
Eur. Phys. J. C (2017) 77:773
https://doi.org/10.1140/epjc/s10052-017-5350-3

Regular Article - Theoretical Physics

Azimuthal angle correlations at large rapidities: revisiting density
variation mechanism

E. Gotsman1,a, E. Levin1,2,3,b

1 Department of Particle Physics, Raymond and Beverly Sackler Faculty of Exact Science, School of Physics and Astronomy, Tel Aviv University,
69978 Tel Aviv, Israel

2 Departemento de Física, Universidad Técnica Federico Santa María, Valparaiso, Chile
3 Centro Científico-Tecnológico de Valparaíso, Avda. Espana 1680, Casilla 110-V, Valparaiso, Chile

Received: 28 September 2017 / Accepted: 1 November 2017 / Published online: 17 November 2017
© The Author(s) 2017. This article is an open access publication

Abstract We discuss the angular correlation present in
hadron–hadron collisions at large rapidity difference (ᾱS y12

� 1). We find that in the CGC/saturation approach the
largest contribution stems from the density variation mecha-
nism. Our principal results are that the odd Fourier harmonics
(v2n+1) decrease substantially as a function of y12, while the
even harmonics (v2n) increase considerably with the growth
of y12.
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1 Introduction

In this paper we address the problem of the azimuthal
angle correlations of two hadrons with transverse momenta
�pT 1 and �pT 2 and rapidities y1 and y2, at large values of
y12 ≡ |y1 − y1| � 1/ᾱS . Our main theoretical assump-
tion is that these correlations stem from interactions in
the initial state. We are aware that, unlike rapidity corre-
lations which at large rapidities originate from the initial
state interactions due to causality reasons [1], a substan-
tial part of these correlations could be due to the inter-
actions in the final states [2–4]. On the other hand, it
has been demonstrated that at small rapidity difference
ᾱS y12 < 1 the interactions in the initial state [5–14]
yield the value of the correlations, which describe the
major part of the experimentally observed correlations [15–
37].

In this paper we concentrate our efforts on calculating the
long range rapidity part of angular correlations with large
value of the rapidity difference y12. All previous calcula-
tions assumed that ᾱS y12 < 1[5–14]. It turns out that in this
kinematic region, the main source of the azimuthal angle cor-
relations is the Bose–Einstein correlations of identical glu-
ons, corresponding to the interference diagram in the pro-
duction of two partonic showers. Intuitively, we expect that
the correlations in the process, where two different gluons
are produced from two different partonic showers, should
not depend on the difference of rapidities (y12), nor on the
values of y1 and y2. Using the AGK cutting rules [38]1 one

1 In the framework of perturbative QCD for the inclusive cross sections,
the AGK cutting rules were discussed and proven in Refs. [44–52].
However, in Ref. [47] it was shown that the AGK cutting rules are
violated for double inclusive production. This violation is intimately
related to the enhanced diagrams [47–49,52] and to the production of
gluon from the triple Pomeron vertex. It reflects the fact that different
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Fig. 1 Mueller diagrams[39] for two partonic showers production. a
The square of the production amplitudes, while b corresponds to the
interference diagram which leads to the Bose–Einstein correlations.
The wavy lines show the BFKL Pomeron [40–43], while the helical

lines denote gluons. Figure 1c shows the example of a more compli-
cated structure of the partonic cascades, than the exchange of the BFKL
Pomeron. The color of the lines indicates the parton shower
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Fig. 2 The generalization of Fig. 1b for ᾱS y12 � 1. The wavy lines show the BFKL Pomeron[40–43], while the helical lines denote gluons. The
color (blue and black) of the lines indicates the parton shower

can prove that the two gluon correlations can be calculated
using the Mueller diagrams [39] of Fig. 1.

The diagrams of Fig. 1 lead to correlations which do not
depend on y1 and y2, but only for ᾱS y12 � 1. For large y12

the contributions of Fig. 1 decrease. The main goal of this
paper is to find the contributions which survive at large y12

(ᾱS y12 � 1).
At large y12, we have to take into account the emission

gluons, with rapidities y2 < yi < y1, which transform
the Mueller diagram of Fig. 1b to the more general dia-
grams of Fig. 2. The general feature of Fig. 1b is that the
lower Pomerons carry momenta �QT + �p12 and − �QT − �p12

with �p12 = �pT 1 − �pT 2. �QT denotes the momentum along
the BFKL Pomeron. After integration over QT , we obtain
p12 ∼ 1/Rh , where Rh is the size of the target (projectile),
which has a non-perturbative origin. Roughly speaking, the
correlation function turns out to be proportional to G (p12),
where G denotes the non-perturbative form factor of the tar-
get or projectile [12]. This conclusion stems from the value of
the typical QT for the BFKL Pomeron, which is determined
by the size of the largest dipoles in the Pomeron. Figure 2
does not have these features. We will show that the azimuthal
angle correlations originate from the integration over �QT (see
Fig. 2), due to the structure of the vertices of emission of the

Footnote 1 continued
cuts of the triple BFKL Pomeron vertex with the produced gluon lead
to different contributions. We do not consider such diagrams.

gluons with �pT 1 and �pT 2, which have contributions propor-
tional to ( �pT 1 · �QT )n ( �pT 2 · �QT )n . Recall that these kinds
of vertices are the only possibilities to obtain angular corre-
lations in the classical Regge analysis [53]. This mechanism
for azimuthal angular correlations was suggested in Ref. [54]
(see also Refs. [10,55–57]), and in the review of Ref. [57] it
was called the density variation mechanism.

The paper is organized as follows. In the next section
we discuss the contribution of the diagram of Fig. 2 in the
momentum representation. In the remainder of the paper,
we will use the mixed representation: the dipole sizes and
momentum transferred (QT ), which will be introduced in
Sect. 3 and appendix A. Section 4 is devoted to the discus-
sion of the single inclusive production in the Color Glass
Condensate (CGC)/saturation approach. The double inclu-
sive production is considered in Sect. 4, in which the rapidity
dependence of the master diagram of Fig. 2 will be calcu-
lated. In Sect. 5, we estimate the angular correlation function
and Fourier harmonics vn , and we present our prediction for
the dependence of vn on the difference of rapidities (y12). In
Sect. 6 we draw our conclusions and outline problems for
future investigation.

2 Correlations in the momentum representation

The double inclusive cross section of Fig. 2 takes the follow-
ing form:

123



Eur. Phys. J. C (2017) 77 :773 Page 3 of 16 773

d2σ

dy1d2 pT 1 dy2d2 pT 2
(Fig. 2)

=
(

2CFαS

(2π)2
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T

(2π)2
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T
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(2π)2
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T
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(
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T

)
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H
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)
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− �QT − �Q′
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(2.1)

where φG
H

(�kT ,−�k + �Q′
T

)
, as well as all other functions φ

of this type, are the correlation functions, which at Q′
T = 0

give the probability to find a gluon with transverse momen-
tum �kT in the hadron (nucleus) of the projectile (target).

φ
(�kT ,−�k + �QT ; �k′

T ,−�k′
T + �QT

)
describes the interaction

of two gluons with momenta �kT and �k′
T , which scatter at

momentum transferred Q′′
T . N

(
Q′

T

)
is a pure phenomeno-

logical form factor that describes the probability to find two
Pomerons in the projectile or target, with transferred moment
�Q′
T and − �Q′

T . CF = (
N 2
c − 1

)
/2Nc where Nc is the num-

ber of colors. The Lipatov vertex �μ (kT , pT 1) has the fol-
lowing form:

�μ (kT , pT 1) = 1

p2
T 1

(
k2
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T 1

)
. (2.2)

Using Eq. (2.2) we obtain
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(2.3)

We can simplify the master equation (see Eq. (2.1) by observ-
ing that the dependence on Q′

T and Q′′
T is determined by

the non-perturbative scale of the projectile (target) structure,

which in Eq. (2.1) is absorbed in the phenomenological form
factors N (Q′

T ) and N (Q′′
T ). Therefore, the typical Q′

T and
Q′′

T turn out to be of the order of the soft scale μsoft, which
is much smaller that the other typical momenta in Eq. (2.1),
assuming that PT 1 and PT 2 are larger than μsoft. Introducing

μ2
soft =

∫
d2Q′

T

(2 π)2 N
(
Q′

T

)
(2.4)

we can neglect Q′
T and Q′′

T in the BFKL Pomeron Green
functions and rewrite Eq. (2.1) in the form

d2σ

dy1d2 pT 1 dy2d2 pT 2
(Fig. 2)

=
(
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with Eq. (2.3), which takes the following form:
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At high energies the parton densities φG
H

(−�lT , �lT ; Y−y2
)

in Eqs. (2.1) and (2.5) are proportional to exp (�BFKL Y − y2)

for the BFKL Pomeron, where �BFKL = 2.8 ᾱS is the inter-
cept of the BFKL Pomeron. Bearing this in mind, one can see
that the interference diagram for the double inclusive cross
section does not depend on y1, y2 or on y12.

As φG
H

(
−�lT , �lT ; Y − y2

)
∝ exp (�BFKL Y − y2) the

main diagram of Fig. 1a also does not depend on the rapidities
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y1 and y2, and its expression has the following form:

d2σ

dy1d2 pT 1 dy2d2 pT 2
(Fig. 1a)

=
(

2CFαS

(2π)2

∫
d2QT N

2 (QT )

)2 ∫ d2kT
(2π)2

d2k′
T

(2π)2

× φG
H

(
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)
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�μ

(
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)
. (2.7)

The most economical way of calculating the diagram
of Fig. 2, is to use the mixed representation of the BFKL

Pomeron Green function, G
(
�r , �R, �QT ,Y

)
, where r and R

are the sizes of two interacting dipoles, QT denotes the
momentum transferred by the Pomeron, and Y the rapid-
ity between the two dipoles. This Green function is well
known [42,43], and for the completeness of presentation we
discuss it in Appendix A, referring to Refs. [42,43,58–60]
for all details.

3 Single inclusive production in a one parton shower

3.1 BFKL Pomeron: the simplest approach for a one parton
shower

The single inclusive cross section resulting from the one
BFKL Pomeron is well known, and it is equal to

d2σ

dyd2 pT
= 2CFαS

(2π)2

∫
d2kT
(2π)2 φG

H

(�kT , QT = 0; Y − y
)

×φG
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)

�ν

(
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)
.

(3.1)

The relation between the parton densities φ and the Green
function of the BFKL Pomeron has been given in Ref. [46]:

NBFKL (r, r1; y, QT = 0)

= αS

2

∫
d2kT

(
1 − ei

�kT ·�r) φG
H

(�kT , QT = 0; y
)

k2
T

(3.2)

where NBFKL (r, r1; Y ) is given by Eq. (A.1) or by Eq. (A.9),
in the high energy limit. Equation (3.2) can be rewritten as
follows:

φG
H

(�kT , QT = 0; y
)

= 2

αS

∫
d2r ei

�kT ·�r ∇2
r NBFKL (r, r1; y, QT = 0) . (3.3)
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)
=

k2
T
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)2

p2
T

. (3.4)

Substituting Eq. (3.2) and also Eq. (3.4) into Eq. (3.1) we
obtain [46]

d2σ

dy d2 pT
= 8CF

αS (2π)2

1

p2
T

∫
d2r ei �pT ·�r ∇2

r NBFKL
pr
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tr

× (r, r2; y, QT = 0) (3.5)

where Npr and Ntr denote the probability to find a dipole in
the projectile and target, respectively. r1 and r2 are the typical
dipoles sizes in the projectile and target.

As can be seen from Eq. (2.1) we need to generalize
Eq. (3.5) for the case QT 
= 0. Equation (3.1) has to be
replaced by

d2σ
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= 2CFαS

(2π)2

∫
d2kT
(2π)2 φG

H

(�kT , QT ,Y − y
)

× φG
H

(�kT
− �pT , QT ; y)�ν

(�kT , �pT
)

�ν

(
−�kT + �QT , �pT

)
.

(3.6)

Taking into account Eq. (3.2) for QT 
= 0 and
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(3.7)

we rewrite Eq. (3.5) in the form
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dy d2 pT
(QT 
= 0)

= 4CF
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1
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T

∫
d2r ei �pT ·�r

×
{
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}
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− Q2
T

4CF

αS (2π)2

∫
d2r ei �pT ·�r NBFKL

pr (r, r1; Y
−y, QT ) NBFKL

tr (r, r2; y, QT ) . (3.8)

3.2 General estimates

It should be stressed that the single inclusive production has
the form of Eqs. (3.5) and (3.8) for the general structure of the
single parton shower, as was shown in Ref. [46]. For example,
for the process shown in Fig. 1c. We need only to substitute
NG

tr (r, r2; y, QT ) for 2NBFKL
tr (r, r2; y, QT ) where

2NBFKL
tr (r, r2; y, QT ) → NG

tr (r, r2; y, QT )

= 2Ntr (r, r2; y, QT ) −
∫

d2Q′
T Ntr

(
r, r2; y, �QT

− �Q′
T

)
Ntr

(
r, r2; y, �Q′

T

)
; (3.9)

Ntr (r, r2; y, QT ) is a solution to the non-linear evolution
equation. For the case of inclusive production, we can con-
siderably simplify the estimates noting that

∇2
r Ntr (r, r2; y, QT )

r2Q2
s (y)� 1−−−−−−−→ NBFKL

tr (r, r2; y, QT ) � 1;
∇2
r Ntr (r, r2; y, QT )

r2Q2
s (y)� 1−−−−−−−→ 0, (3.10)

where Qs(y) denotes the saturation momentum.
In other words, the main contribution to inclusive produc-

tion comes from the vicinity of the saturation scale, where
r2Q2

s ≈ 1. Fortunately, the behavior of N in this kinematic
region is determined by the linear BFKL evolution equa-
tion [62–67] and has the following form [68]:

Ntr (r, r2; y, QT = 0) ∝
(
r2Q2

s (y)
)1−γcr

with Q2
s

= (1/r2
2 ) exp

(
ω
(
γ = 1

2 + iν = γcr
)

1 − γcr
y

)

= (1/r2
2 )eκ y (3.11)

where γcr = 0.37.
From Eq. (A.8) we see that, for QT 
= 0, the scattering

amplitude decreases at Q4
T r2 r2

2 � 1. Therefore, we need
to consider rather small values of QT : Q4

T r2 r2
2 ≤ 1. The

product of vertices that determines the amplitude has two

terms (see Eq. (A.5)) which are proportional to
(
r2/r2

2

)iν
and to

(
Q4

T r2 r2
2

)Iν
. Therefore, the maximum of ∇2

r N can
be reached if r2/r2

2 eκ y ∼ 1 and Q4
T r2 r2

2 eκ y ∼ 1 and the
amplitude then has the following form:

Ntr (r, r2; y, QT ) ∝ c1

(
r2

r2
2

eκ y

)1−γcr

+ c2

(
Q4

T r2 r2
2 eκ y

)1−γcr
. (3.12)

The first term does not depend on QT and, therefore, the
upper limit of the integral over QT , goes up to

(
Qmax

T

)2 ≈
1/(r r2). The second term, both for Q2

T r r2 < e− 1
2 κ y and

for Q2
T r r2 > e− 1

2 κ y , turns out to be small. Indeed, in the
first region the amplitude is small, while in the second region
we are deep in the saturation domain where ∇2

r N → 0.
Hence, we expect that in the integral over QT , the first term
gives a larger contribution than the second term, and we will
only keep this contribution in our estimates.

4 Double inclusive cross section for two parton shower
production

4.1 The simplest diagram

In this section we calculate the simplest diagram of Fig. 2.
We need to integrate the product of two BFKL Pomerons
over QT (see Eq. (2.5)):

I =
∫

d2QT Vν1

(
�r1, �QT

)
V ∗

ν1

(
�r2, �QT

)
Vν2

(
�r ′
1,

�QT

)
V ∗

ν2

(
�r ′
2,

�QT

)
.

(4.1)

From Eq. (2.5) in the momentum representation, we see that
r1 
= r ′

1 (r2 
= r ′
2), however, they are close to each other,

being determined by the same momentum kT . We assume that
pT 1 < kT , since kT ∼ Qs (Y − y1) � μsoft. Considering
r1 ≈ r ′

1 � r2 ≈ r ′
2 we will show that in the integral over

QT , the typical QT ∼ 1/r2. In other words, the dependence
of QT is determined by the largest of interacting dipoles.

From Eq. (A.8) we see that, for large QT , when r2
1 Q

2
T �

1 and r2
2 Q2

T � 1, the integrand is proportional to 1/Q4
T

and converges. The main region of interest is r2
2 Q2

T � 1
and r2

1 Q2
T � 1. In this kinematic region for the vertices

Vν1

(
�r1, �QT

)
and Vν2

(
�r ′
1,

�QT

)
, we can use Eq. (A.6), while

the conjugated vertices are still in the regime of Eq. (A.8).
Eq. (4.1) then takes the form

I = 26i(ν1+ν2) (−16ν1 ν2) π

×
∫

1/r2
2

dQ2
T

⎧⎨
⎩
(
Q2 r2

1

26

)−iν1

−
(
Q2 r2

1

26

)iν1
⎫⎬
⎭

×
⎧⎨
⎩
(
Q2 r ′2

1

26

)−iν2

−
(
Q2 r ′2

1

26

)iν2
⎫⎬
⎭

cos2
(

1
2

�QT · �r1

)
Q2

T r2
2

.

(4.2)

Assuming that both ν1 and ν2 are small, we see that all four
terms are equal to each other, and the integral can be written
as follows:
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I = 26i(ν1+ν2)
(
−26ν1 ν2

)
π

1

i (ν1 + ν2)

(
r2

1

r2
2

)i (ν1+ν2)
1

r2
2

.

(4.3)

The appearance of the pole ν1 = −ν2 indicates that the
contribution from this kinematic region is large.

Closing the contour of integration on ν2 over the pole, we
obtain

I = 26π ν2
1

1

r2
2

. (4.4)

Actually, the double inclusive cross section depends on
∇2N as we argued in the previous section. Repeating the
procedure for

I =
∫

d2QT ∇2
r1

(
r1 Vν1

(
�r1, �QT

))
∇2
r ′

1

(
r ′

1 V
∗
ν1

(
�r2, �QT

))

×∇2
r2

(
r2 Vν2

(
�r ′
1,

�QT

))
∇2
r ′

2

(
r ′

2 V
∗
ν2

(
�r ′
2,

�QT

))
,

(4.5)

we obtain for small ν1 and ν2

I = 26π ν2
1

1

r1 r ′
1 r

2
2 r

′2
2

. (4.6)

Using the method of steepest descent, to integrate over ν1,
we obtain the following contribution:

I = 25 1

r1 r ′
1 r

2
2 r

′2
2

√
π

(2 D y12)
3 e2�BFKL y12 (4.7)

where �BFKL and D are defined in Eq. (A.2).
Rewriting Eq. (2.5) in the coordinate representation we

obtain

d2σ

dy1d2 pT 1 dy2d2 pT 2
(Fig. 2)

=
(

2CF μ2
soft

αS (2π)2

)2
1

p2
T 1 p2

T 2

∫
d2QT

(2 π)2

×
∫

d2r1 d2r ′
1 d2r̃1 d2r̃ ′

1 e−i �pT 1·�̃r ′
1δ(2)

(
�r1 + �r ′

1 − �̃r1 − �̃r ′
1

)

×∇2
r1
Npr (r1; Y − y1) ei

�QT · �̃r ′
1 ∇2

r̃ ′
1
Npr
(
r̃ ′

1; Y − y1
)

× ∇2
r̃1

∇2
r̃2
N (r̃1; r̃2, QT ; y12) ∇2

r̃ ′
1
∇2
r̃ ′

2
N
(
r̃ ′

1; r̃ ′
2, QT ; y12

)

×
∫

d2r2 d2r ′
2 d2r̃2 d2r̃ ′

2 e−i �pT 2·�̃r2 δ(2)
(
�r2 + �r ′

2 − �̃r2 − �̃r ′
2

)

×∇2
r2
Ntr (r2; y2) ei

�QT · �̃r ′
2 ∇2

r̃ ′
2
Ntr
(
r̃ ′

2; y2
)
. (4.8)

In Eq. (4.8) we have neglected the terms which are pro-
portional to Q2

T (see Eq. (2.5)), since, as we have argued, the
typical QT are small, and because these terms do not lead to
additional correlations in the azimuthal angles. In Appendix

B we calculate this integral and obtain the final expression
for the double inclusive cross section:

d2σ

dy1d2 pT 1 dy2d2 pT 2
(Fig. 2)

= 4π

(
2CF

αS (2π)2

)2 1

p2
T 1 p4

T 2

√
1

2 D (Y − y1)

√
1

(2 D y12)
3

1

D y2
e2�BFKL Y .

(4.9)

4.2 The CGC/saturation approach

The integral over k′
T in Eq. (B.6) has an infrared singularity

with a cutoff at pT 2, since we assume that pT 2 is the smallest
momentum. This reflects the principal feature of the BFKL
Pomeron parton cascade, which has diffusion, both in the
region of small and large transverse momenta. On the other
hand, we know that the CGC/saturation approach suppressed
the diffusion in the small momenta [44], providing the natu-
ral cutoff for the infrared divergency. We expect that such a
cutoff will be the value of the smallest saturation momenta:
Qs(Y − y1) or Qs(y2), which will replace one of the p2

T 2 in
the dominator of Eq. (4.9). Therefore, we anticipate that for
a realistic structure of the one parton shower cascade, (see
Fig. 1c for example), the contribution for the double inclusive
cross section will be different.

We need to specify the behavior of the scattering ampli-
tude in the vicinity of the saturation scale. We have discussed
the basic formulas [68] of Eq. (3.11), but for integration over
the dipole sizes we need to know the size of this region. The
scattering amplitude can be written in the form

N (r1, r2; Y ) =
∫ ε+i∞

ε−i∞
dγ

2π
nin (γ ) eω(γ,0)Y−(1−γ )ξ (4.10)

where ω(γ, 0) is given by Eq. (A.2), replacing 1
2 + iν ≡ γ

and ξ = ln
(
r2

1 /r2
2

)
. The saturation scale is determined by

the line on which the amplitude is a constant (C), of the order
one. This leads to the following equation for the saturation
scale [62,68]:

ω (γcr , 0) Y − (1 − γcr )ξs = 0; ω′
γ (γ, 0) Y − ξs = 0,

(4.11)

which results in the value of γcr given by the equation

ω (γcr , 0)

1 − γcr
= ω′

γ (γ, 0) (4.12)

and gives γcr = 0.37, with the equation for the saturation
momentum:

ξs ≡ ln
(
Q2

s r
2
2

)
= κY = ω (γcr )

1 − γcr
Y. (4.13)
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Fig. 3 a − �N (τ ) = − ∇2

N (τ ) = − 4 τ 1
τ

d
dτ

τ d
dτ

N (τ )

versus τ for the behavior of the
scattering amplitude deep in the
saturation domain[72]. b The
example of a more complicated
structure of the partonic
cascades than the exchange of
the BFKL Pomeron, which are
shown in Fig. 2. The color of the
lines indicates the parton shower
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Expanding the phase ω (γ, 0) Y − (1−γ )ξ in the vicinity
�ξ = ξ − ξs and �γ = γ − γcr we obtain

N (r1, r2; Y )

= C
∫ ε+i∞

ε−i∞
dγ

2π

(
r2

1 Q2
s

)1−γcr

∫
d�γ

2π i
e

1
2 ω′′

γ γ (γ,0)Y (�γ )2+�γ�ξ

= (r2
1 Q2

s

)1−γcr C

√
π

DY
e− (�ξ)2

4DY . (4.14)

At first sight, Eq. (4.14) shows that the amplitude has a
maximum at τ = r2

1 Q2
s = 1. However, this is not correct.

Equation (4.14) gives the correct behavior for τ < 1, while
for τ > 1 we need to take into account the interaction of the
BFKL Pomerons and the non-linear evolution, generated by
these interactions. The general result of this evolution is the
fact that the amplitude depends on one variable [69–72] τ ,
i.e. N (τ ) (as it shows geometric scaling behavior). The peak
at τ = 1 appears in

∇2
r1
N (r1, r2; Y ) = 4 Q2

s (Y )
1

τ

d

dτ
τ

d

dτ
N (τ ) . (4.15)

From Eq. (4.15) we can conclude that the width of the dis-
tribution in r2

1 is of the order of Q2
s , but it depends crucially

on the model for the Pomeron interaction. In Fig. 3a we plot
this value for the behavior of the scattering amplitude deep
in the saturation domain (see Ref. [72]).

This approach is not correct for τ → 1 and −∇2N = 1.58
at τ = 1, but it starts to be small at τ > 2, which could be
large enough to trust the formulas of Ref. [72]. At least such a
conclusion can be justified considering the fit of the DIS data
in the saturation model of Refs. [73,74], which is based on
the idea of Ref. [75], and which has the correct behavior of
the scattering amplitude, both deep in the saturation domain,
and near τ = 1. Hence, we expect that ∇2N decreases faster
than we can see from Eq. (4.14). Bearing these conclusions
in mind, we will calculate the contribution of Fig. 2, keeping
all N in Eq. (4.8) in the vicinities of the saturation scales, by
replacing

∫∞
0 dτ(−∇2N ) = − ∫ 1

0 dτ(−∇2N ).
We will show in the following that we cannot integrate

over the dipole sizes, so that all six Pomerons will be in the

vicinity of the saturation scale. At least two of the Pomerons
occur either deep in the saturation domain, or in the pertur-
bative QCD region. We believe that the largest contribution
stems from the exchange of two Pomerons between rapidities
y1 and y2 (see Fig. 3b), which are in the perturbative QCD
region. Unfortunately, we cannot use the AGK cutting rules
[38], which state that these Pomerons will not be affected
by the Pomeron interaction, and the contributions of these
interactions (see the red Pomeron in Fig. 3b) are canceled.
Indeed, it has been proven that for the double inclusive pro-
duction [47] they are not applicable in perturbative QCD. On
the other hand, these Pomerons carry transverse momentum
QT , unlike the others in the diagram, which is larger than
the saturation scale Qs (y2); hence, their contributions are
suppressed in comparison with the other Pomerons in Fig. 2.
In addition our choice leads to the natural matching with the
region ᾱS y12 < 1.

The integration over QT will produce the same result as
Eq. (4.7), as in the previous section. In Appendix C we dis-
cuss making estimates for the integrals over the dipole sizes
which lead for pT 1 � Q2

s (y1) to the following cross sec-
tion:

d2σ

dy1d2 pT 1
(QT = 0; Eq. (3.5))

= 8CF

αS (2π)2

1

p2
T

∫
d2r ei �pT ·�r ∇2

r NBFKL
pr (r, r1; Y − y, QT = 0)

×∇2
r NBFKL

tr (r, r2; y, QT = 0)

= 8CF

αS (2π)2

1

p2
T

C2 (4γ̄ 2)2 exp

(
− ln2

(
Q2

s (Y − y) /Q2 (y)
)

4D y

)
.

(4.16)

In Eq. (4.16) we used backward evolution from the saturation
boundary where N = C.

The ratio of the two contributions takes the following
form:

R =
d2σ

dy1d2 pT 1 dy2d2 pT 2
(Fig. 3b)

d2σ
dy1d2 pT 1 dy2d2 pT 2

(Fig. 1a)
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Fig. 4 The ratio of Eq. (4.17) at W=13 TeV versus y12, assuming that
the experiment has a symmetric pattern with Y−y1 = y2 = 1

2 (Y−y12).
The dotted line in a is for the estimates for the y12 dependence of the
Bose–Einstein contribution at small y12 [11,76]. a and b The estimates

in the leading order of perturbative QCD with ᾱS = 0.25. In c we take
�BFKL = 0.25 and Q2

s (Y ) ∝ exp (λY ) with λ = 0.25. These numbers
correspond to the BFKL phenomenology

= 1

N 2
c − 1

μ̃2
soft

Q2
s (y2)

8 π5 (2 γ̄ )4 0.18 3.5

×
√

π

(2 D y12)
3 e2�BFKL y12

× exp

(
ln2
(
Q2

s (Y − y1) /Q2 (y1)
)

4D y1

)

× exp

(
ln2
(
Q2

s (Y − y2) /Q2 (y2)
)

4D y2

)
. (4.17)

One can see that Eq. (4.17) demonstrates the additional sup-
pression due to the infrared cutoff at Qs (y2) instead of at pT 2,
as taken in the calculation of the simplest diagram. The factor
exp (2�BFKL y12) reflects the fact that two BFKL Pomerons
between rapidities y1 and y2 are taken in the perturbative
QCD region. It should be stressed that we can only trust
our estimates for values of y12 at which the exchange of the
BFKL Pomeron with rapidity y12 give a contribution smaller
than C. This condition means that

1

(2 D y12)
e2�BFKL y12 < C. (4.18)

Taking �BFKL = 0.25 and Q2
s (Y ) ∝ exp (λY ) with λ =

0.25 (these values correspond to the BFKL phenomenology)
we see that the l.h.s. of Eq. (4.18) is smaller than 0.15 for
y12 ≤ 7. Therefore, we can trust our estimates shown in
Fig. 4 for C > 0.15. We take C = 0.3, which leads to
the contribution of the shadowing corrections of the order of
30%.

The two last factors in Eq. (4.17) stem from the per-
turbative QCD nature of two Pomerons in Eq. (C.8) (see
Eq. (4.16)).

In Fig. 4 we plot the ratio R as a function of y12 for y12 ≤ 7
(see Eq. (4.18). One can see that the ratio increases for large
y12.

5 Azimuthal angle correlations

The azimuthal angle correlations stem from terms ( �QT · �ri )n
in the vertices (see Eqs. (A.5), (A.6)). Indeed, after integrat-
ing over ri these terms transform to expressions of the fol-

lowing type [54]:
( �QT · �pT 1

)m1
( �QT · �pT 2

)m2
, which lead

to the term ( �pT 1 · �pT 2)
m . We have illustrated in Eqs. (A.5)

and (A.6) how these originate from the general form of
the BFKL Pomeron vertices in the coordinate representa-
tion. From Eqs. (A.5) and (A.6) only terms proportional to( �QT · �ri

)n
with even n appear in the expansion. Therefore,

the azimuthal angle (φ) correlation function contains only
terms cos2n (φ), and it is invariant with respect to φ → π−φ.
In other words, vn with odd n turn out to be zero. Hence,
we have the first prediction: the value vn with odd n should
decrease with y12, and their dependence should follow the
dotted lines in Fig. 4a.

We return to Eq. (4.1) and integrate over QT , collect-
ing terms that depend on the angles between �QT and �ri ,
which we have neglected in the previous section. As we have
learned, the typical values of QT ∝ 1/r2 ∼ 1/r ′

2 where r2

and r ′
2 are larger than r1 and r ′

1. In other words, we showed
that the main contributions stem from the kinematic regions
r2

1 Q
2
s (Y − y1) ∼ 1 ( r ′2

1 Q2
s (Y − y1) ∼ 1) and r2

2 Q
2
s (y2) ∼

1 ( r ′2
2 Q2

s (y2) ∼ 1). Assuming that Qs (Y − y1) � Qs (y2)

we conclude that r1(r ′
1) � r2(r ′

2). The typical QT is deter-
mined by the largest dipoles and, therefore, we expect QT ≈
1/r2(1/r ′

2), as has been demonstrated above. Bearing these

estimates in mind, we can replace vertices Vν1

(
�r1, �QT

)

and Vν2

(
�r ′
1,

�QT

)
in Eq. (4.1) by Eq. (A.6) in which we

put QT = 1/r2 and QT = 1/r ′
2, respectively. Taking into

account that r1/r2 � 1(r ′
1/r

′
2 � 1), we obtain
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Vν1

(
�r1, �QT

)
Vν2

(
�r ′
1,

�QT

)

=
⎧⎨
⎩
(
r2

1

26

)−iν1

−
(
Q4

T r
2
1

26

)iν1
⎫⎬
⎭
(

1 − 1

24

( �QT · �r1

)2

+ 1

28

( �QT · �r1

)4
)

×
⎧⎨
⎩
(
r ′2

26

)−iν2

−
(
Q4

T r
′2
1

26

)iν2
⎫⎬
⎭
(

1 − 1

24

( �QT · �r ′
1

)2

+ 1

28

( �QT · �r ′
1

)4
)

. (5.1)

At first sight Eq. (5.1) should enter two angles between �QT

and �r1 and �r ′
1, respectively. However, in the integrand for

integration over ri (see Eq. (B.1)) it depends only on one
vector �pT 1. Therefore, after integration over all angles, we
find that the angle φ in Eq. (5.1) is the angle between �QT

and �pT 1.

For vertices V ∗
ν1

(
�r2, �QT

)
and V ∗

ν2

(
�r ′
2,

�QT

)
in Eq. (4.1)

we use Eq. (A.8). Finally, we need to evaluate the integral

IQ = −16 ν1 ν2

∫
QT dQT

{
Vν1

(
�r1, �QT

)
Vν2

(
�r ′
1,

�QT

)}r1 = r ′
1=1/Qs (Y−y1)

Eq. (5.1)

× (Q2
T

)−i(ν1+ν2)
cos2

(
1
2

�QT · �r2

)
Q2

T r2
2

cos
( �QT · �r2

)
(5.2)

with better accuracy that we did in Sect. 5.1, keeping the
dependence on the angle between �QT and �r2. Note that

the factor cos
( �QT · �r2

)
comes from exp

(
i �QT · �r2

)
in

Eq. (4.8). Taking this integral we substitute for the terms
in parentheses in Eq. (5.1), |QT | = 1/r2

2 (1/r ′2
2 ).

The integral is equal to

IQ = 26i(ν1+ν2)
(
−27ν1 ν2

) (r2
1

r2
2

)i (ν1+ν2)
1

r2
2

×
(

1 − 1

24

(�n · �r1)
2

r2
2

+ 1

28

(�n · �r1)
4

r4
2

)

×
(

1 − 1

24

(�n · �r ′
1

)2
r ′2

2

+ 88,
1

28

(�n · �r ′
1

)4
r ′4

2

)

×
{

1

i(ν1 + ν2)
− 9

32
cos (2φ2) + 3

16
cos (4 φ2)

}

(5.3)

where �n = �QT /QT , and φ2 is the angle between �n and
�n2 = �r2/r2. In Eq. (5.3) the terms in (. . . ) (. . . ) stem from
the expansion with respect to r2

1 /r2
2 � 1. However, for the

terms in {. . . } there are no such small parameters, and we
expand the function of φ2 in a Fourier series.

Integrating over �n one obtains

(. . . ) (. . . ) {. . . } = 1

i(ν1 + ν2)
+ 3

210

r2
1

r2
2

×
(
(�n1 · �n2)

2 + (�n′
1 · �n2

)2)

+ 3

212

r4
1

r4
2

(
(�n1 · �n2)

4 + (�n′
1 · �n2

)4)

(5.4)

where �n1 = �r1/r1, �n′
1 = �r1/r1 and �n2 = �r2/r2. Deriving

Eq. (5.4) we neglected the extra powers of r2
1 /r2

2 , which are
small. Finally

IQ
(�r1, �r ′, �r2; ν1, ν2

) = 26i(ν1+ν2)
(−27ν1 ν2

) (r2
1

r2
2

)i (ν1+ν2)
1

r2
2

×
{

1

i(ν1 + ν2)
+ 9

210

r2
1

r2
2

×
(
(�n1 · �n2)

2 + (�n′
1 · �n2

)2)

+ 3

212

r4
1

r4
2

(
(�n1 · �n2)

4 + (�n′
1 · �n2

)4)}
.

(5.5)

From Eq. (4.8) we can see that the integration over ri can
be written in the form

d2σ

dy1d2 pT 1 dy2d2 pT 2
(Fig. 2)

=
(

2CF μ2
soft

αS (2π)2

)2
1

p2
T 1 p2

T 2

×
∫

d2r1 d2r ′
1 d2r̃1 d2r̃ ′

1 e−i �pT 1·�r1δ(2)

×
(
�r1 + �r ′

1 − �̃r1 − �̃r ′
1

)
∇2
r̃1
r̃1Vpr (r̃1) ∇2

r̃ ′
1
r̃ ′

1Vpr
(
r̃ ′

1

)

×
∫

d2r2 d2r ′
2 d2r̃2 d2r̃ ′

2 e−i �pT 2·�r2δ(2)

×
(
�r2 + �r ′

2 − �̃r2 − �̃r ′
2

)
∇2
r̃2
r2Vtr (r̃2) ∇2

r̃ ′
2
r̃ ′

2Vtr
(
r̃ ′

2

)

× ∇2
r1

∇2
r2

∇2
r ′

1
∇2
r ′

2

(
r1 r2 r

′
1 r

′
2 IQ

(�r1, �r ′, �r2; ν1, ν2
) )

× 2π

{
1

i(ν1 + ν2)
+ 9

210

r2
1

r2
2

(
(�n1 · �n2)

2 + (�n′
1 · �n2

)2)

+ 3

212

r4
1

r4
2

(
(�n1 · �n2)

4 + (�n′
1 · �n2

)4)}
. (5.6)

The tedious calculations of the integral over the dipole
sizes in Eq. (5.6) are collected in Appendix D.

The values of v2 and v4 can be determined from the fol-
lowing representation of the double inclusive cross section:

d2σ

dy1 dy2d2 pT 1d2 pT 2
∝ 1 + 2

∑
n

vn,n (pT 1, pT 2) cos (n ϕ) (5.7)
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where ϕ is the angle between �pT 1 and �pT 2. vn is calculated
from vn,n (pT 1, pT 2),

1. vn (pT ) = √vn,n (pT , pT );
2. vn (pT ) = vn,n

(
pT , pRef

T

)
√

vn,n
(
pRef
T , pRef

T

) . (5.8)

Equations (5.8)-1 and (5.8)-2 depict two methods of how
the values of vn have been extracted from the experi-
mentally measured vn,n (pT 1, pT 2), where pRef

T denotes
the momentum of the reference trigger. These two defini-
tions are equivalent if vn,n (pT 1, pT 2) can be factorized as
vn,n (pT 1, pT 2) = vn (pT 1) vn (pT 2). In this paper we use
the definition in Eq. (5.8)-1.

Introducing the angular correlation function as

C (pT , φ) ≡
d2σ

dy1d2 pT 1 dy2d2 pT 2
(Fig. 3b)

d2σ
dy1d2 pT 1 dy2d2 pT 2

(Fig. 1a)
(5.9)

we obtain

vn,n =
∫ 2π

0 dφ C
(
pT , φ

)
cos (n φ)

2 π + ∫ 2π

0 dφ C
(
pT , φ

) ; vn = √
vn,n ;

(5.10)

In Eq. (4.17) we have calculated the part of C (pT , φ)

which does not depend on φ, which coincides with C(pT ,

φ = 0) = R of Eq. (4.17) for Qs (Y − y1) � Qs (y2). To
calculate the contribution toC , which depends on φ, we need
to take the separate integrals over ν1 and ν2, since the terms,
which are proportional to cos2 (φ) and cos4 (φ) do not have
a pole at ν1 = −ν2 (see Eq. (5.5)). These integrations lead
to the following extra factor in C (pT , φ) − C (pT , φ = 0):

C (pT , φ) − C (pT , φ = 0)

∝ R p2
T

Q2
s (Y − y1)

p2
T

Q2
s (Y − y1)

C (pT , φ = 0) ;

R = 2 ξ2

√
1

(2 D y12)
3 exp

(−2ξ2/ (4 D y12)
)

(5.11)

where ξ = ln
(
Q2

s (Y − y1) /Q2
s (y2)

)
. We took factors pro-

portional to pT from the expression for A (kT , pT 1) and
A(4) (kT , pT 1) putting pT 1 = pT 2 = pT . To find the
final correlation function and v2,2 and v4,4, we need to
collect all numerical factors that come from A (kT , pT 1),
A(4) (kT , pT 1) and Eq. (5.6), and to integrate over φ, as given
in Eq. (5.9).

Note that in the case of symmetric kinematics, where
Y − y1 = y2 = 1

2 (Y − y12), ξ = 0 and Eq. (D.7
vanishes. In this case, we have to use Eq. (A.5) instead
of Eq. (A.6), keeping track of the corrections, which are

proportional to νi . As a result, we can consider ξ = 0
in Eq. (D.7), but we need to replace the factor ξ2 by
1.

Equations (4.17) and (D.7) contain numerical uncertain-
ties, which stem both from the values of the soft parame-
ters μ̃soft and μsoft, as well as the values of the saturation
scale at low energies, and from the integration in Eqs. (C.3)
and (C.5), which were taken neglecting contribution from
the region τ ′ < 1. On the other hand, the contribution to
the double inclusive cross sections of the diagram of Fig. 2
at ᾱS y12 � 1 coincides with the contribution of Fig. 1b,

d2σ (Fig. 2)

dy1 dy2d2 pT 1d2 pT 2

ᾱS y12→ 1−−−−−−→ d2σ (Fig. 1b)

dy1 dy2d2 pT 1d2 pT 2
.

(5.12)

Therefore, to obtain the realistic estimate we use the fol-
lowing procedure of matching:

v2 (pT = 5GeV, y12 = 2) |Fig. 2 = v2 (pT = 5GeV ) |Fig. 1b;
v4 (pT = 5GeV, y12 = 2) |Fig. 2 = v4 (pT = 5GeV ) |Fig. 1b,

(5.13)

wherev2 (pT = 5 GeV) |Fig. 1b andv4 (pT = 5 GeV) |Fig. 1b
are taken from Ref. [14] where the estimates were performed
based on the model for soft interaction which describes all
features of the soft interaction at high energy and provides
an interface with the hard processes.

Figure 5 shows the pT and y dependence of the v2 and
v4 using Eq. (D.8) for normalization. In addition we take
�BFKL = 0.25 and Q2

s (y) ∝ exp (λ y) with λ = 0.25. These
values correspond to the BFKL Pomeron phenomenology.
We believe that this figure illustrates the scale of rapidity
dependence and will be instructive for future experimental
observations.

6 Conclusions

In this paper we generalize the interference diagram that
described the Bose–Einstein correlation for small rapidity
difference ᾱS y12 � 1, to include the emission of the glu-
ons with rapidities (yi ) between y1 and y2 (y1 , yi < y2).
We calculate the resulting diagram in the CGC/saturation
approach and make two observations, which we consider as
the main result of this paper. The first one is a substantial
decrease of the odd Fourier harmonics v2n+1 as a function of
the rapidity difference y12 ( see Fig. 4c). The second result is
that even Fourier harmonics v2n have a rather strong depen-
dence on y12, showing a considerable increase in the region
of large y12 (see Fig. 5). We believe that our calculations,
which have been performed both for the simplest diagrams
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Fig. 5 vn versus pT (a, c) and versus y (b, d) at W = 13 TeV assum-
ing that the experiment has a symmetric pattern with Y − y1 = y2 =
1
2 (Y − y12). In all these figures we use Eq. (D.8) for normalization and

we take �BFKL = 0.25 and Q2
s (Y ) ∝ exp (λY ) with λ = 0.25. These

numbers correspond to the BFKL phenomenology

and for the CGC/saturation approach, will be instructive for
further development of the approach especially in the part
that is related to the integration of the momenta transferred
by the BFKL Pomerons.

We demonstrated in this paper the general origin of the
density variation mechanism, whose nature does not depend
on the technique that has been used. This mechanism has
to be taken into account, since it leads to the values of the
Fourier harmonics that are large and of the order of vn , which
have been observed experimentally.

We hope that the paper will be useful in the clarifica-
tion of the origin of the angular correlation, especially for
hadron–hadron scattering at high energy. We firmly believe
that the experimental observation of both phenomena, the
sharp decrease of vn with odd n and the substantial increase
of vn with even n as a function of y12, will be a strong argu-
ment for the CGC/saturation nature of the angular correla-
tions.
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AppendixA:BFKLPomeron in themixed representation

In this appendix we discuss the BFKL Pomeron Green func-

tion G
(
�r , �R, �QT ,Y

)
in the mixed representation, where r

and R are the sizes of two interacting dipoles, QT denotes
the momentum transferred by the Pomeron, and Y the rapid-
ity between the two dipoles. This Green function has the
following form [42,43,58–60]:

G
(
�r , �R, �QT ; Y

)

= r R

16

∞∑
n=−∞

∫ ∞

−∞
dν

1(
ν2 + 1

4 (n − 1)2
) (

ν2 + 1
4 (n + 1)

)
×Vν,n

(
�r , �QT

)
V ∗

ν,n

( �R, �QT

)
eω(ν,n) Y (A.1)
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where

ω (ν, n) = 2 ᾱSRe

(
ψ

(
1

2
+ 1

2
|n| + ν

)
− ψ (1)

)
;

ω (ν, 0) = 2 ᾱSRe

(
ψ

(
1

2
+ ν

)
− ψ (1)

)

ν�1−−→ �BFKL − D ν2, (A.2)

where ψ(z) is the Euler ψ-function (see Ref. [61] formu-
las 8.36) and �BFKL = ᾱS4 ln 2, D = ᾱS14ζ(3), ξ =
ln
(
r2

1 /r2
2

)
.

Each term in Eq. (A.1) has a very simple structure, being
the typical contribution of the Regge-pole exchange: the
product of two vertices and Regge-pole propagator. From
Eq. (A.2) one can see that at large Y the main contribution
comes from the term with n = 0, and in what follows we will
concentrate on this particular term. The vertices with n = 0
have been determined in Refs. [42,43,58–60], and they have
an elegant form in the complex number representation for the
point on the two dimensional plane, viz.,

For �r(x, y) : ρ = x + iy; ρ∗ = x − iy;
For �QT (Qx , Qy) : q = Qx + i Qy; q∗ = Qx − i Qy .

(A.3)

Using this notation the vertices have the following structure:

Vν

(
�r , �QT

)
=
(
Q2

T

)iν
�2 (1 − iν)

×
{
J−iν

(
1

4
q∗ρ

)
J−iν

(
1

4
qρ∗
)

−Jiν

(
1

4
q∗ρ

)
Jiν

(
1

4
qρ∗
)}

. (A.4)

At QT → 0 this vertex takes the form

26iν Vν

(
�r , �QT

)
QT r � 1−−−−−→

(
r2

26

)−iν

×
⎛
⎝ (ν + i)

(
8( �QT · �r)4 − 8( �QT · �r)2Q2

T r
2 + 5 1

2 Q
4
T r

4
)

+ (2i + ν)Q4
T r

4)

642(ν + 2i)(1 − iν)2

+
i(ν + i)

(
(2( �QT · �r)2 − Q2

T r
2
)

32(1 − iν)2 + 1

⎞
⎠+ (Q2)iν ( Q2r2

26

)iν

×
⎛
⎝ (ν − 2i)

(
8( �QT · �r)4 − 8( �QT · �r)2Q2

T r
2 + 5 1

2 Q
4
T r

4
)
)

212((2 + iν)(1 + iν))2

+
2(1 + iν)

(
(2( �QT · �r)2 − Q2

T r
2
)

26(1 + iν)2 − 1

⎞
⎠ . (A.5)

For small values of ν (which are related to the region of
large ᾱSY � 1), Eq. (A.5) can be simplified and reduced to
the form

26iνVν

(
�r , �QT

)

QT r � 1−−−−−→
(
r2

26

)−iν
(

( �QT · �r)4 − ( �QT · �r)2Q2
T r

2 + 9
16 Q

4
T r

4)

28

−2( �QT · �r)2 − Q2
T r

2

25
+ 1

)

−
(
Q2
)iν (Q2r2

26

)iν (
( �QT · �r)4 − ( �QT · �r)2Q2

T r
2 + 9

16 Q
4
T r

4)

28

−2( �QT · �r)2 − Q2
T r

2

25
+ 1

)
. (A.6)

Using

J−iν (z)
z � 1−−−→ sin

(
1

4
π + z + 1

2
iπν

)√
2

π

√
1

z
(A.7)

at ν � 1 we obtain for Q2
T r

2 � 1

Vν

(
�r , �QT

)
QT r � 1−−−−−→

(
Q2

T

)iν
�2 (1 − iν) cos

(
1

2
�QT · �r

)
4 i ν

QT r
.

(A.8)

The contribution of the first term in Eq. (A.1) can be
reduced to the following form for the scattering amplitude
of two dipoles with sizes r1 and r2:

N (r1, r2; Y ) = r1 r2

16

∫
dν

1(
ν2 + 1/4

)2 Vν (r1, Qt

→ 0) V ∗
ν (r2, QT → 0) eω(ν,0)Y

= r1 r2

16

∫
dν

1(
ν2 + 1/4

)2 eω(ν,0)Y

×
⎧⎨
⎩(r2

1 )−iν −
(
Q4

T r
2
1

212

)iν
⎫⎬
⎭

×
⎧⎨
⎩(r2

2 )iν −
(
Q4

T r
2
2

212

)−iν
⎫⎬
⎭

= r1 r2

16

∫
dν

1(
ν2 + 1/4

)2 eω(ν,0)Y 2

(
r2

2

r2
1

)iν

Y�1;ν�1−−−−−−→ 2 r1 r2

∫
dν exp ((ᾱS 4 ln 2

−ᾱS14ζ(3)ν2) Y )
(
r2

2

r2
1

)iν

= r1 r2

√
2π

DY
exp

(
�BFKLY − ξ2

4DY

)
(A.9)

where �BFKL and D are defined in Eq. (A.2).
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In the derivation of Eq. (A.9) we neglected the contri-

butions that are proportional to

(
Q4

T r
2
2 r2

1
212

)−iν

, since this

contribution will be the same as in Eq. (A.9), but with

ξ = ln

(
Q4

T r
2
2 r2

1
212

)
� 1. To integrate over ν, we use the

method of steepest descent, and the expansion of ω (ν, 0) at
small ν (diffusion approximation; see the second equation in
Eq. (A.2)).

N (r1, r2; Y ) denotes the imaginary part of the dipole-
dipole sacttering amplitude at QT = 0, which is related to
the cross section. One can check that Eq. (A.9) has the correct
dimension.

Appendix B: Calculation of the integrals for the contri-
bution of the simplest diagram

In this appendix we discuss the integrations in Eq. (2.5). The
integral over QT has been considered in Sect. 4.1 and it has

the form of Eq. (4.7). The extra ei�r ′
1· �QT give an additional

numerical factor, replacing 25 by 27 in Eq. (4.7). To integrate
over kT and k′

T we replace
∫ ∏

dφi e−i �pT 1·�̃r ′
1δ(2)

(
�r1 + �r ′

1 − �̃r1 − �̃r ′
1

)

→ (2π)4
∫

kT dkT J0 (kT r1) J0

(
|�kT

+ �pT 1| r̃ ′
1

)
J0 (kT r̃1) J0 (kT r̃1) .

(B.1)

Now we can take the integrals over ri bearing in mind
Eq. (4.7) and

Npr (ri ,Y − y1) =
∫

dν

2π

(
μ2

soft r
2
i

) 1
2 +iνi

eω(νi ,0)(Y−y1).

(B.2)

The integrals over r̃1and r̃ ′
1 have the following form (see

Ref. [61], Eq. 6.511(6)):

∫ r̃2

0
J0 (kT r̃1) dr̃1 = r̃2 J0 (kr̃2) + 1

2
π r̃2

(
J1 (kr̃2) H0 (kr̃2)

− J0 (kr̃2) H1 (kr̃2)
)

=
{
r̃2 if kr̃2 � 1,
1
k if kr̃2 � 1.

(B.3)

Using Eq. (B.2) we obtain
∫ ∞

0
ri dri J0 (kT ri ) ,∇2

ri Npr (ri ,Y − y1)

= 1

k

(
4μ2

soft

k2

)i νi

eω(νi ,0) (Y−y1). (B.4)

Collecting Eqs. (B.2), (B.3) and (B.4) we see that the main
contribution stems from the region kr̃2 � 1 and the integral
over kT has the form

r̃2r̃ ′
2

∫ 1/r̃2
2

p2
T 1

dk2
T

k2
T

(
4μ2

soft

k2

)i (ν1+ν′
1)

e(ω(νi ,0)+ω(0,ν′
1))(Y−y1)

= r̃2r̃ ′
2

1

i (ν1 + ν′
1)

(
1

r̃2
2 p2

T 1

)i (ν1+ν′
1)

e(ω(νi ,0)+ω(0,ν′
1))(Y−y1)

after integration over ν1,ν2−−−−−−−−−−−−−−−−−−→ 1

2

√
π

2 D (Y − y1)
e2�BFKL(Y−y1).

(B.5)

The integral over k′
T has the same structure while the inte-

gration in Eq. (B.3) goes to infinity. As a result we can reduce
the integral to the form

∫
p2
T 2

dk2
T

k4
T

(
4μ2

soft

k2

)i (ν1+ν′
1)

e(ω(νi ,0)+ω(0,ν′
1))(Y−y1)

= 1

1 + i(ν1 + ν′
1)

1

4μ2
soft

(
4μ2

soft

p2
T 2

)1+i (ν1+ν′
1)

e(ω(νi ,0)+ω(0,ν′
1))(Y−y1)

after integration over ν1,ν′
1−−−−−−−−−−−−−−−−−−→ 1

2

π

D y2

1

p2
T 2

. (B.6)

Finally, we obtain Eq. (4.9).

Appendix C: Integration over dipole sizes in the
CGC/saturation approach

The integration over QT will produce the same result as
Eq. (4.7), as in the previous section. We rewrite the inte-
gration over φi (see Eq. (B.1)) in the following way:

∫ ∏
dφi e−i �pT 1 ·�̃r ′

1 δ(2)
(
�r1 + �r ′

1 − �̃r1 − �̃r ′
1

)

→ (2π)4
∫

dφ ei �pT 1 ·�r
∫

kT dkT J0 (kT r) J0 (kT r1) J0 (kT r̃1) J0
(
kT r̃

′
1

)
.

(C.1)

We see that the integrals over r ′
1 and r ′

1 lead to r1 ∼ 1/Qs(Y−
y1) and r ′

1 ∼ 1/Qs(Y − y1). The same holds for the integrals
over r ′

2 and r ′
2, leading to r2 ∼ 1/Qs(y2) and r ′

2 ∼ 1/Qs(y2).
Assuming that Qs (Y − y1) > Qs (y2) we conclude that ri
and r ′

i are much smaller than r2 and r ′
2. Replacing

∇2
r1
Npr (r1; Y − y1) ei

�QT · �̃r ′
1 ∇2

r̃ ′
1
Npr
(
r̃ ′

1; Y − y1
)

→ 28 γ̄ 4

r1 r ′
1

(
r2

1 Q2
s (Y − y1)

)γ̄ (
r ′2

1 Q2
s (Y − y1)

)γ̄

(C.2)
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where γ̄ = 1 − γcr , we see from Eq. (C.1) that integration
over r takes the form

1

Qs

1

1 + 2γ̄

∫ 1

0
dτ J0

(
kT
Qs

√
τ

)
τ γ̄ dτ

2
√

τ

= 1

Qs

1

1 + 2γ̄
1F2

({
1

2
+ γ̄

}
,

{
1,

3

2
+ γ̄

}
,− k2

T

4 Q2
s

)
.

(C.3)

Recall that we consider Qs = Qs(Y − Y1) in Eq. (C.3).

For pT 1 � Qs (Y − y1) we can replace e−i �pT 1·�̃r ′
1 = 1 in

Eq. (C.1). In this case the integral has the form

1

Q2
s

1

(1 + 2γ̄ )2

∫ 1

0
dτ ′
(

1

Qs

1

1 + 2γ̄
1

× F2

({
1

2
+ γ̄

}
,

{
1,

3

2
+ γ̄

}
, − 1

4 τ ′

))2 dτ ′

τ ′ = 0.18/Q2
s

(C.4)

where τ ′ = k2/Q2
s .

The integral over r in the lower part of the diagram takes
the form

∫
d2r ′

r ′2 J0 (kT r) = π ln
(
k2
T /(4μ2

soft)
)

. (C.5)

Using Eq. (C.5) for pT 2 � Qs (y2) the integral over k′
T can

be reduced to

1

(1 + 2γ̄ )2

∫ 1

0
dτ ′′

(
1F2

({
1

2
+ γ̄

}
,

{
1,

3

2
+ γ̄

}
, − 1

4 τ ′′

))2

×
(

ln
(
τ ′′)

τ ′′

)2

= 3.50. (C.6)

Finally, collecting all numerical coefficients, we obtain

d2σ

dy1d2 pT 1 dy2d2 pT 2
(Fig. 3b) =

= C4 23π3
(

2CF

αS (2π)2

)2 1

p2
T 1 p2

T 2

× 0.18 3.5

Q2
s (Y − y1)

(2γ̄ )8

√
1

(2 D y12)
3 e2�BFKL y12 (C.7)

where the constant C is the value of the amplitude at τ = 1.
This contribution is proportional to

∝ e2�BFKL y12/Q2
s (Y − y1)

for pT 1 � Qs (Y − y1) and pT 2 � Qs (y2). Note that
Q2

s (Y − y1) > Q2
s (y2).

We need to estimate the diagram of Fig. 1a (see Eq. (2.7)).
This diagram can be rewritten as

d2σ

dy1d2 pT 1 dy2d2 pT 2
(Fig. 1-a)

= μ̃2
soft

d2σ

dy1d2 pT 1
(QT = 0; Eq. (3.5))

× d2σ

dy2d2 pT 2
(QT = 0; Eq. (3.5))

where μ̃2
soft =

∫
d2QT N 2 (QT ) . (C.8)

Examining Eq. (3.5), one can see that in the general case
when Y − y1 
= y1 and Y − y2 
= y2 all four Pomerons cannot
be in the vicinity of the saturation scale. Actually we have
two kinematic regions which give the maximal contributions
(assuming Qs (Y − y1) > Q2

s (y1)):

1. r2 Q2
s (Y − y1) ≈ 1 but r2Q2

s (y1) → Q2
s (Y − y1) /

Q2
s (y1) � 1;

2. r2 Q2
s (y1) ≈ 1 but r2Q2

s (y1) → Q2
s (y1) /Q2

s (Y − y1)

� 1.

In region 1 the upper Pomeron is in the vicinity of the satu-
ration scale, while the lower Pomeron is in the perturbative
QCD region. In region 2 the lower Pomeron is in the vicinity
of the saturation scale, and the upper Pomeron is deep inside
the saturation domain. As we have discussed (see Fig. 3a)
∇2N decreases in the saturation region much faster than in
the perturbation QCD region and, therefore, we assume that
the kinematic region 1 gives the largest contribution. Hence,
for pT 1 � Q2

s (y1) we obtain Eq. (4.16).

Appendix D: Integration over dipole sizes in the angle
correlation function

In this appendix we collect tedious integration over the dipole
sizes in Eq. (5.6).

Each term in this equation can be factorized as a product
of two functions which depend on r i1 and on r i2. Bearing this
feature in mind we calculate each term going to the momen-
tum representation using Eq. (C.1). We obtain a product of
functions of kT . Each of these functions has the following
general form:

∫
d2r ei

�kT ·�r
j∏

i=1

rμi F (r)

= (−i �∇kT ) j
∫

d2r ei
�kT ·�r F (r)

= 2π (−i �∇kT ) j
∫

d2r J0 (kT r) F (r) . (D.1)
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As we have seen the dependence on �ri stems from the inte-
gration over QT or, in other words, from (IQ). In IQ the
dependence on r1 and r ′

1 can be extracted explicitly, leading
to F (r) ∝ 1/r . Hence the momentum image for Eq. (D.1)
has a simple form:

∫
d2r ei

�kT ·�r
j∏

i=1

rμi F (r) = 2π (−i �∇kT ) j
1

kT
. (D.2)

For j = 2 and j = 4, which we need to calculate considering
Eq. (5.6), we have

(−i �∇kT )2 1

kT
=
{

3

k5
T

kT,i kT,i ′ − 1

k3
T

δi,i ′

}
;

(−i �∇kT )4 1

kT
=
{

105

k9
T

kT,i kT,i ′ kT, j kT, j ′

− 15

k7
T

(
δi j kT,i ′ kT, j ′ + δi i ′ kT, j kT, j ′

+ δi ′ j kT,i kT, j ′ + δ j i ′ kT,i kT, j ′

+ δi ′ j ′ kT, j kT,i + δ j j ′ kT,i kT,i ′
)

+ 3

k5

(
δi i ′δ j j ′ + δi jδi ′ j ′ + δi jδi ′ j ′

)}
.

Note that, for integration over �r1, Eq. (D.2) takes the form

∫
d2r1 ei(

�kT + �pT 1)·�r1

j∏
i=1

r1,μi F (r1)

= 2π
(
−i �∇�kT + �pT 1

) j 1√
(�kT + �pT 1)2

. (D.3)

The term
(
r2

1 (�n1 · �n2)
2 + r ′2

1

(�n′
1 · �n2

)2) can be rewritten as(
r1,μ r1,ν + r ′

1,μ r ′
1,ν

)
r2,μ r2,ν and in the momentum repre-

sentation it is

∫
dφ

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
( 3

k5
T

kT,i kT,i ′ − δi i ′

k3
T

) 1√
k2
T + p2

T 1 + 2 cos (φ) kT pT 1

+

⎛
⎜⎜⎜⎝

3(√
k2
T + p2

T 1 + 2 cos (φ) kT pT 1

)5
(�kT + �pT 1)i (�kT

+ �pT 1)i ′ − δi i ′(√
k2
T + p2

T 1 + 2 cos (φ) kT pT 1

)3

⎞
⎟⎟⎟⎠

1

kT

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

= A
pT 1,i pT 1,i ′

p2
T 1

+ B δi i ′ . (D.4)

The expressions for A and B can be written in a gen-
eral form. Assuming that both pT 1 and pT 2 are smaller
than Qs (y2), we can expand the answer, taking into account
only terms that are proportional to p2

T 1/k
2
T and p2

T 2/k
′2
T . We

obtain

A (kT , pT 1) = 3p2
T 1

4 k8
T

(
−13k2

T + 50 p2
T 1

)
;

B (kT , pT 1) = 1

8 k4
T

(
8k4

T + 65k2
T p

2
T 1 − 150p4

T 1

)
. (D.5)

The integrations over r ′
2 and r2 differ from the integrations

over r1 and r ′
1, due to the extra factor 1/r2

2 , which comes
from the integration over QT in Eqs. (4.2) and (4.3). Since
r2

2 ≈ 1/Q2
s (y2) we replace it by 1/r2

2 = Q2
s (y2). In the case

the integral over k′
T takes the same form as the integral over

kT , leading to the following expression, which is proportional
to cos2 (φ), where φ is the angle between �pT 1 and �pT 2:

d2σ

dy1d2 pT 1 dy2d2 pT 2
(Fig. 2)

∝ Q2
s (y2) A (kT , pT 1) A

(
k′
T , pT 2

)
cos2 (φ) , (D.6)

which is responsible for the appearance of v2,2 and v2.
Using the second expression in Eq. (D.5) we can calculate

the term which is proportional to cos4 (φ) and has the form

d2σ

dy1d2 pT 1 dy2d2 pT 2
(Fig. 2)

∝ Q2
s (y2) A(4) (kT , pT 1) A(4)

(
k′
T , pT 2

)
cos4 (φ)

(D.7)

with

A(4) (kT , pT 1) = 15
573

8

1

k6
T

p2
T 1

k2
T

. (D.8)
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