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Abstract We use the correspondence between three-dimen
sional asymptotically flat spacetimes and two-dimensional
contracted conformal field theories (CCFTs) to derive the
stress tensor correlators of CCFT,. On the gravity side we use
the metric formulation instead of the Chern—Simons formu-
lation of three-dimensional gravity. This method can also be
used for the four-dimensional case, where there is no Chern—
Simons formulation for the bulk theory.

1 Introduction

Extending gauge/gravity duality beyond the AdS/CFT cor-
respondence requires that one proposes an appropriate dual
field theory for the spacetimes which are not asymptotically
AdS. One of the candidates is asymptotically flat spacetimes.
These spacetimes are given by vanishing cosmological con-
stant limit of the asymptotically AdS counterparts. This con-
nection on the gravity side may be a hint to the proposal of
a dual field theory for the asymptotically flat spacetimes.
One of the proposals, which links the flat-space limit on
the bulk side to the ultra-relativistic limit of the boundary
theory, was put forward in [1,2]. This proposal, which we
henceforth call flat/CCFT, suggests a holographic connec-
tion between the asymptotically flat spacetimes in (d + 1)
dimensions and contracted conformal field theories (CCFTSs)
in d dimensions.

A CCFT is given by taking an ultra-relativistic limit of the
corresponding CFT. In the ultra-relativistic limit the speed
of light approaches zero and in this singular limit, the sym-
metries of the theory are not a Poincaré symmetry. In two
dimensions, the contracted conformal algebra is given by the
Inonu—Wigner contraction of two copies of the Virasoro alge-
bra. Starting with a CFT5, the contracted algebra is obtained
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by using the generators of the Virasoro algebra and then con-
tracting the time-coordinate [2]. The ultra-relativistic limit of
the conformal algebra is the opposite of the non-relativistic
limit which gives rise to the Galilean conformal algebra
(GCA) [3]. In two dimensions, these two algebras are iso-
morphic but in higher dimensions they are different.

A symmetry similar to the contracted conformal symmetry
also appears as the asymptotic symmetry of the asymptoti-
cally flat spacetimes [4—10]. This symmetry which is called
the BMS symmetrys; it is infinite-dimensional for three and
four dimensions. Taking the flat-space limit of the generators
of the AdS asymptotic symmetry leads to the generators of
the BMS algebra [11]. Thus it is plausible to propose that
the ultra-relativistic limit of the CFT is indeed the dual of the
flat-space limit in the asymptotically AdS spacetimes. This
ideais used in [1,2] where a holographic duality between the
asymptotically flat spacetimes and CCFTs is proposed.

Holographic calculation of the stress tensor correlators
is a good check for the correctness of the correspondence
between a field theory and a gravitational dual theory. It
is well known that the correlation functions of the opera-
tors in CFTs have universal forms. One of the successes of
the AdS/CFT correspondence is its proposed method for the
holographic calculation of these correlators.

Similar to the AdS/CFT correspondence, the correlation
functions of the operators in a CCFT must have a dual
description in the asymptotically flat spacetimes. There are
two plausible ways to establish a dictionary which relates cal-
culations in the two sides of the duality. One can ignore the
AdS/CFT correspondence and consider flat/CCFT in its own
right or one can take the appropriate limit of the calculations
of the AdS/CFT correspondence. Both of these methods have
been invoked and the results have been consistent so far.

Calculating the stress tensor of CCFT by using flat-space
holography was carried out for the first time in [12]. The
method used to find the stress tensor of CCFTj, is taking
the appropriate limit of the AdS/CFT computations. On the
other hand, in [13] a direct method is invoked which yields
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the correlators of CCFT,. However, the holographic calcu-
lations of the correlation functions on the gravity side just
performed by using the Chern—Simons formulation of three-
dimensional flat-space gravity. Generalizing such a corre-
spondence to the higher-dimensional cases, for which there is
no Chern—Simons formulation for the gravity theory, neces-
sitates the metric formulation of such a calculation.

In the present paper we use the metric formulation of three-
dimensional gravity in order to calculate the stress tensor
correlators via holography. The fact that the stress tensor of
a field theory can be used to find the conserved charges of
the symmetries is employed to derive an expression for the
stress tensor components in terms of the conserved charges.
Then the flat/CCFT proposal is used and the charges are sub-
stituted by results in the literature, found directly in the flat
spacetimes. Our results in this paper are consistent with [12].
This method has also been used previously for the quasi-local
stress tensor of the Kerr black hole [14] and the results are
consistent with the ones obtained through taking the flat-
space limit.

To calculate the higher-point correlation functions, we
make use of invariance of the correlators under the action
of the global part of BMS3 algebra. We track this invariance
back to the gravity side and find a general expression for all of
the non-zero stress tensor correlator. Our results also confirm
the idea that the symmetry algebra of CCFT}3 is so rich that
it dictates a universal form for the correlators. Another non-
trivial point in our calculation is assuming a non-symmetric
stress tensor for the CCFTs. Our investigations in the grav-
ity side show that a covariant conservation formula requires
a non-symmetric stress tensor. The fact that CCFTs do not
exhibit Poincaré symmetry helps us avoid any inconsisten-
cies. Our calculations in the present paper provide yet another
confirmation for the fact that asymptotically flat spacetimes
do have holographic duals which are CCFTs living in one
less dimension.

In Sect. 2 we introduce the stress tensor of CCFT, by
using holographic method and metric formulation of three-
dimensional gravity. In Sect. 3 we calculate the p point func-
tions of the stress tensor by using holography. The last sec-
tion, Sect. 4, is devoted to a discussion and to directions for
possible future investigations.

2 Stress tensor of CCFT

Our goal is to calculate the correlation functions of the
CCFT; stress tensor. In the first step we need to introduce
the stress tensor. According to our convention, a CCFT> is a
theory which is defined by the following infinite-dimensional
symmetry:

(L, Lyl = (m — n)Lygm + Crm(m* — 1)8p4n.0,

@ Springer

(L, My] = (m — n)Myim + Cyym(m® — Dpino, (2.1)

where n and m can take any integer values. Similar to CFT5,
one may expect that the above infinite-dimensional symme-
try yields some universal results which are independent of the
underlying action. The algebra (2.1) is given by the Inonu—
Wigner contraction of the Virasoro algebra. Thus, one may
consider CCFT; as a contracted theory obtained from a par-
ent CFT. There are two possible contractions of the Virasoro
algebra which lead to (2.1), a non-relativistic and an ultra-
relativistic contraction. The first one which is given by taking
avery large limit of the light speed, corresponds to the scaling
x — €x and € — 0. On the other hand the ultra-relativistic
contraction is obtained by the limit of vanishing light speed
or equivalently scaling t — €f and € — 0. In two dimen-
sions both the non-relativistic and the ultra-relativistic con-
tractions of the Virasoro algebra give rise to the same algebra
as in (2.1). However, in general, by CCFT we mean a the-
ory for which the symmetry is given by the ultra-relativistic
limit. The non-relativistic limit yields a Galilean conformal
algebra (GCA), which is interesting on its own [3].

We suppose that CCFT; lives on a cylinder with metric
ds? = —du® + R*d¢? (2.2)
where R is the radius of the cylinder, which will be fixed
later when we use the holographic dictionary. Our starting
point for finding the stress tensor of CCFT is the formula
which gives the conserved charges of symmetry generators
&. Using (2.2) we can write

2w 2w
0 0

where J# is the symmetry currentand 7"V is the stress tensor.
Here, we do not impose any conditions on the components
of the stress tensor. For a CCFT that lives on the cylinder one
can introduce a representation for the generators of (2.1):

Ly =ie" (dp +inud,), M, =ie",. (2.4)
Thus we can write
2 )
Ou, = —in dep ™9 T,
0
2 )
0L = R[ dg €% (nuT”” + iR2T”¢). 2.5)
0

Using the orthogonality condition of the Fourier modes, we
can find 7** and T"? from (2.5) as

TMM —

i .
> Oume ™,
27 R ~
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Tu¢ i

fr— 2-6
2m R3 (2.6)

Zeii""} (QLH — iunQMn) .

The other components must be determined by using the con-
servation and traceless-ness conditions. However, in order to
check the above calculations and find other components we
make use of the flat/CCFT proposal and first do a holographic
calculation.

2.1 Holographic calculation using Flat/CCFT
correspondence

The calculations in the previous section are pure field theo-
retic ones and we merely defined a two-dimensional field the-
ory by its symmetries. However, as is proposed in [1,2] this
two-dimensional field theory has a holographic dual theory.
The dual theory is three-dimensional gravity in asymptoti-
cally flat backgrounds. The asymptotic symmetries of such
a spacetimes at null infinity is known as an BMS3; symmetry
which is isomorphic to (2.1). Thus we can find an interpre-
tation for the charges Qy, and Qy, on the bulk side as the
charges corresponding to the asymptotic symmetry genera-
tors. To be precise, let us consider a set of asymptotically flat
spacetimes which transforms back into itself under the action
of asymptotic symmetry generators. In a particular coordi-
nate systems, known as BMS coordinates, the generic form
of the asymptotically flat spacestimes with BMS3 asymptotic
symmetry is given by [10]

ds? = Mdu® — 2dudr + 2Ndudg + r’d¢?, .7)
where
M=0(p), N=x(®) -+ 59/(05), (2.8)

and 6 (¢) and x (¢) are arbitrary functions of the ¢ coordinate.
u is known as the retarded time where for the Minkowski
spacetime u = t — r. The generators of an infinitesimal
coordinate transformation, £/, which preserve the form of
the metric (2.7), are given by

1
EY=F, £°=Y—-3,F,
r
1
£ = —rdyY +03F — N F, (2.9
where
Y=Y(@), F=T@) +uY (), (2.10)

Y (¢) and T (¢) are arbitrary functions. L, and M,,, which
are defined by

M, =&Y =0,T = ie"?),
2.11)

L, =&Y =ie", T =0),

satisfy the algebra (2.1) atlarge . The corresponding charges
of L, and M,, can be computed by various methods. They
are given by covariant phase space method [10,15] as!

i
T 167G
i

"8G

Owm,

27 ing i 0
dg e'"?6 —0
/0 ¢ e T0(P) + 2 =0

oL,

2 .
fo dp e x (¢). (2.12)

The shift in the first line of (2.12) is necessary in order for the
Poisson bracket of the charges to produce the correct coef-
ficient for the central term in the algebra (2.1). The inter-
esting point here is that with this shift of charges we have
Omy = O, = 0 for the Minkowski metric.

Substituting (2.12) in (2.6) one can find the components
of the stress tensor as follows:

uu __ 1
T = 16nGR(1+9(¢))’
1 u
up __ ey
" = —— (x@) +30'©)). (2.13)

This result is consistent with those of [12] where the compo-
nents of the stress tensor are calculated through taking flat-
space limit from the quasi-local stress tensor of the asymp-
totically AdS spacetimes. Moreover, we find the same results
as in [13] if M and N in [13] are identified as the T}, and
T,4 components of the stress tensor. We have not fixed the
constant R in the above calculations, yet. This can be done
through relating the constant term in the uu component of
the stress tensor with the central charges of (2.1).

By assuming a standard conservation formula for the com-
ponents of the stress tensor one arrives at

3, T" + 8,7 = 0. (2.14)
Thus using (2.13) we can determine 7% to be
0(¢)
T — "7 K, 2.15
167 GR3 + 2.15)

where K is a constant of integration. If we also impose a
traceless-ness condition Tl’f = 0 for the stress tensor, K is
determined and we have

= —— L (14009

2.16
167 GR3 (2.16)

I The calculation of surface charges in [10] has been done at the circle
at infinity. Moreover, it is assumed that the background line element
which is used to raise and lower indices is Minkowski, ds? = —du? —
2dudr 4 r2de>.
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From (2.13) it is clear that the conservation equation,

T + 35T =0, (2.17)
is not satisfied for a symmetric stress tensor, i.e. T = %"
One possible way to overcome this obstacle is assuming a
new conservation equation as d,7"* = 0 [12]. However,
if we want to write the conservation formula in a covariant
way, there is a possibility of assuming non-symmetric stress
tensors for the CCFTs. If we implement a non-symmetric
stress tensor (similar to the case in [16]) such that 7"® is
non-zero and is given by (2.13) but 7%* = 0 then the holo-
graphic calculations result in the standard conservation equa-
tion, V, T*" = 0, for the CCFT. The fact that CCFTs are
not Poincaré invariant theories makes this assumption reli-
able. We should note again that all of these results are conse-
quences of accepting a holographic duality between CCFTs
and asymptotically flat spacetimes. In summary, we have

Tuu = _167TGR (1 +9(¢))a
1 u .,
Tuo = — g (1@ +30'@).
R
Ty = “16nG (I+06()),
Ty = 0. 2.18)

3 Correlators of stress tensor

In this section we use the results of the previous sections to
calculate the correlation functions of CCFT5. To do so, we
assume that these functions are invariant under the global
part of the two-dimensional symmetry algebra. For the two-
dimensional theory, whose symmetry is given by (2.1), the
global part is generated by {Lq, L+, My, M11}. According
to (2.18), the holographic calculations yield the components
of stress tensor in terms of the two functions 6 (¢) and x (¢).
When we fix these functions on the gravity side, the asymp-
totically flat solution is completely determined. An infinites-
imal coordinate transformation generated by (2.9) changes
these functions to & + 86 and x + §x. The infinitesimal
changes of the functions can be calculated by using the Lie
derivative of the metric components and expressing them in
such a way that the generic form (2.7) is preserved. We arrive
at

80 =Y0' +2Y'0 — 27",
1 / / / / n
Sex = 5T0 +Yx' +2¥x +T'0 = T". (3.1

We apply (3.1) on the gravity side to find the variation of
the stress tensor in the boundary. Using (2.18) and (3.1) and

@ Springer

imposing the conditions

Sm,(Tij) =0, 8.,(Tij) =0, n=0,%1, (3.2)
result in
(Tij) =0, (3.3)

as expected.

We can also use (2.18) and (3.1) to calculate higher-point
functions. Since according to (2.18), T4 is the same as T,
up to an overall factor, its correlation functions with the other
components are similar to the correlation functions of 7},,,.
Similar to the one-point functions, we want to determine the
p point functions by imposing

S, (T} -+ T =0,

1
) 51, (T} -+ T{)) =0,

n=0,=+1,
34
where T}, = T (ur, ¢).
If we define B(¢p) = 6(¢p) + 1 then the uu and ¢p¢ com-
ponents of the stress tensor will be proportional to §(¢). For

n =0, %1, Egs. (2.11) and (3.1) yield the following varia-
tions:

Su,B=0, 81,8 =2e"?(i0yB—2np),

M, X = %emd’ (i998 — 2np) ,

Sr,x =" (idpx —2nx). (3.5)
It is clear from (3.5) that imposing 4y, (Tl} e Tk’l’) = 0 for
n = 0, £ 1 results in the equations

P .
Z(Xl...e”'d’k(iak —2m)Xg---X,p) =0, (3.6)
k=1

where X; can be either 8; = B(¢;) or x; = x(¢;) and o
indicates the derivative with respect to ¢ at the point ¢y. Thus
we conclude that, for a given p, all of the p point functions
of B and x with any numbers of § and x and any insertion
of them have the same functionality of {¢1, ¢2, - -- , ¢} but
with different overall constant factors. These constants can
also be zero, which would render some correlation functions
to vanish.
The solution to Eq. (3.6) is given by

eZi Z/f:] ¢k

. , _4
H1§l<m§p (el¢l — e”ﬁm)ﬂ*l

(X1---Xp)=C (3.7)

where C is a constant which can be zero. We determine C
byimposingSMn(Tij. e Tkll’) =0forn=0,£1.(x1-- xp)
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does not appear in any other equation; thus we conclude that
it is given by the generic equation (3.7). Moreover, from

Sm, (T -+ Ts) = 0 we find that

(Bixaxs - xpy={(x1Bax3 - xp)=---={x1x2x3 - Bp)-
(3.8)

However, applying 8, to other correlation functions which
have at least one Ty, reveals that the correlations of 8 and
X containing more than one B8 must be zero in order to be
consistent with the generic result (3.7). Thus the only non-
zero correlation functions of 8 and x are

eZiZl€:1¢k
(x1-+-xp) = Cy | __
H1§l<m§p (€l¢l — e’¢m) p—1
(Bixaxs--xp) == (axexs - Bp)
62i21f=l¢k
-C i i 4 3.9
H1§l<m§p (el¢’ — e’¢m) p—T

where C; and C; are constants. They must be related to the
central charges cjs and ¢y, of (2.1), but on the gravity side
they are only constants of integration. Now using (2.18) and
(3.9) we can calculate all of the correlation functions of the
stress tensor:

eQ‘l Z/f:] ¢k

(T Ty Th) o C

4

H1§l<m§p (ei¢l - eid)m) !

Cy P
1 2
(TM¢TM¢ ... Tu‘;) 108 (Cl + > kg_l uk8k>

eZiZ]f:] ¢k
X . (3.10)

. ; I
l_[151<m§p (6’1¢/ — el¢m) p—1

Itis clear from (3.10) that all of the p point functions of 7},4s
are given by correlation of one 7, and p — 1 of the T},.
For the two-point functions we find

(Tuu (¢1)Tuu (¢2)> =0,

e2i(P1+62)
2 (P1+2)
elPl 4 pi92

(Tuu (¢1)Tu¢'(u2: $)) o Ca

(Tug (w1, ¢1) Tyug (U2, ¢2)) x Cy

X <1+2i2(u2—u1) (3.11)
Cy

which are exactly the same as results of [13] up to the
constants C1 and C;, which are proportional to the central
charges cjs and ¢y . Our results for the three-point functions

are also exactly the same as [13]. However, for the correla-
tors higher than four we cannot regenerate the full correlation
functions just by symmetry consideration similar to what we
have done in this paper. In fact, some cross-ratios are nec-
essary which we miss in this method. The main motivation
for the calculations of this paper is to connect gravity cal-
culations, using metric formulation in the three-dimensional
asymptotically flat space times, to the direct calculations of
correlators in Ref. [13]. The consistency of our correlation
functions (at least up to the four-dimensional correlators)
with the results of [13] shows that a CCFT, could be a
good candidate for the holographic dual of three-dimensional
asymptotically flat spacetimes.

4 Discussion

In this paper we calculate all correlation functions of CCFT;
stress tensor by using Flat/CCFT proposal. On the grav-
ity side we make use of the metric formulation of three-
dimensional gravity. Our method is applicable for higher-
dimensional cases, as well. The interesting point is that the
asymptotic symmetry of four-dimensional asymptotically
flat spacetimes is also infinite-dimensional. The symmetry
algebra is known as the BMSy algebra. Using the flat/CCFT
correspondence we conclude that CCFTj3 also has an infinite-
dimensional symmetry and therefore one expects a universal
behavior for the correlation functions of the operators [17].
Since the conformal symmetry in three dimensions is finite-
dimensional, it is not clear how to find the correlators by
taking the flat space limit. However, it is possible to general-
ize our method in this paper to the four-dimensional case. In
the method which we use in this paper, the CCFTs are defined
by using their symmetries. These symmetries are given by
the BMS algebra which is infinite-dimensional in two- and
three-dimensional CCFTs. In other words CCFTs are defined
as BMS-invariant field theories. Using this definition we can
forget the contraction. The steps for the calculation of the
CCFTj stress tensor correlators will be similar to those in
the two-dimensional case: The first step is to find the stress
tensor components by using the standard definition of con-
served charges. The starting point is to generalize (2.3) to
three dimensions, which can be performed very simply. How-
ever, the main task is to derive the components by using the
method of Sect. 2. We expect some sort of non-symmetric
stress tensor components for the three-dimensional case. We
emphasize again that in the derivation of stress tensor com-
ponents we just need the direct connection of CCFTs with the
dual asymptotically flat spacetimes and a parent CFT calcu-
lation is not necessary. The next step is to employ the invari-
ance of the correlators under the action of the global part of
the BMS, symmetry (as the symmetry of CCFT3), which is
expected to fix the structure of correlators. Similar to CFT;
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and CCFTy, it is plausible that the infinite-dimensional sym-
metry of CCFT3 dictates some universal form for the n point
function of the stress tensor correlators. If this is so some
related interesting questions arise. Among them the issue of
the entanglement entropy of CCFT3 which is expected to
use the universality of the correlation functions, is of great
interest [18-20].

Another interesting question in the context of Flatz/CCFT,
proposal is the calculation of the higher correlation functions
by taking the appropriate limit of the AdS/CFT calculations.
This might be done along the lines first introduced in [21].
The importance of this problem is that its solution is a nec-
essary step in the path to find a holographic renormalization
method for the flat/CCFT correspondence.
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