as an example.
The fits with b = 20 GeV2 and/or the ABC fits show very
similar results. The fit with Q2 > 4 GeV2 of Table 4 has a
substantially lower quality than the one with Q2 > 6 GeV2.

7 This is known from e.g. the analysis of HERA data in terms of the
Golec-Biernat–Wuesthoff or BGK model [25,26,28].
8 One of us (HK) would like to thank Al Mueller for an illuminating
discussion on this subject.

Table 4 Results of the AB fit with x < 0.001 and b = 10 GeV−2

Q2 cut (GeV2) 4 6 9

A 0.51852 0.51844 0.51818

B 1.58847 1.58697 1.58356

ηneg −0.0911 −0.0911 −0.0911

Np 59 51 37

χ2 68.5 33.9 17.4

χ2/Nd f 1.25 0.72 0.52
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Fig. 16 Extrapolation of the AB fit results to very low x

Also the fit with Q2 > 6 GeV2 is significantly worse than
the Q2 > 9 GeV2 one. Therefore, it is possible that the
worsening of the fit quality with decreasing Q2 cut is due
to the presence of the hypothetical ground state discussed
above.

4.7 Extrapolation to very low x

In Fig. 16 we show the extrapolation of the AB fit to very
low x values, which can be possibly achieved in some future
ep collider like VHEeP or LHeC. We see that at very large
energies the increase of F2 shows similar slopes at different
Q2 values, unlike at HERA. This is due to the dominance of
the leading trajectory at very low x values.

5 Conclusions and outlook

We have shown here that there exists an infrared boundary
condition, which leads to a precise description of HERA
F2 data, for x < 0.001. We formulated it in terms of a
relation between the eigenvalues, ωn , and the eigenfunc-
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tion number, n. It has a simple form ωn = A/(B + n) or
ωn = A/(B + n) + C , called here AB or ABC relations,
respectively. Both relations are well motivated in BFKL, for
larger n. The ω−n relation determines, within the BFKL
Green function solution, the values of the phases of the eigen-
functions, ηn , close to the non-perturbative region, at small
k ∼ �QCD. The fits using both relations give an excellent
description of data with similar χ2 values.

The fits lead to the unexpected result that the first eigen-
function decouples or nearly decouples. This means that the
overlap of the first eigenfunction with the proton impact fac-
tor is very small or even zero, due to the fact that the first
eigenfunction has a transition region from negative to pos-
itive values, i.e. a node. Therefore, the first eigenfunction
chosen by the fit cannot be a ground state. This suggests, as a
consequence, the existence of a multiply interacting ground
state which may have properties of the soft pomeron. The
contributions of such a state would be rapidly attenuated as
Q2 increases. However, at low Q2, it should dominate the
F2 and diffractive processes. A particularly good place to
study its effects should be the exclusive diffractive vector
meson production, ρ, φ and J/ψ , because in this reaction the
value of the Regge slope, α′, is also measured. We may try
to learn more about it in our forthcoming paper by focussing
the investigation on the region closer to �QCD, by varying
k0 and, last but not least, using the complete information
concerning the errors of HERA data [18].

The present BFKL fits to HERA data predict that in the
very low x region, x 
 10−4, Q2 > 6 GeV2, F2 should
grow with a slope λ which is close to the eigenvalue of the
second eigenfunction and which is Q2 independent. This pre-
diction is possible because there is no interference between
the ground state and the second eigenfunction, since they
are orthogonal to each other and have very different sup-
port. The ω value of the second eigenfunction could easily
be measured on some future ep collider, such as VHEeP [34]
or LHeC [35].

Finally, let us note that the AB(C) fits, should be affected
by supersymmetry or other physics beyond the standard
model (BSM), as discussed in our previous papers [3–5]. This
is because (at least at LO) the constant A is proportional to the
beta function, which changes its value drastically once the
threshold for the production of gluinos or other BSM parti-
cles is crossed. The decoupling of the leading eigenfunctions
makes the analysis of BSM physics simpler, especially on the
future VHeP or LHeC colliders. This is because the ground
state is now very well constrained, the value of the ω2 can
be directly measured, and the values of the higher intercepts,
ωn>2, can be parametrised reliably.
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Appendix A

We rephrase here the original derivation of the BFKL resum-
mation given in Ref. [12]. It is convenient to write

χ0(ν) ≡ χ(0, ν)

where

χ(a, ν) ≡ 2�(1) − �

(
1

2
+ a + iν

)

−�

(
1

2
+ a − iν

)
(6.1)

and

χ̇(a, ν) ≡ d

da
χ(a, ν)

= −� ′
(

1

2
+ a + iν

)
− � ′

(
1

2
+ a − iν

)
. (6.2)

If a is small then up to order a we have

χ(a, ν) = χ(0, ν) + aχ̇ (0, ν) + O(a2). (6.3)

We may write χ1(ν) (defining a quantity χ
reg
1 (ν)) as

χ1(ν) ≡ −Aχ(0, ν) + Bχ̇ (0, ν)

+ 1

2
χ(0, ν)χ̇(0, ν) + χ

reg
1 (ν). (6.4)

By a suitable choice of the constants A and B, we can
arrange for χ

reg
1 (ν) to be free of singularities as ν → ± i

2 .
In this limit we have

χ(0, ν)
ν→±i/2−→ 1( 1

2 ± iν
) + O

(
1

2
± iν

)
(6.5)

and

χ̇(0, ν)
ν→±i/2−→ − 1( 1

2 ± iν
)2 + π2

3
+ O

(
1

2
± iν

)
. (6.6)

Thus,

χ1(ν)
ν→±i/2−→ − 1

2
( 1

2 ± iν
)3 − B( 1

2 ± iν
)2

−
(
A + π2

6

)
1( 1

2 ± iν
) . (6.7)
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Therefore the constants A and B are selected to match the
single and double poles, respectively, of the function χ1(ν)

and in that way χ
reg
1 is free from such singularities.

In Ref. [12] it is pointed out that the correction due to
χ

reg
1 is genuinely negligible and the entire large correction

to the characteristic function come from the terms which are
singular as ν → ±i/2.

Now let us consider another function ω̃(ν) which is
defined as the solution to the transcendental (implicit) equa-
tion

ω̃(ν) ≡ αs(1 − αs A)χ

(
ω̃

2
+ αs B, ν

)
+ α2

sχ
reg
1 (ν). (6.8)

Solving to leading order in αs we have

ω̃ = αsχ(0, ν) + O(α2
s ). (6.9)

Expanding ω̃(ν) up to order α2
s , and using (6.3) we obtain

ω̃(ν) = αs(χ(0, ν) + α2
s

[
−Aχ(0, ν) + Bχ̇ (0, ν)

+ 1

2
χ(0, ν)χ̇(0, ν) + χ

reg
1 (ν)

]
+ O(α3

s )

= αs(χ0(ν) + α2
sχ1(ν) + O(α3

s ). (6.10)

Thus we see that up to order α2
s , the quantities ω(ν) and

ω̃(ν) are identical so that up to that accuracy we may replace
the usual perturbative expression given in (3.1) by ω̃(ν).

On the other hand, the quantity ω̃(ν) does not contain
any singularities as ν → ± i

2 . The singularities we see in
Eq. (6.10) are only present as a result of an expansion. They
are therefore an artifact of this expansion and are not present
for the entire function. Since it is these singular terms that
give rise to the large NLO corrections found in χ1(ν) we may
consider the quantity ω̃(ν) to be the expression in which all
of these large corrections have been resummed.

For the case of the third order pole, this has been estab-
lished exactly, since we know what the origin of the triple
pole is. In rev [12] it is explained that this arises from a mis-
match between the “rapidity”, Y , of the forward gluon–gluon
scattering amplitude used in the BFKL approach,

Y = ln
( s

kk′
)

.

For the resummation of the double and single poles, this is
not known uniquely and there are an infinite number of pos-
sible resummation schemes, of which one is described here,
and three others are discussed in Ref. [12]. All these resum-
mation schemes have in common the fact that they resum all
the collinear singularities (i.e. all poles as ν → ± i

2 and they
are all equivalent to the ordinary perturbative expansion for
ω up to order α2

s . They, of course, differ, in the terms propor-
tional to α3

s and higher—but we have no reason to select one
of these schemes above another in the absence of the NNLO
calculation of the characteristic function. Scheme 3, which

is the scheme considered here, is the one most convenient for
our purposes.

Appendix B

Absence of nodes in the wave function of a ground state

One can define the kinetic energy, T̃ [ψ], as

T̃ [ψ] = − 1

2m

∫ ∞

−∞
ψ(x) ψ ′′(x)dx . (7.1)

Integrating by parts we obtain

T [ψ] = 1

2m

∫ ∞

−∞
((ψ ′(x))2dx, (7.2)

provided the wave function ψ(x) is continuous and has con-
tinuous first derivatives. (The transition from (7.1) to (7.2) is
not valid for the continuous wave functions which do not have
a fully continuous first derivatives, like e.g. ψ(x) ∼ α|x | or
ψ(x) ∼ exp(−α|x |).) In the following, we prefer to use the
kinetic energy of Eq. (7.2) since, in contrast to (7.1), it is
always positive.

Let us first consider the case of the one-dimensional
Schrödinger equation and define the total energy as a func-
tional,

E[ψ] = T [ψ] + V [ψ]
= 1

2m

∫ ∞

−∞
(ψ ′(x))2dx +

∫ ∞

−∞
(ψ(x))2V (x) dx .

(7.3)

In the case of a ground state of energy E0, the functional E[ψ]
takes the minimal value calculated on all possible normalized
wave functions

E0 = min
ψ

E(ψ)

‖ψ‖2 , ‖ψ‖2 ≡
∫ ∞

−∞
(ψ(x))2 dx . (7.4)

Let us assume that the ψ-function changes its sign, for
example, ψ(x)|x→0 ∼ x , and prove that there is a positive
function χ(x) with χ(0) �= 0, which has a smaller energy E .
It would mean that the wave function ψ with a node at x = 0
cannot be the wave function of the ground state.

We choose the trial wave function χ(x) in the form

χ(x)||x |>ε
≡ |ψ(x)|, χ(x)||x |<ε

≡ |ψ ′(0)|
2|ε| (x2 + ε2),

ψ(x)||x |<ε
≈ |ψ ′(0)| x, (7.5)

where ε → 0. Note that χ(x) is a continuous function having
also continuous derivatives at x = ±ε. One can neglect small
corrections ∼ ε3 to the normalisation integral and to the
potential energy V (χ). The main contribution to δE(χ) is
obtained from the kinetic energy,
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δE = T (χ) − T (ψ) = 1

2m

∫ ε

−ε

(ψ ′(0))2(x2/ε2 − 1)dx

= −2(ψ ′(0))2ε

3m
. (7.6)

Because δE < 0 we conclude that, in the case of the
Schrödinger equation, the ground state wave function cannot
have nodes.

Let us turn now to the BFKL equation with the running
coupling constant. In the leading logarithmic approximation
we have

− ω f = HBFKL f, (7.7)

with

HBFKL = √
αs(t)

(
�

(
1

2
+ iν

)

+�

(
1

2
− iν

)
− 2� (1)

) √
αs(t), (7.8)

where

αs(t) = 1

β̄0t
, t = ln

|k⊥|2
�2

QCD

. (7.9)

Here E = −ω plays the role of the total energy in the
Schrödinger equation. The operator ν denotes the momentum
canonically conjugated to the coordinate t ,

[ν, t] = i. (7.10)

As usual in QCD, one can use the perturbative hamiltonian
H for large t > t0 > 0 only. For t < t0 it should be sub-
stituted by an hermitian non-perturbative hamiltonian H̃ and
the corresponding wave functions and their derivatives are
matched at t = t0.

We prove now that the ground state wave function f0,
with energy E0, cannot have a node at t = t1 > t0. For this
purpose, as in the above case of the usual quantum mechanics,
we use a simple trial function χ(t), which is different from
| f (t)| (with f (t1) = 0) only in the small region ∼ ε around
t = t1

χ(t)||t−t1|<ε
≡ | f ′(t1)|

2|ε| ((t − t1)
2 + ε2),

f (t)||t−t1|<ε
≈ | f ′(t1)|(t − t1), ε 
 1. (7.11)

Note that for the BFKL hamiltonian, which has a non-linear
dependence on ν2, it would be natural to introduce a trial
functionχ with continuous higher derivatives in the points t−
t1 = ±ε. But in the correction to the total energy, expressed
in terms of the functional

E =
∫

dt f (t) H f (t), ‖ f ‖ = 1, (7.12)

with the substitution f (t) → | f (t)| → χ(t), the contribu-
tion from the region |t − t1| > ε will remain unchanged. In
the region |t − t1| < ε, the higher derivatives of the BFKL

hamiltonian H , acting on the simple polynomial functions
χ(t) and f (t), should be neglected. Note that this corre-
sponds to the diffusion approximation, because only terms
proportional to ν2, in the expansion of the hamiltonian H ,
should be taken into account.

As above, corrections to the normalisation condition and
to the running coupling factors

√
αs(t) are small. Thus, the

main correction to the total energy of the trial function can
be written as

δE =
∫ t1+ε

t1−ε

αs(t1) 14ζ(3) (χ ′ 2(t) − f ′ 2(t))dt

= −14ζ(3) αs(t1) f ′ 2(t1)
4ε

3
, (7.13)

when ε → 0. Because this correction is negative we conclude
that the ground state wave function for the BFKL pomeron
cannot have nodes.
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