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Abstract We have investigated the properties of quarko-
nia in a thermal QCD medium in the background of strong
magnetic field. For that purpose, we employ the Schwinger
proper-time quark propagator in the lowest Landau level to
calculate the one-loop gluon self-energy, which in the sequel
gives the effective gluon propagator. As an artifact of strong
magnetic field approximation (eB >> T 2 and eB >> m2),
the Debye mass for massless flavors is found to depend only
on the magnetic field which is the dominant scale in compar-
ison to the scales prevalent in the thermal medium. However,
for physical quark masses, it depends on both magnetic field
and temperature in a low temperature and high magnetic field
but the temperature dependence is very meager and becomes
independent of the temperature beyond a certain tempera-
ture and magnetic field. With the above mentioned ingredi-
ents, the potential between heavy quark (Q) and anti-quark
(Q̄) is obtained in a hot QCD medium in the presence of
a strong magnetic field by correcting both short- and long-
range components of the potential in the real-time formalism.
It is found that the long-range part of the quarkonium poten-
tial is affected much more by magnetic field as compared to
the short-range part. This observation facilitates us to esti-
mate the magnetic field beyond which the potential will be
too weak to bind QQ̄ together. For example, the J/ψ is dis-
sociated at eB ∼ 10 m2

π and ϒ is dissociated at eB ∼ 100
m2

π whereas its excited states, ψ ′ and ϒ ′ are dissociated at
smaller magnetic field eB = m2

π , 13m2
π , respectively.

1 Introduction

Lattice gauge theory at very high temperatures and/or baryon
densities predicts an interesting window onto the properties
of Quantum Chromodynamics (QCD) in the guise of a new
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phase, Quark–gluon Plasma (QGP), which pervaded the early
universe, and may be present in the core of neutron stars.
To realize this predicted phase, current experimental pro-
gram of ultra-relativistic heavy ion collisions (URHIC) have
been designed at different colliders with different center of
mass energies, viz. Relativistic Heavy Ion Collider (RHIC)
at Brookhaven National Laboratory (BNL) at

√
s= 200 GeV

per nucleon in Au + Au collisions and Large Hadron Col-
lider (LHC) at European Organization for Nuclear Research
(CERN) at

√
s= 2.76 TeV per nucleon in Pb + Pb collisions.

Recent analysis suggests that the events of URHIC should
be analyzed by incorporating the effect of the magnetic field
because an intensely strong magnetic field, perpendicular
to the reaction plane, is expected to be produced at very
early stages of collisions when the event is off-central [1–
5]. Depending on the centrality, the strength of the magnetic
field may reach between m2

π (� 1018 Gauss) at RHIC [6]
to 10 m2

π at LHC [7]. At extreme cases it may reach values
of 50 m2

π . A very strong magnetic field (∼ 1023 Gauss) was
also produced in the early universe during the electroweak
phase transition due to the gradients in Higgs field [8]. Ulti-
mately such a strong magnetic field might significantly affect
the production of particles and alter their dynamics at very
early stage of the collisions. Since a magnetic field induces
an anisotropy to the momentum of the affected particles, we
might expect it to affect the anisotropic flow of the particles.

Naive classical estimates predict that the magnetic field
may be very strong; typically up to tB � 0.2 fm [9]. How-
ever, the realistic calculations on the charge transport prop-
erties of the plasma (namely, conductivity) may suggest that
the magnetic field may remain substantial for significantly
longer time [10]. Simultaneously heavy quark and antiquarks
pairs also develop into physical resonances over a formation
time tform ∼ 1/Ebind related to the binding energy of the
state, e.g. the charm–anti-charm (cc̄) pairs form resonances
at tcc̄ ∼ 0.3 fm. Thus it becomes reasonable to assume that
charmonium production may get significantly influenced by
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the strong magnetic field. The same argument applies to the
bottomonium production. A large number of studies on the
in-medium properties of QQ̄ bound states has been carried
out using the phenomenological potential models [11–13],
where the effects of the medium are encoded in a tempera-
ture dependent potential with non-perturbative inputs from
the lattice simulations. However, lattice calculations of free
energies and other quantities [14] obtained from the correla-
tion functions of Polyakov loop are often taken as input for
the potential. Although these quantities have been thought
to be related to the color-singlet and color-octet heavy quark
potentials at finite temperature, a precise answer is still miss-
ing. Recently quarkonia at finite temperature has been stud-
ied by taking advantage of the hierarchies between the non-
relativistic scales associated with quarkonia and the thermal
energy scales characterizing the system through the effec-
tive field theories, viz. NRQCD, pNRQCD etc. [15]. The
in-medium modifications of the quarkonium states can be
studied from the first principle of QCD by the spectral func-
tions [16] but the reconstruction of the spectral function from
the lattice meson correlators turns out to be very difficult.
Recently in a new theoretical development, the heavy quark
potential have also been synthesized in the strong coupling
regime through a novel idea of gauge-gravity duality [17–
19].

Recently the properties of quarkonia states in a hot
medium were explored in perturbative thermal QCD frame-
work by correcting both the perturbative and non-perturbative
terms of the QQ̄ potential through the dielectric function in
the real-time formalism [20,21] in both isotropic as well as
anisotropic hot QCD medium, where the anisotropy in the
momentum space arose at the very early stages of the colli-
sions due to the different expansion rate in the longitudinal
and transverse direction [22]. As mentioned earlier, magnetic
field is also produced at the early stages of the collisions, thus
it becomes worthwhile to examine the effects of the magnetic
field on the properties of quarkonia bound states, which is
the central theme of our present work. Quantum mechani-
cally both the quarkonium and the heavy meson spectra have
been analyzed through the solution of the non-relativistic
Schrödinger equation with both harmonic oscillator and Cor-
nell potential with an additional spin–spin interaction term
[23,24]. Moreover, lattice studies have also recently explored
the possible anisotropies emerging in the static quark–anti-
quark potentials both at T = 0 and T �= 0 through the Wilson
loop expectation value and Polyakov loop correlator, respec-
tively, in the presence of a magnetic background with respect
to the direction of the magnetic field [25,26].

Here we have tried to investigate the effect of strong and
homogeneous magnetic field on the properties of quarko-
nia states. We have first calculated the gluon self-energy at
finite temperature in a strong magnetic background and then
obtain the heavy quark potential by taking the static limit of

the effective gluon propagator to see the effects of the mag-
netic field alone on the quarkonium states even in a thermal
medium. This is due to the fact that the magnetic field is
assumed to be much stronger than the temperature as well as
the mass of the quarks in a quark loop of the gluon self-energy
(eB � T 2 and eB � m2), known as the “Strong Magnetic
Field Approximation (SMFA)”. As a consequence the Debye
mass obtained from the static limit of the gluon self-energy
becomes almost independent of the temperature, hence the
potential even in the thermal medium depends mainly on the
magnetic field because the medium dependence in the poten-
tial enters through the Debye mass. Moreover, another con-
dition for the non-relativistic potential approach for heavy
quarkonia to be valid is that the mass of the heavy quark
(either charm or bottom quark) should be larger than the
dominant scale available in the problem (mQ >>

√
eB)

(dimensionally) because
√
eB is the most dominant scale

available in the strongly magnetized thermal medium. Thus
the above-mentioned two conditions constrain the lower and
upper limit of the magnetic fields, respectively, for which our
work is valid. As a by-product of this constraint, the mag-
netic field expected to be produced at RHIC may not satisfy
the condition of SMFA. So our work which is valid only in
SMFA will be suitable for describing the LHC events where
the magnetic fields expected to be produced are well within
the limit of the validity of our work.

Our work is arranged in the following way: in Sect. 2.1 we
will discuss the quark propagator at finite temperature within
SMFA. In Sect. 2.1.2 we will calculate the gluon self-energy
at finite temperature in the presence of a strong magnetic
field. In Sect. 2.2 we will compute the screening mass in
SMFA by taking the static limit of the gluon self-energy. In
Sect. 3, we will obtain the potential from the inverse Fourier
transform of the effective propagator in the static limit and
explore how the properties of quarkonia could be affected
by the presence of a strong magnetic field. Finally we will
conclude in Sect. 4.

2 One-loop gluon self-energy and the screening mass in
SMFA

The gluon self-energy can be affected by the magnetic field
in two ways: first, the quark propagator gets affected due
to the Landau quantization of the energy levels (known as
Landau levels) in the presence of the magnetic field. Second,
the strong coupling runs with both the magnetic field and the
temperature. However, in SMFA, it runs exclusively with the
magnetic field as we have discussed in the introduction.

Schwinger was the first to obtain the fermionic propagator
in coordinate space by the proper-time formalism [27]; then
Tsai has obtained the same in momentum space and used it
to calculate the vacuum polarization in magnetic field [28].
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The vacuum polarization tensor has also been obtained in
a gauge invariant manner in both the strong and the weak
magnetic field limit [29–31]. We shall now extend these cal-
culations to QCD to calculate the gluon self-energy, which
will in turn helps to study the properties of quarkonia quan-
tum field theoretically in the presence of a strong magnetic
field.

2.1 Fermionic propagator in the presence of the magnetic
field

2.1.1 Vacuum in a static and homogeneous magnetic field

For the sake of simplicity, we assume the magnetic field to
be constant and homogeneous. We also assume the mag-
netic field to be along the z-direction and of magnitude B.
Such a magnetic field can be obtained from a vector poten-
tial Aμ = (0, 0, Bx, 0). The choice of vector potential is
not unique as the same magnetic field can also be obtained
from a symmetric potential given by Aμ = (0,

−By
2 , Bx

2 , 0).
Using the proper-time method formulated by Schwinger, the
fermion propagator in such a magnetic field can be written
in the coordinate space as [27]

S(x, x ′) = φ(x, x ′)
∫

d4 p

(2π)4 ei p(x−x ′)S(p), (1)

where the phase factor, φ(x, x ′) is given by

φ(x, x ′) = eie
∫ x ′
x A(ξ)dξ , (2)

which becomes unity for a closed fermion loop with two
fermion lines, i.e., φ(x, x ′) = 1 [32].

However, the same propagator was first calculated by [28,
32] in the momentum space as

i S(p) =
∫ ∞

0

1

eB

ds

cos(s)
e
−is

[
m2−p2‖+ tan(s)

s p2⊥
]

[
{cos(s) + γ1γ2 sin(s)} (m + γ · p‖) − γ · p⊥

cos(s)

]
.

(3)

The propagator (3) in the momentum space can also be
expressed in a more convenient way using the associated
Laguerre polynomials (Ln),

i S(p) =
∑
n

−idn(α)D + d ′
n(α)D̄

p2
L + 2neB

+ i
γ · p⊥
p2⊥

, (4)

where the following quantities are defined as [32]

D = (m + γ · p‖) + γ · p⊥
m2 − p2‖

p2‖
,

D̄ = γ1γ2(m + γ · p‖),
dn(α) = (−1)ne−αCn(2α),

Cn(2α) = Ln(2α) − Ln−1(2α),

d
′
n(α) = ∂dn

∂α
,

p2
L = m2 − p2‖,

α = p⊥2

eB
,

p2‖ = p2
0 − p2

z ,

p2⊥ = p2
x + p2

y .

The order of the Laguerre polynomial also corresponds to
the number of energy eigenvalues in a magnetic field, known
as Landau levels. In SMFA, the particles occupy the lowest
Landau level (LLL) (n = 0) only, thus, in SMFA, the fermion
propagator in Eq. (4) reduces to the following form:

i S0(p) = (1 + γ 0γ 3γ 5)(γ 0 p0 − γ 3 pz + m)

p2‖ − m2 + iε
e− p2⊥|qB| , (5)

wherem andq are the mass and electric charge of the fermion,
respectively.

2.1.2 Heat bath in a strong homogeneous magnetic field

In thermal medium, the system possesses additional ther-
mal scales, viz. T, gT etc., which are well separated in the
weak coupling regime (T > gT > ··), in addition to the
quark masses. So at finite temperature, strong magnetic field
approximation implies that both conditions eB >> T 2 and
eB >> m2 are to be satisfied. To switch on the temperature
in the vacuum propagator (5) in the real-time formalism, the
matrix propagator is diagonalized by the matric U as

Sab(p) = Uac(p)

(
S0(p) 0

0 −S∗
0 (p)

)
cd
Udb(p), (6)

where the matrix U(p) is given by

U (p) =
(

Ñ2 −Ñ1e−βμ/2

Ñ1e−βμ/2 Ñ2

)
, (7)
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with

Ñ1(p0) =
√
n+
p θ(p0) +

√
n−
p θ(−p0), (8)

Ñ2(p0) =
√

1 − n+
p θ(p0) +

√
1 − n−

p θ(−p0), (9)

n±
p (p0) = 1

eβ(p0∓μ)+1
, (10)

where β is the inverse of the temperature and μ is the chem-
ical potential. In the present work we are working for bary-
onless medium (μ = 0), i.e. n+

p = n−
p = n p. Plugging Eq.

(7) in Eq. (6), we get the fermion propagator:

S(p) =
(

S0(p)Ñ 2
2 + S∗

0 (p)Ñ 2
1 −S0(p)Ñ1 Ñ2 + S∗

0 (p)Ñ1 Ñ2

S0(p)Ñ1 Ñ2 − S∗
0 (p)Ñ1 Ñ2 −S0(p)Ñ 2

1 − S∗
0 (p)Ñ 2

2

)
.

(11)

For calculating the gluon self-energy in an equilibrium
medium, we need only the 11-component of the matrix prop-
agator expressed in Eq. (11),

S11(p) = S0(p)Ñ
2
2 + S∗

0 (p)Ñ 2
1 , (12)

i S11(p) =
[

1

p2‖ − m2 + iε
+ 2π in pδ(p

2‖ − m2)

]

×(1 + γ 0γ 3γ 5)(γ 0 p0 − γ 3 pz + m)e
−p2⊥|qB| , (13)

where the distribution function is given by

n p(p0) = 1

eβ|p0| + 1
.

The above description for fermionic propagator can easily be
generalized to quarks of f th flavor with which we are going
to calculate the gluon self-energy.

2.2 Gluon self-energy in a hot QCD medium in the
presence of a strong magnetic field

As mentioned earlier, since we are working within SMFA,
we may consider the strong coupling to run with the magnetic
field only. For this purpose we closely follow the running cou-
pling in [33], where the coupling runs with the momentum
parallel and perpendicular to the magnetic field separately.
In our case of the magnetic field (B = Bẑ), we will use
the coupling dependent on the longitudinal component only
because the energy of Landau levels for quarks in SMFA
depend only on the longitudinal component of momentum.
In fact, the coupling dependent on the transverse momen-
tum does not depend on the magnetic field at all. So in our
calculation, the relevant coupling is given by [33]

α‖
s (k3) = 1

α0
s (μ0)

−1 + 11Nc
12π

ln

(
k2

3+M2
B

μ2
0

)
+ 1

3π

∑
f

|q f B|
σ

, (14)

where

α0
s (μ0) = 12π

11Nc ln

(
(μ2

0+M2
B )

�2
V

) . (15)

In the above Eq. (14), MB is taken ∼ 1 GeV as an infrared
mass and the string tension, σ = 0.18GeV2.

For system in equilibrium, we need only the “11”-
component of the gluon self-energy matrix calculated in the
real-time formalism, which is given by

�μν(k) = ig2

2

∑
f

∫
d4 p

(2π)4 tr [γ μS11(p)γ
νS11(q)]

= ig2

2

∑
f

∫
d4 p

(2π)4 tr [(γ μ(1 + γ 0γ 3γ 5)(γ 0 p0

−γ 3 pz + m f )

×γ ν(1 + γ 0γ 3γ 5)(γ 0q0 − γ 3qz + m f )]

×
{

1

p2‖ − m2
f + iε

+ 2π in pδ(p
2‖ − m2

f )

}

×
{

1

q2‖ − m2
f + iε

+ 2π inqδ(q
2‖ − m2

f )

}
e

−p⊥2

|q f |B e
−q⊥2

|q f |B , (16)

where the factor 1/2 arises due to trace in color-space and the
trace due to γ matrices is given by

Lμν = 8
[
pμ
‖ q

ν‖ + pν‖q
μ
‖ − gμν

‖ ((p.q)‖ − m2
f )
]
. (17)

Separating the momentum integration into longitudinal (‖)
and transverse (⊥) components with respect to the magnetic
field, the gluon self-energy can be factorized into ‖ and ⊥
components of momentum integration

�μν(k) =
∑
f

�
μν
‖ (k‖)A f (k⊥) , (18)

where the transverse component is given by

A f (k⊥) =
∫

dpxdpye
−p⊥2

|q f |B e
−q⊥2

|q f |B

= π |q f |B
2

e
− k2⊥

2|q f |B . (19)

It may be noted that in LLL approximation, the dependence
of self-energy on the magnetic field is fully encapsulated
in the transverse component whereas the longitudinal part
carries no dependence on the magnetic field. We will now
calculate the longitudinal component of the self-energy by
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decomposing Eq. (16) into vacuum and thermal parts:

�
μν
‖ = (�

μν
‖ )V + (�

μν
‖ )n + (�

μν
‖ )n2 , (20)

where (�
μν
‖ )V is the vacuum part, (�

μν
‖ )n and (�

μν
‖ )n2 are

the thermal contributions due to single and double distribu-
tion functions, respectively. They are explicitly given by

(�
μν
‖ )V = ig2

2(2π)4

∫
dp0dpz L

μν

×
{

1

(q2‖ − m2
f + iε)

1

(p2‖ − m2
f + iε)

}
, (21)

(�
μν
‖ )n = ig2(2π i)

2(2π)4

∫
dp0dpz L

μν

×
{
n pδ(p2‖ − m2

f )

(q2‖ − m2
f + iε)

+ nqδ(q2‖ − m2
f )

(p2‖ − m2
f + iε)

}
, (22)

(�
μν
‖ )n2 = ig2

2(2π)4

∫
dp0dpzL

μν

×{(−4π2)n pnqδ(p
2‖ − m2

f )δ(q
2‖ − m2

f )} . (23)

We will now calculate the vacuum term for the gluon self-
energy.

2.2.1 Vacuum contribution (T = 0, eB �= 0)

The vacuum term in the strong magnetic field can be calcu-
lated easily as it is similar to the calculation of self-energy in
vacuum without magnetic field except the fact that the dimen-
sion of the momentum integration is now reduced from 4 to 2.
This dimensional reduction in fact removes the divergences
usually encountered in 4-dimension, thus we do not need any
regularization any more. Using the identity

1

x ∓ iε
= P

(
1

x

)
± iπδ(x), (24)

the real part of the vacuum term in the gluon self-energy has
been calculated as

�μν(k) |V =
(
gμν
‖ − kμ

‖ kν‖
k2‖

)
�(k2), (25)

where the form factor, �(k2) is given by

�(k2) = g2

4π2

∑
f

| q f B | e
− k2⊥

2|q f |B

×

⎡
⎢⎢⎣

2m2
f

k2‖

(
1 − 4m2

f

k2‖

)−1/2

⎧⎪⎪⎨
⎪⎪⎩

ln
1 −

(
1 − 4m2

f

k2‖

)1/2

1 +
(

1 + 4m2
f

k2‖

)1/2 + iπ

⎫⎪⎪⎬
⎪⎪⎭

− 1

⎤
⎥⎥⎦ .

(26)

Therefore the 00-component (μ = ν = 0) of the real part of
the vacuum term of the gluon self-energy (using the metric
gμν
‖ = diag(1, 0, 0,−1) is given by

�00(k) |V = −k2
z

k2‖
�(k2).

In the limit of massless quarks (m f = 0), the gluon self-
energy due to vacuum term in the static limit (k0 = 0,k → 0)
is given by the scale available for the magnetic field only in
SMFA

�00(k0 = 0,k → 0) |V = g2

4π2

∑
f

| q f B | . (27)

For the physical quark masses (m f �= 0), the vacuum term
in the static limit (k0 = 0, k → 0) vanishes

�00(k0 = 0,k → 0) |V = 0. (28)

2.2.2 Medium contribution

The (thermal) medium contribution to the gluon self-energy
contains two terms: the first one (22) involves single distri-
bution function and the second one (23) involves the prod-
uct of two distribution functions. We will first consider the
medium contribution due to the single distribution function
only. Using the property of Dirac delta function, the gluon
self-energy in Eq. (22) is reduced to

(�
μν
‖ )n = − g2

2(2π)3

∫
dp0dpz L

μν

×
[n p(p0)

{
δ(p0 − ωp) + δ(p0 + ωp)

}

(q2
0 − q2

z − m2
f + iε)(2ωp)

+
nq(q0)

{
δ(q0 − ωq) + δ(q0 + ωq)

}

(p2
0 − p2

z − m2
f + iε)(2ωq)

]
. (29)

Taking μ = ν = 0, the real part of the 00-component of
(�

μν
‖ )n becomes

�00‖ (k0, kz) |
n

= − g2

2(2π)3

∫
dp0dpz L

00

×
[n p(p0)

{
δ(p0 − ωp) + δ(p0 + ωp)

}

(q2
0 − ω2

q)(2ωp)

+
nq(q0)

{
δ(q0 − ωq) + δ(q0 + ωq)

}

(p2
0 − ω2

p)(2ωq)

]
,

(30)
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where the 00 component of Lμν is

L00 = 8[p0q0 + pzqz + m2
f ], (31)

and the other notations are

ωp =
√
p2
z + m2

f ,

ωq =
√

(pz − kz)2 + m2
f .

After performing the p0 integration we get from Eq. (30)

�00‖ (k0, kz) |
n

= − g2

4(2π)3

∫
dpz

[
L00

1 n+
p

ωp[(ωp − k0)2 − ω2
q ]

+ L00
2 n−

p

ωp[(ωp + k0)2 − ω2
q ]

+ L00
3 n+

q

ωq [(ωq + k0)2 − ω2
p]

+ L00
4 n−

q

ωq [(ωq − k0)2 − ω2
p]
]
, (32)

where we have defined

L00
1 = L00(p0 = ωp) = 8(2ω2

p − ωpk0 − pzkz),

L00
2 = L00(p0 = −ωp) = 8(2ω2

p + ωpk0 − pzkz),

L00
3 = L00(p0 = ωq + k0)

= 8(2ω2
p + ωqk0 − 3pzkz + k2

z ),

L00
4 = L00(p0 = −ωq + k0)

= 8(2ω2
p − ωqk0 − 3pzkz + k2

z ),

and

n+
p = n p(p0 = ωp),

n−
p = n p(p0 = −ωp),

n+
q = nq(p0 = ωq + k0),

n−
q = nq(p0 = −ωq + k0).

In the limit of massless quarks (m f = 0), the gluon self-
energy in Eq. (32) gets simplified into

�00‖ (k0, kz) |
n

= 8g2

2(2π)3

[
k2
z

k2
0 − k2

z

− kzT

k2
0 − k2

z

ln(2)

+ kzT

k2
0 − k2

z

ln(1 + e− kz
T )

]
. (33)

Using Eq. (18) and multiplying the transverse component,
A(k⊥) from Eq. (19), the contribution to the real part of the
self-energy from the component having single distribution

function becomes

�00(k0, kx , ky, kz) |n = g2

4π2

∑
f

|q f |Be
− (k2

x+k2
y )

2|q f |B

×
[

k2
z

k2
0 − k2

z

− kzT

k2
0 − k2

z

ln(2)

+ kzT

k2
0 − k2

z

ln(1 + e− kz
T )

]
, (34)

which, in the static limit (k0 = 0, k → 0) becomes

�00(k0 = 0,k → 0) |n = − g2

4π2

∑
f

|q f |B

+ g2

8π2

∑
f

|q f |B. (35)

However, for the physical quark masses (m f �= 0), the self-
energy in Eq. (30) reduces to, by putting k0 = 0

�00‖ (k0 = 0, kz) |
n

= − g2

2(2π)3

∫
dpz In, (36)

where the integrand, In , is given by

In = 8pzn p

ωpkz
− 8(pz − kz)nq

ωqkz
+ 16m2

f n p

ωpkz(2pz − kz)

− 16m2
f nq

ωqkz(2pz − kz)
, (37)

and the distribution functions are given by

n p = 1

eβ|ωp | + 1
, nq = 1

eβ|ωq | + 1
.

Furthermore, taking the kz → 0 limit, the integrand, In , is
simplified into

In = − 8

T
np(1 − n p).

Thus for the physical quark masses (m f �= 0), the contri-
bution to the gluon self-energy having a single distribution
function in the static limit reduces to

�00(k0 = 0,k → 0) |n
= g2

4π2T

∑
f

|q f B|
∫ ∞

0
dpz

eβωp

(1 + eβωp )2
. (38)

Finally the medium contribution to the gluon self-energy
involving the product of two distribution functions given in
Eq. (23) does not contribute to the real part of the gluon
self-energy, i.e.

�00(k0 = 0,k → 0) |n2 = 0. (39)
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Fig. 1 Left panel: Separation is seen only between low and high T at high eB. Right panel: High eB can distinguish massless and massive fermions
(quarks)

We have thus so far evaluated the vacuum as well as medium
contribution to one-loop gluon self-energy; therefore we add
them up to obtain the real part of the one-loop gluon self-
energy in the static limit for massless quarks,

�00(k0 = 0,k → 0) = g2

8π2

∑
f

|q f |B, (40)

and for the physical quark masses (m f �= 0)

�00(k0 = 0,k → 0)

= g2

4π2T

∑
f

|q f B|
∫ ∞

0
dpz

eβωp

(1 + eβωp )2
. (41)

2.3 Debye screening mass in the strong magnetic field

The Debye screening manifests itself in the collective oscilla-
tion of the medium via the dispersion relation and is obtained
by the static limit of the longitudinal part (00 component) of
the gluon self-energy, i.e.

m2
D = �00(k0 = 0,k → 0). (42)

Therefore, Eq. (40) gives the very simple form for the square
of the Debye mass for massless quarks, which is already
derived in [34,35]

m2
D = g2

8π2

∑
f

|q f |B. (43)

It shows that m2
D depends strongly on the magnetic field and

is independent of the temperature, thus the collective behav-
ior of the medium gets strongly affected by the presence of a
strong magnetic field. However, for physical quark masses,

the Debye mass is given by Eq. (41),

m2
D = m2

D(m f = 0) × 2

T

∫ ∞

0
dpz

eβωp

(1 + eβωp )2
, (44)

which depends on both magnetic field and temperature. How-
ever, m2

D depends strongly on the magnetic field and the
dependence on the temperature is very weak and the screen-
ing mass becomes temperature-independent beyond a certain
temperature.

Now, for the SMFA to be valid, we have to be careful in
choosing the range of the temperature and magnetic field.
For example, for temperatures up to 300 MeV, the starting
value of eB has to be much higher than 0.09 GeV2. Here we
have taken the starting magnetic field to be eB = 10 m2

π ∼
0.2 GeV2. However, for the upper bound on the magnetic
field, the constraint comes from the heavy quark mass (mQ �√
eB) as discussed in the introduction. So, we have taken the

highest magnetic field for charmonium states to be eB =
25 m2

π , which gives us
√
eB ∼ 0.7 GeV. Thus, to see the

variation of the Debye masses with the strong magnetic field,
we have numerically calculated m2

D as a function of eB (in
units of m2

π ) for the temperature range T = 200–300 MeV
in Fig. 1a and noticed that m2

D is almost linearly increasing
with eB for smaller temperature. For higher temperatures,
m2

D deviates slightly from the linearly increasing trend.
As we understood earlier in SMFA, the strongly magne-

tized thermal medium with massless quarks possesses only
one scale related to the magnetic field (eB) so by the dimen-
sional arguments the square of the Debye mass is linear in eB
whereas for the medium with physical quark masses, even in
SMFA there is a weak competition between the dominant
scale, eB and much weaker scales, mass (m) and tempera-
ture (T) (rather their ratio, m/T ) in the form of Boltzmann
damping factor (exp(−m/T )) as in Eq. (44). This is seen
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Fig. 2 The effect of the temperature is only pronounced at low tem-
perature and high magnetic field

in Fig. 1b, where a comparison of Debye masses with and
without incorporating the quarks masses is made.

To see the temperature dependence of the Debye mass
explicitly we have plotted mD with the temperature directly
with increasing values of eB = 10m2

π , 15m2
π and 25m2

π in
Fig. 2. We can see how weakly the screening mass depends
on temperature. It increases very slightly with temperature
and beyond a point, the screening mass is practically a con-
stant with magnetic field. The effect of the temperature is
slightly more pronounced for high magnetic field and low
temperature.

Very recently the effects of a magnetic background on
color-screening phenomena in QGP were also explored
through the estimation of both the magnetic and the electric
screening masses by measuring the Polyakov loop correla-
tors on the lattice for various temperatures [36]. It is found
that the magnetic field induces an increase of both the mag-
netic and the electric screening masses and, to some extent,
also the appearance of an anisotropy in Polyakov loop corre-
lators. Both screening masses are found to increase linearly
with the magnetic field and the influence of the magnetic field
on the two masses is enhanced at lower temperatures and is
asymptotically diminished in the higher temperature. Thus
our aforesaid results on the Debye mass qualitatively agree
with their findings for the electric screening mass, which is
of interest to us for the screening of the heavy quark poten-
tial. However, their lattice estimates for the electric screening
masses are approximately larger by an order of magnitude
than our results. This large difference may be attributed to
nonperturbative effects, which is beyond the scope of this
work.

3 Heavy quark potential in a hot QCD medium

The derivation of potential between a heavy quark Q and
its anti-quark (Q̄) either from EFT (pNRQCD) or from first

principle QCD may not be plausible because the hierarchy of
the non-relativistic scales and thermal scales assumed in the
weak coupling EFT calculations may not be satisfied and the
data available is not of sufficient quality in the present lattice
correlator studies, respectively; one may use the potential
model to circumvent the problem.

Since the mass of the heavy quark (mQ) is very large,
so the requirements mQ � √

eB � �QCD and T � mQ

are satisfied for the description of the interactions between
a pair of heavy quark and anti-quark at finite temperature
in the presence of the magnetic field in terms of quantum
mechanical potential. Thus we can obtain the medium modi-
fication to the vacuum potential by correcting both its short-
and long-distance part with a dielectric function ε(k) as

V (r, T ) =
∫

d3k
(2π)3/2 (eik.r − 1)

V (k)

ε(k)
, (45)

where we have subtracted a r -independent term (to renor-
malize the heavy quark free energy) which is the perturbative
free energy of quarkonium at infinite separation. The dielec-
tric function is related to the 00-component of effective gluon
propagator in the static limit as

1

ε(k)
= lim

k0=0
k2D00

11(k0,k), (46)

and V (k) is the Fourier transform (FT) of the Cornell poten-
tial. To obtain the FT of the potential, we regulate both terms
with the same screening scale. However, different scales for
the Coulomb and linear pieces were also employed in [37] to
include non-perturbative effects in the free energy beyond the
deconfinement temperature through a dimension-two gluon
condensate.

At present, we regulate both terms by multiplying with
an exponential damping factor, switched off after the FT is
evaluated. This has been implemented by assuming r as a
distribution (r → r exp(−γ r)). The FT of the linear part,
σr exp (−γ r), is

− i

k
√

2π

(
2

(γ − ik)3 − 2

(γ + ik)3

)
. (47)

After putting γ = 0, we obtain the FT of the linear term σr :

˜(σr) = − 4σ

k4
√

2π
. (48)

The FT of the Coulomb piece is straightforward and is given
by

VC (k) = −√
(2/π)

αs

k2 , (49)
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Fig. 3 Effect of the magnetic field on potential

thus the FT of the full Cornell potential becomes

V (k) = −√
(2/π)

αs

k2 − 4σ√
2πk4

. (50)

The 00-component of effective gluon propagator in the
static limit has been obtained with the help of the 00-
component of one-loop gluon self-energy. We have already
calculated the 00-component of one-loop gluon self-energy
in the presence of a strong magnetic field at finite temper-
ature in Eq. (41), hence the 00-component of the effective
gluon propagator in the static limit is given by

D00
11(0,k) = 1

k2 + m2
D

. (51)

Therefore the real part of the static potential can be
obtained by substituting the dielectric permittivity ε(k) from
Eq. (46) and the Fourier transformation from Eq. (50) into
the definition of the potential (45),

V (r; T, B) = VC (r; T, B) + VS(r; T, B), (52)

where the Coulombic and string term of the potential (with
the dimensionless quantity r̂ = rmD) are given by

VC (r; T, B) = −αsmD

(e−r̂

r̂
+ 1

)
, (53)

VS(r; T, B) = 2σ

mD

[ (e−r̂ − 1)

r̂
+ 1

]
, (54)

respectively. It is thus evident that the medium dependence
in the potential enters through the Debye mass, which in
turn depends on both temperature and magnetic field for
physical quark masses and depends only on the magnetic
field for massless quarks. This gives a characteristic depen-
dence of the potential on both temperature and magnetic field.
The r -independent terms in the potential ensure that V (r, T )

reduces to the Cornell potential in the T → 0 limit [38].
However, such terms could also arise naturally from the basic
computations of the real-time static potential in hot QCD [39]
and from the real and imaginary time correlators in a thermal
QCD medium [40]. These terms in the potential are needed in
computing the masses of the quarkonium states and to com-
pare the results with the lattice studies. It is equally important
while comparing our effective potential with the free energy
in lattice studies.

Since we are exploring the effect of medium on the poten-
tial between Q and Q̄ in the strong magnetic field approxi-
mation so we probe it by varying the strength of the magnetic
field (eB) from 10 m2

π to 25 m2
π (in Fig. 3a) at a temperature

T=150 MeV. It is found that as the strength of the magnetic
field increases the potential becomes stronger. To see the
competition between the magnetic field and temperature, we
have plotted the potential in Fig. 3b in a hotter medium (T =
300 MeV). As we have seen earlier in Fig. 1a that the (square)
Debye screening mass increases very little with temperature,
here also the potential changes little as compared to Fig. 3a.
This small dependence on temperature stems from SMFA as
we have observed in the Debye screening mass.

Usually potential model studies are limited to the medium
modification of the perturbative part of the potential only
where it is assumed that the string tension vanishes abruptly
at the deconfinement point. Since the phase transition in QCD
for physical quark masses is found to be a crossover [41], the
string tension may not vanish at the deconfinement temper-
ature. This issue, usually overlooked in the literature where
only a screened Coulomb potential was assumed above Tc
and the linear term was neglected, is certainly worth an inves-
tigation. To see the effect of the linear term on the potential, in
addition to the Coulomb term, we have plotted the potential
(in Fig. 4a) with (σ �= 0) and without string term (σ = 0)
in a magnetic field eB = 10 m2

π . As we know already in
vacuum (T = 0), the inclusion of the linear term makes
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Fig. 4 The effect of string term on potential is depending on the magnetic field

the potential for the short-distance interaction less attractive
and for the long-distance interaction the linear term makes
the potential more repulsive, compared to the Coulomb term
alone. However, the medium modification causes the linear
term to be attractive and overall the medium modifications
to both the Coulomb and the string term make the potential
more attractive (seen in Fig. 4a) as compared to the vacuum
potential.

To see the effect of the scale (Debye mass) at which the
screening takes place on both the linear and the Coulombic
term we have plotted the potential at a larger magnetic field,
eB = 25 m2

π in Fig. 4b, where we found that the increase of
the scale (screening mass) makes the linear term less attrac-
tive, compared to the lower scale (eB). To understand the
observations in Fig. 4, we have probed the range of interac-
tions, viz. short-range (r = 0.2 fm), intermediate (r = 0.5
fm) and long-range (r = 1 fm) interactions of QQ̄ poten-
tial as a function of the magnetic field (eB) in Fig. 5 and
found that only the long-range interaction (r = 1 fm) has
been affected noticeably. Our overall observation is that as
the strength of the magnetic field increases the long-range
QCD force becomes more and more short range, thus imply-
ing that the magnetic field facilitates early dissolution of QQ̄
states.

It is important to mention here that we have not observed
any anisotropy in our potential with respect to the direction
of magnetic field, which is expected as a common sense
because the magnetic field breaks the translational invari-
ance of space. In our perturbative framework too, at the
starting point the quark propagator in the strong magnetic
field approximation gets factorized into functions involving
the parallel and perpendicular components with respect to
the direction of the magnetic field (B = Bẑ) and so obvi-
ously the gluon self-energy is decoupled into parallel and
perpendicular components. But on thermalizing the quark

Fig. 5 Effect of the magnetic field on short- and long-range behavior
of the potential

propagator and gluon self-energy at finite temperature in
the strong magnetic field through the distribution function,
there is no room to introduce the momentum anisotropy in
the distribution function because the quarks’ dispersion rela-

tion is restricted to the LLL only (E0(pz) =
√
p2
z + m2

f ),

i.e. only the longitudinal component of the momentum is
present; hence no anisotropy arises between transverse and
longitudinal components. One of us had recently derived
an anisotropic heavy quark potential [20,21] in perturbative
thermal QCD, where the anisotropy in the potential in the
coordinate space had arisen from the manifested momentum
anisotropy with respect to the direction of anisotropy in the
distribution function.

However, recently a novel magnetic field-induced
anisotropic behavior was first observed in the heavy quark
potential in the longitudinal–traverse plane with respect to the
direction of B [25]. Later the set-up was extended to measure
Polyakov loop correlators on the lattice to extract the poten-
tial for both zero and finite temperature in place of earlier
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Wilson loop expectation values used at zero temperature, for
different orientations with respect toB [26]. The reason of the
anisotropy is the averaging of both the Wilson loop expecta-
tion value and the Polyakov loop correlators being different
for different orientations with respect to the magnetic field.

3.1 Dissociation of heavy quarkonia in magnetic field

In this section, we shall discuss the dissociation of charmo-
nium and bottomonium states due to an external strong mag-
netic field in a hot QCD medium. The concept of dissocia-
tion temperature becomes irrelevant here because the scale
at which the collective oscillations develop depends only on
the magnetic field – albeit we are considering a hot QCD
medium because in the strong magnetic field approximation
(eB � T 2), the scale at which the collective oscillation sets
in is associated with the magnetic field only because eB is the
most dominant scale in the strong magnetic field limit (if the
partons are assumed massless), not the thermally generated
scales. This in turn makes the potential depend only on the
magnetic field through the dependence of the Debye mass on
the magnetic field. Thus, it makes sense here to discuss the
dissociation of quarkonium states due to the magnetic field
only as far as SMFA is valid.

As we know that, in the presence of a medium, the poten-
tial between a heavy quark (Q) and its anti-quark (Q̄) will
be screened, if the screening is strong enough, the potential
becomes too weak to form the resonance. Thus we can argue
that the quarkonium states will be dissolved in a medium if
the Debye screening radius, rD (= 1

mD
) in a given medium

is smaller than the bound state radius of a particular reso-
nance state; then the medium inhibits the formation of the
particular resonance and Q and Q̄ will be dissolved into the
medium. Since the screening mass in the strong magnetic
field increases with the magnetic field, the (critical) mag-
netic field at which the QQ̄ potential becomes too feeble to
hold QQ̄ together becomes smaller for the excited states. We
can thus estimate the lower limit of the critical magnetic field
for various charmonium and bottomonium states by the crite-

rion:
√

〈r i 2〉 = rD(Bi
d), i.e., for a magnetic field larger than

Bd
i , the i th quarkonium states cease to exist. For example,

J/ψ will be dissociated at eB = 14m2
π and its excited state,

ψ ′ is dissociated at smaller magnetic field, at eB = m2
π ,

whereas ϒ will be dissociated at eB = 130m2
π and ϒ ′ is

dissociated at the smaller magnetic field of eB = 13m2
π .

To understand the in-medium properties of the quarko-
nium states quantitatively, one need to solve the Schrödinger
equation with the medium-modified potential, V (r; B, T ).
There are some numerical methods to solve the Schrödinger
equation either in partial differential form (time-dependent)
or eigen value form (time-independent) by the finite differ-
ence time domain method (FDTD) or matrix method, respec-

tively. In the latter method, the stationary Schrödinger equa-
tion can be solved in a matrix form through a discrete basis,
instead of the continuous real-space position basis spanned
by the states |−→x 〉. Here the confining potential V is subdi-
vided into N discrete wells with potentials V1, V2, ..., VN+2

such that, for the i th boundary potential, V = Vi for
xi−1 < x < xi ; i = 2, 3, ..., (N + 1). Therefore for the
existence of a bound state, there must be an exponentially
decaying wave function in the region x > xN+1 as x → ∞
and it has the form

�N+2(x) = PE exp[−γN+2(x − xN+1)]
+QE exp[γN+2(x − xN+1)], (55)

where PE = 1
2 (AN+2−BN+2), QE = 1

2 (AN+2+BN+2) and,
γN+2 = √

2μ(VN+2 − E). The eigenvalues can be obtained
by identifying the zeros of QE . Using this method, we have
found that J/ψ and ϒ are dissociated at eB = 5m2

π and
eB = 50m2

π , respectively.
Though the dissociation magnetic fields, obtained from

the two methods, apparently look different, it is easy to see
that qualitatively they are similar. Using both methods, we
found that the dissociation magnetic field for ϒ is roughly
an order of magnitude greater than the dissociation magnetic
field for J/ψ . Even though their absolute value, obtained
from the two different methods, differ, they lie in the same
ball park, which is ∼ 10m2

π for J/ψ and ∼ 100m2
π for ϒ .

4 Conclusions

In this article, we have explored the effects of strong and
homogeneous magnetic fields on the properties of quarko-
nium states. For that purpose we have derived the potential
between a heavy quark and its anti-quark by the medium cor-
rections to both Coulomb and linear term of QQ̄ potential at
T = 0, unlike the medium correction to the Coulomb term
alone. Although the medium considered is thermal, due to the
strong magnetic field approximation, all other scales present
in the thermal medium become irrelevant: the scale related
to the magnetic field dominates. This is exactly what hap-
pens in the collective oscillation of the medium in the form
of the Debye mass. In fact, the Debye mass becomes com-
pletely independent of the temperature for massless quarks
and depends very weakly on temperature for massive quarks.
However, beyond a certain temperature, the dependence is so
weak that it is almost insignificant. As a result the heavy quark
potential mainly depends on the magnetic field with a very
feeble dependence on the temperature. This is expected as
the effect of the medium on the potential enters through the
Debye mass. In particular the long-distance part of the poten-
tial gets significantly affected, whereas the short-distance
part is mildly affected.
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We have then studied the dissociation of quarkonium
states in a medium. Since the potential in SMFA depends
mainly only on the magnetic field, we have discussed the dis-
sociation of quarkonium states due to the magnetic field only.
We have estimated the critical value of the magnetic field
beyond which the resonance does not form by two methods.
The first one gives a lower limit of the critical magnetic field
for both charmonium and bottomonium states at which the
Debye screening radius becomes smaller than the bound state
radius of a particular resonance state. The other one comes
from the consideration of the binding energies of a specific
state obtained from the energy eigenvalues of the Schrödinger
equation. In brief, J/ψ is dissociated at eB ∼ 10m2

π and ϒ

is dissociated at eB ∼ 100m2
π .
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