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Abstract In this paper, we consider a deformed STU model
in four dimensions including both electric and magnetic
charges. Using the AdS/CFT correspondence, we study holo-
graphic superconductors and obtain transport properties like
electrical and thermal conductivities. We obtain transport
properties in terms of the magnetic charge of the black hole
and interpret it as the magnetic monopole of dual field theory.
We find that the presence of the magnetic charge is neces-
sary to have maximum conductivities, and the existence of
a magnetic monopole with a critical charge (137 e) to reach
the maximum superconductivity is important. Also, we show
that the thermal conductivity increases with increasing of the
magnetic charge. It may be concluded that the origin of super-
conductivity is the magnetic monopole.
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1 Introduction

The AdS/CFT correspondence, which relates conformal field
theory (CFT) in d dimensions and string theory in (d + 1)-
dimensional anti-de Sitter (AdS) space, is a powerful mathe-
matical tool to study strongly correlated systems [1–3]. The
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extra dimension in the AdS side can be understood as the
energy scale of the CFT on the boundary. The AdS/CFT cor-
respondence is already used to study quark–gluon plasma
(QGP) [4,5], and it is possible to study the nuclear force
using the AdS/CFT correspondence [6]. An interesting appli-
cation of AdS/CFT is in condensed matter physics known as
AdS/CMT, which claims that there is a dual gravitational
description of superconductivity [7,8], where the proper-
ties of a (2 + 1)-dimensional superconductor is reproduced
using a neutral black hole with a charged scalar and only the
Maxwell sector. So, it can be generalized to the case with
an external magnetic field [9–12]. In order to review some
important aspects of the theory of holographic superconduc-
tors, see Refs. [13,14].

Superconductivity is a phenomenon that has a history of
about 100 years. Superconductivity is a state of a material
in which ρ = 0 (disappearance of resistivity). It occurs only
below a certain temperature (TC ), below a certain current
level (JC ), and below a certain magnetic field (HC ). Super-
conductivity was first discovered by Onnes in 1911 for mer-
cury. Later, much research has been done, theoretically and
scientifically. The goal of the scientists was to justify this
phenomenon by condensed matter and many-body models.
From these kinds of models, we have the Fritz and Heinz
two fluid model (1935), and phenomenological theories were
proposed to explain superconductivity by Ginzburg and Lan-
dau (1950), and Cooper’s BCS (Bardeen–Cooper–Schrieffer)
pair model [15]. But Cooper’s theory cannot justify supercon-
ductivity at higher temperatures [16,17]. On the other side,
scientific work in this field is done on the basis of increasing
the superconductivity transition temperature. In these days,
scientists have reached a transition temperature of about 140
K. But reaching higher temperatures is a great challenge for
researchers.

In 1975, Price and Shirk [18] investigated the detection
of a moving magnetic monopole. They conducted an experi-
ment, which, with using a balloon-borne stack of Cherenkov
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film, emulsion, and 33 Lexan sheets, detected a very heavy
particle having passed through them. For this heavy particle
as a magnetic monopole, an electrical charge of Q = 137e
with a mass of 200 proton masses was obtained. This exper-
iment is in agreement with investigations of charged parti-
cles by Malkus [19] in 1951, for arbitrary magnetic moment,
moving simultaneously in the field of the monopole and an
external electric field. It is concluded that the monopole can
be coupled to matter with energies comparable to, but not sig-
nificantly greater than, the chemical bond, reservations being
made in the case of hydrogen where the lowest energy state
depends upon the mass of the monopole. However, in 1982,
the first results from a superconductive detector for moving
magnetic monopoles, by Blas Cabrera, were reported [20].
Considering a magnetic charge moving at velocity v along
the axis of a superconducting wire ring of certain radius, the
velocity- and mass-independent search for moving magnetic
monopoles is being performed by continuously monitoring
the current in a 20-cm-area superconducting loop. A single
candidate event, consistent with one Dirac unit of the mag-
netic charge, has been detected during five runs.

The present work is done on the basis of a computing
and analytical gravitation method and discusses the relation
between the magnetic monopole model and superconductiv-
ity. The heavy monopole initially was suggested by ’t Hooft
and Polyakov in the framework of SU(2) gauge theories [21–
23]. Our model tries to link superconductivity to the magnetic
monopole charge carrier’s mobility, which has a major effect
on the thermal and superconductive properties.

As is well known, ordinary superconductors are well
described by the microscopic theory of superconductivity
known as BCS theory [15]. But unusual superconductors
including the pairing mechanism are not well understood
using BCS theory and one needs another theoretical model
of a strongly coupled system like the AdS/CFT correspon-
dence. In order to have a realistic application of hologra-
phy to superconductivity it is important to show how to
introduce a dynamical (electromagnetic) gauge field in holo-
graphic superconductors [24–27]. In that case unusual mag-
netic materials with strongly correlated effects have been
studied with the holographic duality [28], while an antifer-
romagnetism [29] as well as a paramagnetism [30] quantum
phase transition can be considered by using holographic prin-
ciples. According to the AdS/CFT dictionary, a black hole
and charged scalar field are the holographic dual of the tem-
perature and condensate of a superconductor, respectively
[7]. In order to reproduce the superconductor phase diagram,
one can consider a black hole with scalar hair at low temper-
ature. The STU black hole is an important model with both
electric and magnetic charges [31]. The STU model is just
for N = 2 supergravity [32,33]. It generally involves eight
charges (four electric and four magnetic). There is complete
STU symmetry, so the four charges have three charges that

are on the same footing, while the last one has different cou-
plings. The STU model can be interpreted in string theory
by embedding. There are different ways to do this but the
simplest, in type IIA on T 2 × T 2 × T 2, interprets the eight
charges as D0, D2 (three of these, one for each T 2), D4 (three
of these as well) and D6. The special case of the STU model
in five dimensions with three electric charges which admits
a chemical potential for the U (1)3 symmetry already was
used to study QGP; this is called the STU/QCD correspon-
dence [34–38]. Also for D = 5, N = 2 the STU model is
considered as a dual picture of a superfluid [39].

Motivated by the evidence of a superconductive detec-
tor for moving magnetic monopoles [20], we would like to
investigate the effect of magnetic charge on the conductivi-
ties. The special case of the STU model in five dimensions
already considered to study transport properties of supercon-
ductor [40]. In that case, various kinds of STU models are
important from the AdS/CFT point of view and statistical
analysis [41], because it is an extension of Yang–Mills theory
to the case of a chemical potential. Recently, a deformation
of the N = 2, D = 4 STU model, characterized by a non-
homogeneous special Kähler manifold, was considered to
solve BPS attractor equations and to construct static super-
symmetric black holes with radial symmetry [31]. In that
case the relevant physical properties of the resulting black
hole solution are explained and one can see that it is a four
charge STU model, having three electric charges and one
magnetic charge. Therefore, we consider for N = 2, D = 4
the STU model as a dual picture of a superconductor and
investigate the effect of the magnetic charge on the transport
properties. In other words, we would like to claim that the
magnetic charge of the black hole is corresponding to the
magnetic monopole in gauge theories.

This paper is organized as follows. In the next section, we
review holographic superconductor and recall the basic equa-
tions. Then, in Sect. 3 we consider a non-homogeneous STU
black hole in four dimensions and present important proper-
ties of the model. In Sect. 4 we discuss briefly the thermody-
namics of the model and calculate some useful quantities to
study the conductivities. In Sect. 5 we study the electrical end
thermal conductivities and discuss the effect of the magnetic
charge on them. Finally, in Sect. 6 we give a conclusion and a
summary of results together with an outlook to future work.

2 Holographic superconductor

It has been shown that a gravitational background may be
considered as a holographically dual picture of a supercon-
ductor [7], and it is known as holographic superconductor
[42]. This means that the properties of strongly coupled
superconductors in three dimensions may be described by
four-dimensional classical general relativity.
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Perturbation equation helps us to obtain the transport coef-
ficients from the general Lagrangian of the form

L ≡ L√−g
= R − 1

4
Gi j F

i
μνF

μν j + · · · , (2.1)

where R stands for the Ricci scalar and the dots denote scalar
field and Chern–Simons terms; Fμν is the field-strength ten-
sor. The induced metric Gi j related to the background metric
gi j with determinant g will be introduced later. In Ref. [40],
the electrical and thermal conductivities of R-charged black
hole in four, five, and seven dimensions is calculated for the
general D-dimensional space-time,

ds2 = gttdt
2 + grrdr2 + gxxd�2

D−2, (2.2)

where d�2 is (D − 2)-dimensional space. We will use the
results of Ref. [40] to study the transport properties of super-
conductor via a non-homogeneous deformation of the R-
charged black hole (STU black hole) in four dimensions.
Perturbation equation for the gauge field of the general case
can be written as follows [40]:

d

dr

(
Ni

d

dr
φi (r)

)
− ω2Ni grr g

ttφi (r) +
m∑
j=1

Mi jφ j (r) = 0,

(2.3)

where

Ni = √−gGii g
xx grr (2.4)

and

Mi j = Fi
rt

√−gGii g
xx grrG j j F

j
rt , (2.5)

with the condition Mi j = Mji . We can see that coupling
of scalar field to the gauge field exists in the last term of
the Eq. (2.3). Also, the scalar field φi is related to the x-
component of the gauge field via

Ai
x = μi

2
�i (r)e

i(qz−ωt), (2.6)

where

φi (r) = μi�i (r), (2.7)

with ω and q representing the frequency and momentum in
the z direction, respectively, and μi denotes the chemical
potential. Hence, the chemical potential (Maxwell charge)
is coupled to the scalar field �i (r). It should be noted that
the last term of Eq. (2.3) comes from the metric perturbation
part, which is interpreted as an interaction between different
gauge fields, so it will vanish for the case of non-interacting
fields. Also the second term of Eq. (2.3) vanishes for the case
of the low frequency limit (ω2 → 0).

The fact is that the Maxwell equations imply that the phase
of the complex scalar field must be constant. Hence, without

loss of generality one can consider the scalar field as a real
variable.

The diagonal and off diagonal components of conductivity
are given by the following expressions, respectively:

σi i = 1

8πGD

[√
grr

−gtt

∑m
k=1 Nk(r)φk(r, ω)φk(r, −ω)

(φi )0(φi )0

]
r=r+

(2.8)

and

σi j = 1

16πGD

[√
grr

−gtt

∑m
k=1 Nk(r)φk(r, ω)φk(r, −ω)

(φi )0(φ j )0

]
r=r+

,

(2.9)

where r+ is the horizon radius, and GD is the D-dimensional
Newtonian constant. We will use the above relations to study
the electrical conductivity of a superconductor dual of the
deformed STU model in four dimensions. It should be noted
that the general form of the conductivities in the absence of
a chemical potential is obtained by Ref. [43], but there is a
Chern–Simons term in the STU model and we have both elec-
tric and magnetic charges, and therefore a chemical potential
exists. So, one can use the general expression given by Ref.
[40].

On the other hand, the coefficient of thermal conductivity
given by

κT =
(

ε + P

T

)2 1∑m
i, j=1 ρi (

iT
ω
Gi j (ω))−1ρ j

, (2.10)

where ε and P are the local energy density and pressure
respectively. Also, the ρi are the charge densities satisfying
the following thermodynamics equations:

ε + P = T s +
m∑
i=1

μiρi (2.11)

and

dε = T ds +
m∑
i=1

μidρi , (2.12)

where s and μi are the entropy and the chemical potential,
respectively.

It should be noted here that there are two order parameters,
the first is the coherence length (ζ ), which is the scale of the
variation of the order parameter. It indeed corresponds to the
radial coordinate r and hence φ(r) will be a complex order
parameter to realize a holographic p-wave model [44,45].
The second is the London penetration depth (λ), which char-
acterizes the magnetic field penetration to the superconduc-
tor. It may be corresponding to the magnetic charge p0, which
will be introduced in the next section.
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3 Non-homogeneous STU black hole in four dimensions

As is well known, the STU background is an extension of the
AdS–Schwarzschild background (which is the holographic
dual of ordinary Yang–Mills theory) to include the chemi-
cal potential due to the presence of the black hole charge
[34]. Hence, we expect that the 4D deformed background
of the STU model could be a holographic dual of a super-
conductor as well as an ordinary AdS–Schwarzschild black
hole background [7]. The main reason why we choose this
special background is the presence of the magnetic charge.
We would like to study the effect of the magnetic charge
on superconductivity. As the background considered here is
a solution of N = 2, D = 4 gauged supergravity coupled
to Abelian vector multiples, it can reflect some properties
of strongly coupled superconductors in 2 + 1-dimensional
space-time.

A non-homogeneous deformation of the STU model of
N = 2, D = 4 gauged supergravity has been studied by Ref.
[31], and we review some important properties of the model
which will be useful to study holographic superconductor.
The general form of the metric is given by

ds2 = −U (r)dt2 + dr2 + ψ(r)d�2
2

U (r)
, (3.1)

where d�2
2 is the two-dimensional metric of surface. The

determinant of the above line element is

√−g = ψ(r)

U (r)
fk, (3.2)

with k = 0,±1, where f1 = sin θ , f0 = θ and f−1 = sinh θ ,
which correspond to closed, flat and open universes.

The bosonic Lagrangian is given by [31],

L = R − gi j∂μz
i∂μ z̄ j − 1

4
I��F�

μνF
μν� + · · · , (3.3)

where

I�� = 1

4
e−K

(
1 0
0 4gi j

)
(3.4)

with

gi j = 1

2(λ1λ2λ3 − A
3 (λ3)3)2

×
⎛
⎜⎝

(λ2)2(λ3)2 A
3 (λ3)4 − 2A

3 λ2(λ3)3

A
3 (λ3)4 (λ1)2(λ3)2 − 2A

3 λ1(λ3)3

− 2A
3 λ2(λ3)3 − 2A

3 λ1(λ3)3 (λ1)2(λ2)2 + A2

3 (λ3)4

⎞
⎟⎠

(3.5)

and

e−K = 8

(
λ1λ2λ3 − A

3
(λ3)3

)
, (3.6)

where A is deformation parameter which may be fixed as unit,
so A = 0 gives us the ordinary STU model. The superpoten-
tial is specified by the dyonic Fayet–Iliopoulos (FI) gauging
with FI parameters (g�, g�). Also, in this model both mag-
netic (p�) and electric (q�) charges are possible. We will
consider only the non-zero charges p0, q1, q2 and q3, which
means that we have one magnetic and three electric charges.
We are interested in the case of a positive magnetic charge
and consider it as our physical case, while for the electrical
charge we are free to choose any positive or negative values.
This choice requires (g0 p0 − giqi = −k, where k = 0,±1)
that some FI parameters vanish, so we have only g1, g2, g3

and g0, which are interpreted as gauge coupling constants
(all positive) and related to the scalar fields λ1, λ2 and λ3,
which we will address later. In that case, the full black hole
solution of the non-homogeneous STU model is given by

ψ(R) = (ar2 − c)2 (3.7)

and

U (r) = 2g0g3(ar2 − c)2

λ3∞(ar − g0β0 − g0β3
(λ3∞)2 )

√
(ar + 2g0β0)(ar + 2g0β3

(λ3∞)2 )
,

(3.8)

where a (with the length dimension) and c (with the inverse
of length dimension) are positive constants and

λ3∞ =
√

g0g3

g1g2 − A
3 (g3)2

, (3.9)

is the asymptotic value ofλ3. Also,β0 andβi with i = 1, 2, 3,

are constants [46]. It is found that

λ1 =
a g1

g3 (λ3∞)2r − g0β3(
g1

g3 − A g3

g2 ) − β0 (g0)2

g2√
(2g0β0 + ar)(2g0β3 + ar(λ3∞)2)

,

λ2 = g2

g3 λ3,

λ3 = λ3∞

√√√√ ar + 2g0β3
(λ3∞)2

ar + 2g0β0 . (3.10)

In that case all quantities are described by β0, βi , a, c, p0

and qi .
The black hole horizon is given by

r+ =
√
c

a
. (3.11)

Now, we can discuss the perturbation equation (2.3) and
obtain φi with i = 0, 1, 2, 3 corresponding to one magnetic
and three electric charges of black hole.
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Fig. 1 Typical behavior of scalar fields in terms of r (r ≤ r+) with initial values φ(0) = 0 and φ′(0) = 1. All model parameters are set to unity
(a = c = A = g0 = g1 = g2 = g3 = β0 = β3 = fk = 1). ω = 1 (dashed blue), ω = 0.5 (dotted green), ω = 1 (solid red)

Using Eq. (2.4) it is easy to find that

N0 = 2 fk

(
λ1λ2λ3 − A

3
(λ3)3

)
U (r), (3.12)

N1 = 4 fk(λ2)2(λ3)2(
λ1λ2λ3 − A

3 (λ3)3
)U (r), (3.13)

N2 = 4 fk(λ1)2(λ3)2(
λ1λ2λ3 − A

3 (λ3)3
)U (r), (3.14)

and

N3 =
4 fk

(
(λ1)2(λ2)2 + A2

3 (λ3)4
)

(
λ1λ2λ3 − A

3 (λ3)3
) U (r), (3.15)

where U (r) is given by Eq. (3.8). Then the non-interacting
version of Eq. (2.3) reads

d

dr

(
Ni

d

dr
φi (r)

)
+ ω2Ni

φi (r)

U (r)
= 0. (3.16)

So, we have four different equations to obtain φ0(r), φ1(r),
φ2(r), and φ3(r). In the simplest case of a low frequency we
can neglect ω2. In that case one can obtain

φi (r) = C1

∫
N−1
i dr + C2, (3.17)

where C1 and C2 are integration constants.
Numerically, we solve Eq. (3.16) and obtain the behavior

of φi with respect to r (r < r+) as illustrated by the plots
of Fig. 1. We find that the presence of all FI parameters is
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necessary to obtain a finite and real value of the scalar fields.
It is illustrated that scalar fields asymptotically yield infinity
near the black hole horizon (r+ = 1 for a = c = 1). We
have shown that φ2 > φ0 > φ3 > φ1. It is clear that the
φi are increasing functions of r inside the black hole. The
behavior of the scalar fields is in agreement with the results
of Ref. [40] in the region of r < r+. We also find the effect
of deformation on decreasing the value of the scalar field. It
means that for bigger A we have smaller φi .

It is desirable that the scalar field should be well defined
outside the horizon with positive value. In the low frequency
limit, one can use Eq. (3.17) and obtain asymptotic values of
the scalar fields for the large r to find the behavior of the scalar
field as illustrated by Fig. 2. We obtain plots corresponding
to A = 1, but the situation is similar for A = −1, which is
used in Ref. [40]. We will show later that a negative value is
suitable for the deformation parameter A as used in Ref. [40].
So the boundary value of the scalar field (φi )

0 is a constant
(may be zero or one), for example (φi )

0 ≈ 1 for the given
value of model parameters as Figs. 1 and 2.

In agreement with Ref. [40] and coincident with both large
and small r we can propose the following function for the
scalar field:

φi (r) = ai + bir

ci + dir
, (3.18)

withai < 0,bi < 0, ci < 0 anddi > 0. It indeed corresponds
to C2 = 0 of the solution (3.17). However, we can consider
it as the general behavior of the scalar field satisfying the
differential equation (3.16) for the non-interacting case with
ω2 → 0.

4 Thermodynamics

In this section we will study thermodynamics properties of
our system near the equilibrium. Near the horizon we have
an infinitesimal temperature which is a decreasing function
of r , and the black hole entropy is given by [40]

s = π

3

A
p0 , (4.1)

where the black hole horizon area is given by

A = 2
(
−p0q3

[
(−p0q3)

2 + 12(p0)2q1q2

]

+
[
(−p0q3)

2 − 4(p0)2q1q2

] 3
2
)

, (4.2)

with

p0 = ac

2g0
− 2g0(β

0)2 (4.3)

as the magnetic charge and

q1 = 2(β3)
2 g2

(g3)2

(
g1g2 − A

3
(g3)2

)

− g2 ac

2
(
g1g2 − A

3 (g3)2
) ,

q2 = 1

2g2 (β0g0 + β3
g1g2

g3 )2 − g1 ac

2(g1g2 − A
3 (g3)

+ A

3
β3

g3

g2

(
β3

g1g2

g3 − β0g0 − A

2
β3g

3
)

,

q3 = g2

g3 q2 − A
g3

g2 q1, (4.4)

as the electric charges.
In the case of positive magnetic charge (p0 ≥ 0), Eq. (4.3)

requires that g0 ≤ ac
4(β0)2 . If we choose a unit value for the

parameters (as selected in figures), then we should have g0 ≤
0.5. So we use this as the allowed regions in the figures.

In Fig. 3 we show the values of the magnetic and the
electric charges for the case of a = c = β0 corresponding to
r+ = 1. According to Fig. 3a it is clear that an infinitesimal g0

yields a large positive value for the magnetic charge, while a
large value of g0 yields a large negative value for the magnetic
charge, which is not our physical case (see Eq. (4.3)) and we
only focus on the regions between 0 ≤ g0 ≤ 0.5. It is clear

that the magnetic charge vanishes for g0 = ±
√
ac

2β0 . As initial
assumption the FI parameters all are positive, so a positive

sign is acceptable and g0 =
√
ac

2β0 is corresponding to a zero

magnetic charge. In the case of a = c = β0 we have g0 = 0.5
where p0 = 0. In the case of g0 = 0.1 we have p0 = 5.

In Fig. 3b we draw q1 as a function of the deformation
parameter A becauseq1 does not depend on g0. The minimum
value of q1 is obtained for A ≈ 1.5 (positive charge) and
A ≈ 4.5 (negative charge). In the case of A = −1 we have
q1 = 3 and for A = −2 we have q1 ≈ 3.5. For negative A
we have positive q1 as well as 0 ≤ A < 3, while for A > 3
we have negative q1.

Again in Fig. 3c we draw q2 in terms of g0 and see that
g0 < 0.3 yields a negative electric charge, while for the case
of g0 > 0.3 we have positive q2, which is an increasing
function of g0. Hence, in the allowed region of g0 we may
have both positive or negative q2.

In Fig. 3d we can see that q3 is totally positive for positive
g0 and it is an increasing function of g0. In the case of g0 =
0.1 we have q3 = 6.9.

In Fig. 4 we draw the entropy (4.1) and see that it is a
decreasing function of g0 and yields a constant value for
large g0. For the selected value of the model parameter, we
should choose a negative A to have positive entropy. Ana-
lyzing the specific heat shows that the black hole is in the
stable phase. We investigate the thermodynamics quantities
near the horizon, and we need the local temperature of the
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Fig. 2 Typical behavior of scalar fields in terms of r (r ≥ r+) for ω2 = 0. All model parameters are set to unity (a = c = A = g0 = g1 =
g2 = g3 = β0 = β3 = fk = C1 = C2 = 1). Solid lines denote the first order approximation, while dashed lines represent the second order
approximation

black hole, which is drawn in terms of r in Fig. 5. We can
see that the black hole temperature is zero at r = r+ = 1,
as expected, and it is a decreasing function near the horizon.
For the small value of g0 (large positive value of magnetic
charge), the black hole temperature is a totally decreasing
function of r . For the larger value of g0, the black hole tem-
perature increases first to a maximum value, then decreases
to zero at the black hole horizon. The zero magnetic charge
case is represented by a solid red line in Fig. 5. In that case,
the local temperature is approximately a parabola, hence we
can write the local temperature as a function of r .

5 Conductivities

In this section we try to obtain electrical and thermal conduc-
tivities. Obtaining the transport properties depending on the
black hole charges (specially magnetic charge) is the main
goal of this paper. In order to obtain the electrical conduc-
tivity we assume the low frequency limit (ω2 → 0) of the
metric (3.1) and use the scalar field (3.18) in Eqs. (2.8) and
(2.9).
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(a) (b)

(c) (d)

Fig. 3 Magnetic and electric charges in terms of g0 for a = c = g1 = g2 = g3 = β0 = β3 = 1 and A = −2

5.1 Electrical conductivity

Assuming (φi )
0 = (φ j )

0 gives us similar diagonal and off
diagonal conductivity components, hence σ = σi i = σi j .
In the unit of 8πG = 1 and m = 1 we can obtain the near
horizon behavior of the electrical conductivity components,
graphically, as illustrated by the plots of Fig. 6. At TC , there
is a second order phase transition from a normal metal into a
superconducting state, which is much like critical phenomena
such as superfluids, magnetic ultra- thin films and supercon-
ductors.

It is clear that the electrical conductivity is increased below
the phase transition temperature, while it is decreased at
higher temperature. This means that we have high conduc-
tivity at low temperature, as expected.

Also, in Fig. 6a we can find the effect of the magnetic
charge on the electrical conductivity near the horizon. In the
case of A = −2, it has been shown that the maximum con-
ductivity is given by g0 ≈ 0.35, which means p0 ≈ 0.5,
q1 ≈ 3.5, q2 ≈ 0.1 and q3 ≈ 7.4 (see Fig. 3).

It means that, in order to have maximum conductivity,
the presence of the magnetic charge is necessary. However,
decreasing or increasing the magnetic charge decreases the
value of electrical conductivity. Thus there is a critical mag-
netic charge where the maximum of conductivity exists. By
using the results of Fig. 5 we can fit the temperature as a func-
tion of r and then obtain a plot of the conductivity in terms
of the temperature (see Fig. 6b). The asymptotic behavior
in Fig. 6b shows a superconductor phase transition in the
presence of a magnetic charge.
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Fig. 4 Typical behavior of entropy in terms of g0 for a = c = g1 =
g2 = g3 = β0 = β3 = 1. A = −2 solid, A = −3 dotted, A = −4
dashed

Fig. 5 Typical behavior of local temperature in terms of r for a = c =
g1 = g2 = g3 = β0 = β3 = 1, A = −2. g0 = 0.1 blue dotted,
g0 = 0.2 green dash dotted, g0 = 0.5 (zero magnetic charge) red solid

However, the deformation parameter is also an important
quantity in conductivity. We find, for a small negative defor-
mation parameter, that superconductivity occurs for a large
positive value of magnetic charge. This means that, for an
infinitesimal value of the deformation parameter, supercon-
ductivity is due to the large value of the magnetic charge. In
other words, superconductivity is enhanced near the horizon
due to the magnetic charge for the case of the ordinary STU
model (A = 0). In this case (A = 0), we find special cases

of superconductivity (see Fig. 7a) with g0 ≈ 0.0036 where
q2 = q3 ≈ 1 (q1 = 2.5) and p0 ≈ 137. In that case q2

and q3 are interpreted as electron charges, so the value of
the magnetic charge is about 137 electron charge. Compari-
son of Figs. 6b and 7b, which are the conductivities in terms
of the temperature, shows that we can have a superconduc-
tive phase transition by using an appropriate choice of A and
g0. These results are in agreement with other experimental
results [47].

In Fig. 7b we can see the superconductor at T = 0 with
zero magnetic charge, while in the presence of the magnetic
charge we have the superconductive phase transition at finite
temperature. In summary, one can conclude that origin of
superconductivity may be the magnetic charge.

5.2 Thermal conductivity

In order to obtain the thermal conductivity using Eq. (2.10)
we use the fact that the chemical potential of the STU black
hole is proportional to the temperature μi ∝ T [48]; also we
assume that iT ≈ ω, because T � 1 and ω2 � 1. In that
case we can rewrite the thermal conductivity as follows:

κT = s2 + (
∑3

i=0 ρi )
2∑3

i, j=0 ρi (Gi j (ω))−1ρ j
, (5.1)

where Eq. (2.11) is used. In Fig. 8a we draw the thermal
conductivity in terms of g0 to see the effect of the magnetic
charge. We find that the deformation parameter A should be
negative to have real thermal conductivity. We find that the
thermal conductivity is proportional to the temperature. It
means that decreasing the temperature reduces the value of
the thermal conductivity, as expected. The effect of the mag-
netic charge on the thermal conductivity is strange. In both
cases, of large positive and small positive magnetic charge,
there is no thermal conductivity. On the other hand, the ther-
mal conductivity increased dramatically for the case of a large
negative magnetic charge. However, it is not a physical case,
because we found from Eq. (4.3) that g0 ≤ 0.5 (for the unit
values of all parameters as selected in the figures); hence in
Fig. 8b we can see the behavior of the thermal conductivity
in the allowed region of g0. We can see a maximum of the
thermal conductivity for g0 ≈ 0.12, which means p0 ≈ 4.8.
It means that a finite value of the magnetic monopole can
yield the highest thermal conductivity.

6 Conclusion

In this paper, we considered a non-homogeneous deforma-
tion of the STU model in four dimensions including three
electric and one magnetic charges and used the fluid/gravity
correspondence to study holographic superconductors. We
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(a) (b)

Fig. 6 Typical behavior of electrical conductivity for ω2 = 0, a = c = g1 = g2 = g3 = β0 = β3 = fk = 1, and A = −2. a In terms of g0 with
A = −2 and r = 1. b In terms of T with A = 1.4 and g0 = 0.3

(a) (b)

Fig. 7 Typical behavior of electrical conductivity for ω2 = 0, a = c = g1 = g2 = g3 = β0 = β3 = fk = 1. a In terms of g0 with A = 0 and
r = 1. b In terms of T with A = 1.4 and g0 = 0.5 (zero magnetic charge)

obtained transport quantities like the electrical and thermal
conductivities and studied the effect of the magnetic charge
on them. We focus on the near horizon temperature which
is corresponding to low temperature field theory. Numeri-
cally, we found the behavior of the scalar field in terms of
the radial coordinate, which can be used to interpret the tem-
perature dependent behavior of the scalar field. In that case
the near horizon temperature is a decreasing function of the
radial coordinate. In order to investigate the effect of the
electric and magnetic charges we fixed all parameters and
varied only one of the related parameters, which is g0. This

is one of the order parameters, which correspond to the Lon-
don penetration depth, while the coherence length is the other
order parameter, which corresponds to the radially dependent
scalar field. Our numerical analysis has shown that increas-
ing of g0 yields a decreasing magnetic charge and vice versa.
Hence, we found that the entropy increases by increasing of
the magnetic charge. We find that the presence of the mag-
netic charge is necessary to have high electrical and thermal
conductivities, and this may be related to time-dependent
perturbations which can enhance superconductivity [49]. A
small positive value of the magnetic charge is enough to have
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(a) (b)

Fig. 8 Thermal conductivity in terms of g0 for ω2 = 0, a = c = g1 = g2 = g3 = β0 = β3 = fk = 1, A = −2, with near horizon behavior
(r ≈ 1). a In the extended region, and b in the allowed region

a maximum of electrical conductivity. Using the numerical
analysis, we found the critical value of the magnetic charge
where there is a maximum of the electrical conductivity. We
have shown that the ordinary STU model (A = 0) is better as
regards describing a holographic superconductor, however,
there are some situations with positive A including a super-
conductive phase transition.

In order to obtain thermal conductivity we used the ordi-
nary entropy given by (4.1), while it is interesting to calcu-
late thermal conductivity with a logarithmically corrected
entropy [50–56] and to study thermal fluctuations corre-
sponding to N−1 corrections in AdS/CFT.
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ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
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